中心对称图形和轴对称图形

合集下载

初中数学知识点轴对称与中心对称

初中数学知识点轴对称与中心对称

初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

14-中心对称图形和轴对称图形

14-中心对称图形和轴对称图形
第十四讲
中心对称图形与轴对称图形
金石网校 王丹
知识梳理
一、中心对称图形
中心对称:如果把一个图形绕着某一点旋转180°后
能与另一个图形重合,那么我们就说这两个图形成中
心对称,这个点叫做对称中心,两个图形中的对应点 叫做对称点。 中心对称图形:在平面内,一个图形绕某个点旋转 180°,如果旋转前后的图形互相重合,那么这个图 形叫做中心对称图形。这个点叫做它的对称中心。
B A’ ﹒O A B’
C
C’
6、如图,四边形ABCD的对角线AC、BD相交于点O,
A与C关于O成中心对称,B与D关于O成中心对称,
B与D关于AC成轴对称。 问:四边形ABCD是菱形吗?请说明理由。
A
B
O C
D
四边形ABCD是菱形。 证明:∵ A与C关于O成中心对称 ∴ OA=OC ∵ B与D关于O成中心对称 ∴ OB=OD
形,非等腰梯形等.
随堂练习
1、下列图形中,既是轴对称图形又是中心
对称图形的是( D ) A.平行四边形 C.等边三角形 B.等腰三角形 D.菱形
2、下面6个图形,哪些是轴对称图形,哪些是 中心对称图形?
3、下列说法错误的是( B ) A.一条线段的中点是它的对称中心 B.两个全等三角形一定是中心对称图形 C.正方形既是中心对称图形也是轴对称图形 D.关于中心对称的两个图形必是全等形
∴ 四边形ABCD是平行四边形
∵ B与D关于AC成轴对称
∴ BD⊥AC
∴ 四边形AB直线对称,则: 1.对应点连线段被对称轴垂直平分. 2.对应线段相等,对应角相等.
常见的轴对称图形有哪些?
既是轴对称图形又是中心对称图形的有:直线,线段, 两条相交直线,矩形,菱形,正方形,圆等. 只是中心对称图形的有:平行四边形等.

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

轴对称与中心对称图形

轴对称与中心对称图形

轴对称与中心对称图形图形在数学中扮演着重要的角色,我们常常通过图形来进行分析和研究。

其中,轴对称和中心对称是两种常见的图形特征,本文将对这两种特征进行深入探讨。

一、轴对称图形轴对称图形是指具有轴对称特点的图形。

轴对称意味着图形可以通过一个轴进行镜像对称,即图形和其镜像重合。

简单来说,轴对称图形是左右完全对称的,即使折叠图形,两边也完全相同。

轴对称图形具有以下特点:1. 存在轴线:轴对称图形一定存在轴线,该轴线可以是垂直、水平或倾斜的。

2. 镜像关系:图形沿轴线进行折叠后,两侧完全对称。

3. 完全对称:图形的任意一点关于轴线,其对应点均重合于图形上。

常见的轴对称图形有正方形、长方形、圆形等。

这些图形的特点是左右对称,通过图形中的轴线可以轻松确定这些图形是否轴对称。

例如,对于一个正方形,通过从中心点绘制两条垂直、水平的轴线,可以发现图形可以完全折叠。

二、中心对称图形中心对称图形是指图形具有中心对称性质的图形。

中心对称意味着图形可以通过一个中心点进行旋转180度,使得旋转后的图形与原图形完全一致。

中心对称图形具有以下特点:1. 存在中心点:中心对称图形一定存在中心点,该中心点可以位于图形内部或边界上。

2. 旋转180度:图形绕中心点旋转180度后,与原图形完全一致。

3. 完全一致:图形的任意一点关于中心点,其对应点均重合于图形上。

常见的中心对称图形有正五边形、正六边形等。

这些图形的特点是任意一点到中心点的距离相等,并且旋转180度后的图形与原图形完全相同。

总结:轴对称和中心对称是图形的重要特征,通过观察和分析图形的对称性质,可以更好地理解图形的形态和结构。

轴对称图形以左右对称为主要特点,而中心对称图形以中心旋转180度为主要特点。

研究和了解这些对称性质,有助于我们更深入地理解数学中的图形学知识。

通过对轴对称和中心对称图形的介绍,我们可以更好地理解图形的形态和特点。

图形学是数学中的重要分支,通过研究图形的特征和性质,我们可以将其应用于各个领域,如几何学、计算机图形学等。

中心对称图形和轴对称图形

中心对称图形和轴对称图形

什么是中心对称图形中心对称:在平面内,把一个图形绕着某个点旋转 180° ,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称 (Central of symmetrygraph),这个点叫做它的 对称中心(Center of symmetry ),旋转180°后重合的两个点叫做 对 称点(corresponding points )。

理解中心对称的定义要抓住以下三个要素: (1 )有一个对称中心 一一点; (2 )图形绕中心旋转 180° ; (3)旋转后两图形重合. 中心对称的性质:连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分 中心对称图形:在平面内,把一个图形绕着某个点旋转 180。

,如果旋转后的图形能与原来的图形重合,那么这个图形叫做 中心对称图形,这个点叫做它的 对称中心.旋转180°后重合的两个点叫做对应点(corresp onding poi nts)。

① 对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分 (对称点在中心对称图形中)。

② 成中心对称的两个图形全等。

③ 中心对称图形上每一对对称点所连成的线段都被对称中心平分。

区分:中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图 形。

中心对称图形常见图形常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。

正偶边形是中心对称图形正奇数边形不是中心对称图形※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。

反比例函数的图像双曲线是以原点为对称中心的中心对称图形什么是轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

16章轴对称图形和中心对称图形轴对称1.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

2.如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)3.把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)4.轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称5.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

6.于中心对称的两个图形是全等形。

7.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

8.关于中心对称的两个图形,对应线段平行(或者在同一直线上)垂直平分线9.经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

垂直平分线,简称“中垂线”。

10.垂直平分线垂直且平分其所在线段。

11.垂直平分线上任意一点,到线段两端点的距离相等。

12.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

13.角平分线上的点到这个角的两边的距离相等。

14.到角的两边距离相等的点在这个角的角平分线上。

1st17章特殊三角形等腰三角形及等边三角形1.有两边相等的三角形是等腰三角形。

2.等腰三角形的两个底角相等(简写成“等边对等角”)。

等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。

3.三边都相等的等腰三角形是等边三角形。

4.等边三角形的三个角都相等,并且每个角都为60°,5.如果一个三角形有两个角相等,那么这个三角形是等腰三角形。

中考数学一轮复习:图形的轴对称与中心对称

中考数学一轮复习:图形的轴对称与中心对称

A.3
B.4
C.5
D.6
解析:由折叠知 BE=EF=3,则 EC=5.故 CF= EC2-EF2=4.设 AB=x,则 AF=x, AC=x+4,∴x2+82=(x+4)2.∴x=6.
答案:D
二、填空题 3. 如图, D 是AB边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC上的F 处.若∠B=50°,则∠BDF=________.
解析:由题意得AD=DF,又AD=DB,∴DB=DF,∴∠DBF=∠DFB=50°, ∴∠BDF=80°.
答案:80°
4.如图,△ABC 的顶点都在正方形网格格点上,点 A 的坐标为(-1,4).将△ABC 沿 y 轴翻折到第一象限,则点 C 的对应点 C′的坐标是(3,1).
三、解答题 5.如图,在 10× 10 的正方形网格中,每个小正方形的边长都为 1,网格中有一个格点 △ABC(即三角形的顶点都在格点上 ).
解析:∵四边形 ABCD 是正方形,∴∠ABC=90° .由轴对称可知:∠DBF=∠CBF, 1 ∠ABE=∠DBE,∴∠EBF= ∠ABC=45° . 2
答案:C
一、选择题 1. 如图,在下列四个图案中既是轴对称图形,又是中心对称图形的是(
)
答案:B
2.如图,在矩形纸片 ABCD 中,已知 AD=8,折叠纸片使 AB 边与对角线 AC 重合,点 B 落在 F 处,折痕为 AE,且 EF=3,则 AB 的长为( )
知识点二
中心对称图形和中心对称
1.在平面内,一个图形绕某个点旋转 180° ,能与原来的图形重合,这个图形叫做中心 对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点. 2.在平面内,一个图形绕某一定点旋转 180° ,它能够与另一个图形重合,就说这两个 图形关于这个点成中心对称, 这个点叫做对称中心, 旋转后两个图形上能够重合的点叫做关 于对称中心的对称点. 3.中心对称与中心对称图形的区别与联系 区别:(1)中心对称是指两个图形的位置关系,而中心对称图形是指具有某种性质的一 类图形;(2) 成中心对称的两个图形的对称点分别在两个图形上,而中心对称图形的对称点 在同一个图形上. 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把成中心对称 的两个图形看成一个整体,则成为中心对称图形.

轴对称图形与中心对称图形的认识

轴对称图形与中心对称图形的认识

中心对称图形练习题及解析
• 总结词:中心对称图形是可以通过旋转180度与自身重合的图 形。识别和区分中心对称图形有助于提高学生对几何图形的认 识。
中心对称图形练习题及解析
详细描述
1. 准备一些常见的中心对称图形,如圆形、正 方形、菱形等。
2. 让学生观察每个图形的特点,并尝试旋转图 形,观察是否能通过旋转180度与自身重合。
直线
被称为对称轴。
轴对称图形的性质
01
02
03
性质1
轴对称图形的两部分是全 等的。
性质2
轴对称图形的对应线段相 等,对应角相等。
性质3
轴对称图形的对称点所连 线段被对称轴垂直平分。
轴对称图形的分类
分类1:线段 定义:一条线段关于它的中垂线对称的图形叫做线段。
特点:线段的两个端点关于这条中垂线对称。
工程设计
在桥梁、车辆、船舶等工程设计中 ,轴对称性能够提高结构的稳定性 和安全性。
中心对称图形在生活中的应用
旋转对称
许多自然现象和物体表现出旋转 对称性,如地球的自转、雪花等

艺术品
中心对称在艺术品中也有广泛应 用,如旋转对称的雕塑、图案等

工业设计
在工业设计中,中心对称性可用 于提高产品的美观度和使用体验
中心对称图形练习题及解析
3. 让学生识别出哪些图形是中心对称的,并分析它们的对称 中心。
示例:在上述练习中,学生可以通过旋转圆形、正方形、菱 形等图形,观察它们是否可以通过旋转180度与自身重合, 从而识别出哪些是中心对称图形。同时,学生还可以进一步 分析每个图形的对称中心。
THANK YOU

轴对称图形与中心对称图形的艺术价值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是中心对称图形
中心对称:在平面内,把一个图形绕着某个点旋转180。

,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称(Central of symmetry graph),这个点叫做它的对称中心(Center of symmetry),旋转18(T后重合的两个点叫做对称点(corresponding points) o
理解中心对称的左义要抓住以下三个要素:
(1)有一个对称中心一一点:
(2)图形绕中心旋转180° ;
(3)旋转后两图形重合.
中心对称的性质:
连接中心对称图形上每一对对称点的线段都经过对称中心,且被对称中心平分
中心对称图形:在平而内,把一个图形绕着某个点旋转180° ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.旋转180° 后重合的两个点叫做对应点(corresponding points)。

①对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的而积被平分(对称点在中心对称图形中)。

②成中心对称的两个图形全等。

③中心对称图形上每一对对称点所连成的线段都被对称中心平分。

区分:中心对称是两个图形间的位豊关系,而中心对称图形是一种具有独特特征的图
形。

常见图形
常见的中心对称图形有:线段,矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些不规则图形等。

正偶边形是中心对称图形
正奇数边形不是中心对称图形
※正六角形是中心对称图形,等腰梯形不是中心对称图形,等边三角形(正三角形),至少需旋转120度,而不是180度,所以它不是中心对称图形。

反比例函数的图像双曲线是以原点为对称中心的中心对称图形
什么是轴对称图形?
如果一个图形沿着一条宜线对折后两部分完全重合,这样的图形叫做轴对称图形(axial?symmetric?figure),这条直线叫做对称轴(axis?of?symetric);这时,我们也说这个图形关于这条直线对称。

例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形•有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴.圆有无数条对称轴,都是经过圆心的直线。

要特别注意线段,有两条对称轴,一条是这条线段所在的宜线,另一条是这条线段的中垂线.轴对称图形2示例
蝴蝶也是一种轴对称图形。

性质
1.对称轴是一条直线。

2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。

线段垂直平分线上的点到线段两端的距离相等。

3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

4.在轴对称图形中,对称轴把图形分成完全相等的两份。

5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
6.图形对称。

定理及其逆定理
立理1:关于某条直线对称的两个图形是全等形。

(全等形不一左关于某条直线对称)
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

左理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

立理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

轴对称,生活作用
1、为了美观,比如天安门,对称就显的美观漂亮;
2、保持平衡,比如飞机的两翼;
3、特殊工作的需要,比如五角星,剪纸。

画轴对称图形的方法
方法:
1、找出所给图形的关键点。

2、找出图形关键点到对称轴的距禽。

3、找关键点的对称点。

4、按照所给图形的顺序连接各点。

画法:
1、找出图形的一对对称点。

2、连接对称点。

3、过这条线段的中点作这条线段的垂线。

轴对称图形、中心对称图形的区别
区分这两个概念要注意:轴对称图形一立要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形•现将小学课本中常见的图形归类如下:既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等.
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等.
只是中心对称图形的有:平行四边形.
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

相关文档
最新文档