近世代数复习试题2010级
近世代数复习试题2010级

《近世代数》复习试题一 填空题1.12,,n A A A L 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A L 为A 的一个分类.2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射.3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________.4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______.5. 在3S 中,)23()12)(123(1-= .6. 模6的剩余类环6Z 的所有可逆元: .7. 模6的剩余类环6Z 的所有零因子: .8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a .9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________.10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________.二 解答、证明题1.设Z 是全体整数的集合,在Z 中规定:.,,2Z b a b a b a ∈∀-+=ο证明:),(οZ 是一个交换群.2.证明:群G 不能表示成两个真子群的并.3.证明:r-循环为偶置换的充要条件是r 为奇数.4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群.5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =⇔≤.6.设H G ≤,N G <,证明:HN G ≤.7.设H G ≤,且2]:[=H G ,证明:.G H <8.证明:每个素数阶的群都是循环群.9.设N 是群G 的子群,N 的阶是r(1)证明1()gNg g G -∈也是G 的一个子群.(2)若N 是G 的唯一的r 阶子群,证明N 是G 的正规子群.10.设C(G)为G 中心, 且G/C(G)为循环群,证明G 为交换群.11.设G=)(a 是24阶循环群,试列举出G 的8阶子群的所有生成元。
近世代数基础测验卷

近世代数测验题一、填空题(42分)1、设集合M 与M 分别有代数运算 与 ,且M M ~,则当 时, 也满足结合律;当 时, 也满足交换律。
2、对群中任意元素1)(,,-ab b a 有= ;3、设群G 中元素a 的阶是n ,n|m 则m a = ;4、设a 是任意一个循环群,若∞=||a ,则a 与 同构;若n a =||, 则a 与 同构;5、设G=a 为6阶循环群,则G 的生成元有 ;子群有 ;6、n 次对称群n S 的阶是 ;置换)24)(1378(=τ的阶是 ;7、设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=2314432114324321βα,,则=αβ ; 8、设)25)(136()235)(14(==τσ,,则=-1στσ ;9、设H 是有限群G 的一个子群,则|G|= ;10、任意一个群都同一个 同构。
二、证明题(24)1、 设G 为n 阶有限群,证明:G 中每个元素都满足方程e x n=。
2、 叙述群G 的一个非空子集H 作成子群的充要条件,并证明群G 的任意两个子群H 与K 的交K H 仍然是G 的一个子群。
3、 证明:如果群G 中每个元素都满足方程e x =2,则G 必为交换群。
二、解答题(34)1、 叙述群的定义并按群的定义验证整数集Z 对运算4++=b a b a 作成群。
2、 写出三次对称群3S 的所有子群并写出3S 关于子群H={(1),(23)}的所有左陪集和所有右陪集。
参考答案:一、填空题1、满足结合律; 满足交换律;2、11--a b ;3、e ;4、整数加群;n 次单位根群;5、5,a a ;{}{}{}{}5432423,,,,,,,,,,,a a a a a e a a e a e e ;6、n!;47、⎪⎪⎭⎫ ⎝⎛23144321 8、(456)(32)9、|H|:(G:H)10、(双射)变换群;二、证明题1、已知||n G =,|a|=k,则k|n令n=kq,则e a a a q k kq n ===)(即G 中每个元素都满足方程e x n =2、充要条件:H a H a H ab H b a ∈⇒∈∈⇒∈-1;,,;证明:已知H 、K 为G 的子群,令Q 为H 与K 的交设H b a ∈,,则K b a H b a ∈∈,,,H 是G 的子群,有H ab ∈K 是G 的子群,有K ab ∈Q ab ∈∴Ha Ka H a H a ∈∈∈∈∀-11,可知由定理且,则综上所述,H 也是G 的子群。
近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。
答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。
例如,整数集合Z在加法运算下构成一个群。
2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。
判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。
3. 什么是正规子群?请给出一个例子。
答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。
例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。
4. 什么是群的同态?请给出一个例子。
答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。
例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。
5. 什么是群的同构?请给出一个例子。
答案:群的同构是两个群G和H之间的双射同态。
这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。
例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。
6. 什么是环?请给出一个例子。
答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。
例如,整数集合Z在通常的加法和乘法运算下构成一个环。
7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。
判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。
8. 什么是环的同态?请给出一个例子。
答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。
(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
近世代数练习题试题库

§1 第一章 根底知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
〔 〕1.2 A ×B = B ×A 〔 〕1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
〔 〕 1.4 如果ϕ是A 到A 的一一映射,那么ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
〔 〕1.6 设A 、B 、D 都是非空集合,那么B A ⨯到D 的每个映射都叫作二元运算。
〔 〕1.7 在整数集Z 上,定义“ 〞:a b=ab(a,b ∈Z),那么“ 〞是Z 的一个二元运算。
〔 〕1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 假设A={0,1} , 那么A ⨯A=__________________________________。
2.2 设A = {1,2},B = {a ,b},那么A ×B =_________________。
2.3 设={1,2,3} B={a,b},那么A ⨯B=_______。
2.4 设A={1,2}, 那么A ⨯A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,那么有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,那么()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},那么A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,那么共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},那么A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},那么A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合以下三个条件:_____________________________________________。
近世代数考试试题题库

近世代数考试试题题库近世代数是一门研究代数结构的数学分支,它主要研究群、环、域等代数结构的性质和它们之间的关系。
以下是一份近世代数考试试题题库的示例内容:一、选择题1. 以下哪个不是群的公理?A. 单位元存在性B. 可逆性C. 交换律D. 结合律2. 一个集合G,配合一个二元运算*,若满足以下条件,则G是一个群:A. 存在单位元B. 每个元素都有逆元C. 运算满足结合律D. 所有上述条件3. 在群G中,若a属于G,a的阶是最小的正整数n,使得a^n等于单位元,那么a的阶是:A. 1B. nC. 0D. G的阶4. 以下哪个是有限群的拉格朗日定理的表述?A. 群的子群的阶总是群的阶的因子B. 群的子群的阶等于群的阶C. 群的子群的阶总是群的阶的倍数D. 群的阶总是其子群的阶的倍数5. 环R中,若存在单位元1,并且对于任意的a, b属于R,都有a*b=b*a,则R是一个:A. 群B. 域C. 交换环D. 模二、填空题6. 群的______性质保证了每个元素都有逆元。
7. 一个有单位元的结合环,如果其每个非零元素都有逆元,则这个环称为一个______。
8. 一个环的加法群是阿贝尔群,如果它的加法运算满足______律。
9. 一个环R中,如果a^2 = a对于所有a属于R,则R被称为______环。
10. 一个域的特征是2,这意味着域中1+1=______。
三、简答题11. 解释什么是子群,并给出一个不是子群的例子。
12. 描述拉格朗日定理,并说明它在群论中的重要性。
13. 什么是环的雅各比恒等式,并解释它在交换环中的意义。
14. 举例说明什么是有限域,并讨论它的性质。
15. 解释什么是主理想环,并讨论它与环的整性之间的关系。
四、证明题16. 证明:如果H是群G的一个子群,那么G/H的阶等于[G:H]。
17. 证明:任何群的子群都是阿贝尔的当且仅当该群本身是阿贝尔的。
18. 证明:如果R是一个有单位元的交换环,并且对于任意的a, b属于R,都有a*b = b*a,则R是一个域。
近世代数复习题

近世代数复习题例1 :写出剩余类加群Z15的(1) 全部元素; { [0], [1], …, [14]}(2) 全部生成元; { [1], [2], [4], [7], [8], [11], [13], [14]}(3) 全部子加群;?[0]?, ?[1]?= Z15, ?[5]?={[0], [5], [10]}= ?[10]?,[3]?={ [0], [3], [6], [9], [12]} = ?[6]?= ?[9]?= ?[12]?.(4) 每个元素的负元;-[1]=[14], -[2]=[13], -[3]=[12],-[4]=[11], -[5]=[10], -[6]=[9], -[7]=[8].(5) 全部理想;([0]), ([1]) = Z15, ([5])={[0], [5], [10]}= ([10]),([3])={ [0], [3], [6], [9], [12]} = ([6])= ([9])= ([12]).(6) 全部可逆元;{ [1], [2], [4], [7], [8], [11], [13], [14]}(7) 全部零因子;{ [3], [5], [9], [10], [12]}(8) Z15是域吗?说明理由; 不是。
因为有零因子。
一、选择题1、设实数在有理数域Q上的极小多项式f(x)的次数为n, 则可以用圆规直尺作图作出的条件是(A)(A) n是2的方幂;(B) n是素数;(C) n是素数的方幂;(D) n>2。
2、设H是群G的正规子群,商群G/H中的元素是(C)(A) H中的元素;(B) G\H中的元素;(C) G 关于H 的所有右陪集;(D) H 的所有共轭1Hg -g.3、设是环同态, 则同态的核是 (D)(A) Ker(?)={a ∈S: 有?b ∈R, 使得 ?(b )=a };(B) Ker(?)={a ∈R: ? (a )=a };(C) Ker(?)={a ∈?R: ? (a )=1};(D) Ker(?)={a ∈?R: ? (a )=0}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《近世代数》复习试题
一 填空题
1.12,,n A A A 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A 为A 的一个分类.
2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射.
3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________.
4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______.
5. 在3S 中,)23()12)(123(1-= .
6. 模6的剩余类环6Z 的所有可逆元: .
7. 模6的剩余类环6Z 的所有零因子: .
8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a .
9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________.
10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________.
二 解答、证明题
1.设Z 是全体整数的集合,在Z 中规定:
.,,2Z b a b a b a ∈∀-+=
证明:),( Z 是一个交换群.
2.证明:群G 不能表示成两个真子群的并.
3.证明:r-循环为偶置换的充要条件是r 为奇数.
4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群.
5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =⇔≤.
6.设H G ≤,N G ,证明:HN G ≤.
7.设H G ≤,且2]:[=H G ,证明:.G H
8.证明:每个素数阶的群都是循环群.
9.设N 是群G 的子群,N 的阶是r
(1)证明1()gNg g G -∈也是G 的一个子群.
(2)若N 是G 的唯一的r 阶子群,证明N 是G 的正规子群.
10.设C(G)为G 中心, 且G/C(G)为循环群,证明G 为交换群.
11.设G=)(a 是24阶循环群,试列举出G 的8阶子群的所有生成元。
12.设H ,K 都是群G 的正规子群,且K H ⊆,则
/(/)/(/G H G K H K ≅
13.设G 是群,()C G 是G 的中心,N G ≤,且()N C G ⊆,证明:
(1)N G ;
(2)若/G N 是循环群,则G 是交换群.
14.设),,(⋅+R 是有单位元1的环,在R 上又定义
b a b a b a 1b a b a ⋅-+=-+=⊕⊕ :,:
证明:),,( ⊕R 也是一个有单位元的环.
15. 设R 是有单位元的环,R b a ∈,
(1) 若a, b ,a+b 都可逆, 证明11b a --+也可逆.
(2) 求111b a ---+)(
16. 证明:除环的中心是一个域.
17.设2n ≥为正整数,证明:
(1) 环n Z 中元素][a 可逆⇔1n a =),(,即a 与n 互素;
(2) 若p 是素数,则p Z 是域;若2n ≥不是素数,则n Z 不是整环.
18.求出模6剩余类环6Z 的所有理想.
19.求整数环Z 上一元多项式][x Z 的理想),(x 2, 并证明),(x 2不是主理想.
20. 在整数环Z 中,若)(),(b a 是Z 的两个理想,则)()()(d b a =+,)()()(c b a = ,其中d 是a 与b 的最大公因数,c 是a 与b 的最小公倍数.
21. 设R 是一个有单位元的有限交换整环,证明:R 的每一个非零素理想都是R 的极大理想.
22. 求下列剩余类环的素理想和极大理想:6Z ,12Z ,13Z ,16Z
23.][x R 是实数域R 上的一元多项式环, 证明: C 1x x R 2≅+)/(][.。