2019-2020学年福建省莆田市城厢区南门中学八年级(上)开学数学试卷
福建省莆田市2019-2020学年数学八上期末模拟检测试题(3)

福建省莆田市2019-2020学年数学八上期末模拟检测试题(3)一、选择题1.计算112-⎛⎫- ⎪⎝⎭的结果是( ) A.-2 B.12- C.12 D.2 2.在分式a b ab +中,把a 、b 的值分别变为原来的2倍,则分式的值( ) A .不变B .变为原来的2倍C .变为原来的12D .变为原来的4倍 3.已知关于x 的方程232x m x +=-的解是正数,那么m 的取值范围为( ) A .m >-6且m≠2B .m <6C .m >-6且m≠-4D .m <6且m≠-2 4.下列计算正确的是( )A .a 5+a 2=a 7B .2a 2﹣a 2=2C .a 3•a 2=a 6D .(a 2)3=a 6 5.下列运算正确的是( )A.236•a a a =B.()325a a =C.23•a ab a b -=-D.532a a ÷=6.如图,∠AOB=120°,OP 平分∠AOB ,且OP=3,若点M,N 分别在OA,OB 上,ΔPMN 为等边三角形,则满足上述条件的△PMN 有中( )A .1个B .2个C .3个D .3个以上7.下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D .8.如图,△ABC 中,AB=AC ,BE 平分∠ABC ,CD 平分∠ACB ,则下图中共有几对全等三角形( )A.2B.3C.4D.59.等腰三角形有两条边长为5cm 和9cm ,则该三角形的周长是( )A .18cmB .19cmC .23cmD .19cm 或23cm10.如图,AB//DE,AC//DF,AC=DF,下列条件中不能判断△ABC ≌△DEF 的是( )A.AB=DEB.EF=BCC.∠B=∠ED.EF ∥BC11.如图,要测量河两岸相对两点A 、B 的距离,可以在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再作BF 的垂线DE ,且使A 、C 、E 在同一条直线上,可得△ABC ≌△EDC .用于判定两三角形全等的最佳依据是( )A .ASAB .SASC .SSSD .AAS 12.下列各组数中,不能成为直角三角形的三条边长的是( ) A .3,4,5B .7,24,25C .6,8,10D .9,11,13 13.下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,10C .5,5,11D .5,6,11 14.七边形的七个内角与它的一个外角的度数和可能是( )A .800° B.900° C.1000° D.1100°15.下列运算正确的是( )A .3a 2 · 2a = 6a 2B .(a - 2 )-3 =a 6C .a 4 ¸ a 2 = 2D .(a + 1)2 = a 2 + 1二、填空题16.若关于x 的方程231x m x +=-的解为正数,则m 的取值范围是__________.17.计算:52b b =______;()23x =____;0=_____.18.如图,已知∠ABC =∠DCB ,要证△ABC ≌△DCB ,还需添加的条件是______.19.如图,直线//AB CD ,E 为直线AB 上一点,EH 、EM 分别交直线CD 于点F 、M ,EH 平分AEM ∠,MN AB ⊥,垂足为点N ,若CFH α∠=,则EMN ∠=__________.(用含α的式子表示)20.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2=___________三、解答题21.先化简,再求值:22a ab b b ⎛⎫++ ⎪⎝⎭,其中a b +=22.阅读理解:整体代换是一个重要的数学思想方法.例如:计算4(a+b )-7(a+b )+(a+b )时可将(a+b )看成一个整体,合并同类项得-2(a+b ),再利用分配律去括号得-2a-2b .同时,我们也知道:代数的基本要义就是用字母表示数使之更具一般性.所以,在计算a (a+b )时,同样可以利用分配律得a 2+ab .(1)请你尝试着把(a-2)或(b-2)看成整体计算:(a-2)(b-2)(2)创新应用:如果两个数的乘积等于它们的和的两倍,则我们称这两个数为“积倍和数对”.即:若ab=2(a+b ),则a 、b 是一对积倍和数对,记为(a 、b ).例如:因为3×6=2(3+6),所以3和6是一对积倍和数对,记为(3、6).请你找出所有a 、b 均为整数的积倍和数对.23.如图,在正方形网格上有一个.(1)作关于直线的轴对称图形(不写作法);(2)若网格上的最小正方形边长为1,求的面积. 24.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长于点F .(1)求证:DAE CFE △≌△;(2)若AB BC AD =+,求证:BE AF ⊥.25.如图所示,AOB ∠与COD ∠都是直角,OE 为BOD ∠的平分线,23BOE ∠=.①求AOC ∠的度数;②如果BOE α∠=,请直接用α的代数式(最简形式)表示AOC ∠.【参考答案】***一、选择题16.且17.7b 6x18.AB =DC19.0290α-20.120°三、解答题21.22.(1)ab-2a-2b+4;;(2)(a 、b )=(3、6);(1、-2);(4、4);(0、0);(6、3);(-2、1).23.(1)见解析;(2)4【解析】【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可;(2)利用勾股定理求出AC ,AC 边上的高即可.【详解】(1)△A′B′C′即为所求.(2)S △ABC =.【点睛】考查作图-轴对称变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点即可解答.(2)根据题意证明()ABE FBE SSS △≌△即可解答.【详解】(1)证明:∵AD BC ∥,∴ADC ECF ∠=∠,∵E 是CD 的中点,∴DE EC =,∵在ADE 与FCE △中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ADE FCE ASA △≌△;(2)证明:由(1)知ADE FCE △≌△,∴AE EF =,AD CF =,∵AB BC AD =+,∴AB BC CF =+,即AB BF =,在ABE △与FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩,∴()ABE FBE SSS △≌△,∴AEB FEB ∠=∠,且互补,∴AEB FEB ∠=∠=90°.∴BE AE ⊥.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.25.①134AOC ∠=;②AOC=1802∠α-.。
福建省莆田市2019-2020学年数学八上期末模拟检测试题(1)

福建省莆田市2019-2020学年数学八上期末模拟检测试题(1)一、选择题1.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 2.世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g 的,这个数值用科学计数法表示为( )A .7710-⨯B .8710-⨯C .9710-⨯D .10710-⨯ 3.若关于x 的方程223242ax x x x +=--+有增根,则a 的值为( ) A.4B.6C.6或-4D.6或4 4.()201920200.1258-⨯等于( ) A .-8 B .8 C .0.125D .-0.125 5.下列算式正确的是( ) A .5510x x x +=B .()()7344a b a b a b -÷-=-C .()5525x x -=-D .()()5510x x x --=-6.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A .16B .14C .12D .67.下列各式从左到右的变形为分解因式的是( )A .x (x ﹣y )=x 2﹣xyB .x 2+2xy+1=x (x+2y )+1C .(y ﹣1)(y+1)=y 2﹣1D .x (x ﹣3)+3(x ﹣3)=(x+3)(x ﹣3)8.下列图案是轴对称图形的有( )A.1个B.2个C.3个D.4个 9.如图,在△ABC 中,∠B =∠C =60°,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E .如果AD =1,BC =6,那么CE 等于( )A .5B .4C .3D .2 10.如图,△ABC 中,AB=AC ,BC=5,,于D ,EF 垂直平分AB ,交AC 于F ,在EF 上确定一点P 使最小,则这个最小值为( )A.3B.4C.5D.611.如图,△ABC 为等边三角形,点D ,E 分别在AC ,BC 上,且AD =CE ,AE 与BD 相交于点P ,BF ⊥AE 于点F .若PF =2,则BP =( )A .3B .4C .5D .6 12.如图所示,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,已知3PE =,则点P 到AB 的距离是( )A .1.5B .3C .5D .613.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .下列说法不正确的是( )A.与∠1互余的角只有∠2B.∠A 与∠B 互余C.∠1=∠BD.若∠A =2∠1,则∠B =30°14.如图,已知∠AOB=∠BOC=∠COD ,下列结论中错误的是( )A.OB 、OC 分别平分AOC ∠、BOD ∠B.AOD AOB AOC ∠=∠+∠C.12BOC AOD AOB ∠=∠-∠ D.()12COD AOD BOC ∠=∠-∠ 15.如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a 、b (a >b ),则(a ﹣b )等于( )A.8B.7C.6D.5 二、填空题16.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=_____. 17.若多项式9x 2﹣2(m+1)xy+4y 2是一个完全平方式,则m =_____.18.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需添加一个条件是_________________.19.如图,//,,m n A B 为直线,m n 上的两点,且,AB BC ⊥28BAC ∠=,则1∠与2∠的度数之和为______.20.如图,在△ABC 中,AB=AC=8,∠ABC=30° ,点M ,N 分别在边AB ,AC 上,将△AMN 沿MN 翻折,点A 落到点A’处,则线段BA’长度的最小值为________.三、解答题21.解方程:123222x x x-=+--. 22.计算:(1)32(1)201920172021---+-⨯ ; (2)22223(3)xy x y x y xy xy ---+g ;(3)2(2)(2)(3)a b b a a b -+--23.动手操作:如图,已知AB ∥CD ,点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以点E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M . 问题解决:(1)若∠ACD=78°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为点N ,求证:△CAN ≌△CMN .实验探究:(3)直接写出当∠CAB 的度数为多少时?△CAM 分别为等边三角形和等腰直角三角形.24.如图,AB DC =,ABC DCB ∠=∠.(1)求证:BD CA =;(2)若62A ∠=,75ABC ∠=.求ACD ∠的度数.25.(探索新知)如图1,射线OC 在∠AOB 内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC ,若其中一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的“二倍线”.(1)一个角的角平分线______这个角的“二倍线”.(填是或不是)(运用新知)(2)如图2,若∠AOB=120°,射线OM 绕从射线OB 的位置开始,绕点O 按逆时针方向以每秒10°的速度向射线OA 旋转,当射线OM 到达射线OA 的位置时停止旋转,设射线OM 旋转的时间为t (s ),若射线OM 是∠AOB 的“二倍线”,求t 的值.(深入研究)(3)在(2)的条件下.同时射线ON 从射线OA 的位置开始,绕点O 按顺时针方向以每秒5°的速度向射线OB 旋转,当射线OM 停止旋转时,射线ON 也停止旋转.请直接写出当射线OM 是∠AON 的“二倍线”时t 的值.【参考答案】***一、选择题16.117.﹣7或518.∠B=∠E (答案不唯一)19.6220.8三、解答题21.x=2是增根,原方程无解22.(1)5;(2) 32333x y x y --; (3) 22911a ab b +-.23.(1)∠MAB =51°;(2)证明见解析;(3)当∠CAB 为120°时,△CAM 为等边三角形.当∠CAB 为90°时,△CAM 为等腰直角三角形.【解析】【分析】(1)利用平行线的性质求出∠CAB ,再根据角平分线的定义即可解决问题;(2)根据AAS 即可判断;(3)根据等边三角形、等腰直角三角形的定义即可判定;【详解】(1)∵AB ∥CD ,∴∠ACD+∠CAB=180°,又∵∠ACD=78°,∴∠CAB=102°.由作法知,AM 是∠CAB 的平分线,∴∠MAB=12∠CAB=51°; (2)由作法知,AM 平分∠CAB ,∴∠CAM=∠MAB .∵AB ∥CD ,∴∠MAB=∠CMA ,∴∠CAM=∠CMA ,∵CN ⊥AM ,∴∠CNA=∠CNM=90°.又∵CN=CN ,∴△CAN ≌△CMN .(3)当∠CAB 为120°时,∠ACD=60°,AC=MC ,△CAM 为等边三角形.当∠CAB 为90°时,∠ACD=90°,AC=MC ,△CAM 为等腰直角三角形.【点睛】本题考查作图-复杂作图、平行线的性质、角平分线的定义,等边三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)见解析(2)32°【解析】【分析】(1)根据SAS 证明△ABC 与△DBC 全等,进而证明即可;(2)根据全等三角形的性质和三角形内角和解答即可.【详解】(1)在ABC ∆与DBC ∆中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴ABC ∆≌DBC ∆(SAS ),∴BD CA =;(2)∵ABC ∆≌DBC ∆,∴75ABC DCB ∠=∠=,∵62A ∠=,75ABC ∠=.∴180756243ACB ︒︒︒︒∠=--=,∴754332ACD DCB ACB ︒︒︒∠=∠-∠=-=.【点睛】本题考查了全等三角形的性质和判定的应用,能推出△ABC 与△DBC 全等是解此题的关键,注意:全等三角形的对应角相等.25.(1)是;(2)t=4或8或6;(3)t=9.6或727或9。
2023-2024学年福建省莆田市城厢区南门学校八年级(上)月考数学试卷(1月份)+答案解析

2023-2024学年福建省莆田市城厢区南门学校八年级(上)月考数学试卷(1月份)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个图形分别是四届国际数学家大会的会标,其中是轴对称图形的是()A. B. C. D.2.肥皂泡的泡壁厚度大约是,用科学记数法表示为()A. B. C. D.3.一个多边形的内角和是,则这个多边形是边形.A.九B.十C.十一D.十二4.下列运算正确的是()A. B.C. D.5.一个等腰三角形的两边长分别是2和4,则它的周长为()A.8或10B.8C.10D.6或126.如图,点B,E,C,F共线,,,添加一个条件,不能判断≌的是()A. B. C. D.7.如图,E为边AC上一点,且,CD平分,与BE相交于D,若,,则BD的长为()A.B.1C.2D.8.如果,,,那么a、b、c三个数的大小为()A. B. C. D.9.若分式方程无解,则k的值为()A.2B.C.1D.10.如图,中,,垂足为D,,P为直线BC上方的一个动点,的面积等于的面积的,则当最小时,的度数为()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分。
11.若等式成立,则实数a的取值范围是______.12.分解因式:______.13.已知点和点关于y轴对称,那么__________.14.如图,等腰中,,AB的垂直平分线MN交AC于点D,,则的度数是______度.15.已知是完全平方式,则______.16.我们知道,任意一个正整数n都可以进行这样的分解:是正整数,且,在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:例如:12可以分解成,或,因为,所以是12的最佳分解,所以如果一个两位正整数t,为自然数,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”.根据以上新定义,下列说法正确的是______.;和26是“吉祥数”;“吉祥数”中,的最大值为如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数,则对任意一个完全平方数m,总有三、解答题:本题共9小题,共72分。
20192020学年八年级上入学考试数学试卷及解析

2021-2021 学年八年级上入学考试数学试卷及答案解析上学期入学考试 八年级数学试卷一、选择题〔共10 小题,每题 3 分,总分值 30分〕 1. 以下计算正确的选项是〔 〕A 、 x 2+ x 3 =2 x 5B 、x 2?x 3= x 6C 、 ( - x 3)2 = - x 6D 、 x 6 ÷x 3= x3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方. .分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.解答:解: A 、 x 2与 x 3不是同类项,不能合并,故本选项错误;B 、应为 x 2?x 3=a 5,故本选项错误;326C 、应为〔﹣ x 〕 =x ,故本选项错误; 应选D .点评:此题考查了合并同类项,同底数幂的乘法,积的乘方的性质,同底数幂的除法,需熟练掌握且区分清楚,才不容易出错.2.满足以下条件的△ ABC ,不是直角三角形的是 ( ) A 、 b 2= 2-a 2B、 ∶ ∶ =3∶ 4∶ 5ca b cC 、∠ C=∠ A -∠ B D、∠ A ∶∠ B ∶∠ C=12∶ 13∶ 15考点:勾股定理的逆定理;三角形内角和定理.分析:掌握直角三角形的判定及勾股定理的逆定理是解题的关键.解答:解: A 、由 b22 2 2 2 2 符合勾股定理的逆定理,故是直角三角形;=c ﹣ a 得 c =a +b2 2 2符合勾股定理的逆定理,故是直角三角形;B 、由 a :b : c=3:4: 5 得 c =a +bC 、由三角形三个角度数和是 180°及∠ C=∠ A ﹣∠ B 解得∠ A=90 °,故是直角三角形;D 、 由∠ A :∠B :∠ C=12 : 13 : 15 , 及∠ A+ ∠B+ ∠ C=180°得 ∠ A=54 °, ∠ B=58.5 °,∠ C =67.5 °,没有 90°角,故不是直角三角形.应选 D .点评:此题考查了直角三角形的判定及勾股定理的逆定理. 3.以下说法中正确的选项是〔〕A 、任何数的平方根有两个;B 、只有正数才有平方根;C 、一个正数的平方根的平方仍是这个数;D 、a 2的平方根是a ; 考点:平方根.分析:分别利用平方根的定义判断得出即可.解答:解: A 、任何数的平方根有两个,错误,因为负数没有平方根; B 、只有正数才有平方根,错误,因为0 的平方根是0; C 、一个正数的平方根的平方仍是这个数,正确;2D 、 a 的平方根是±a ,故此选项错误. 应选: C .点评:此题主要考查了平方根的定义,正确把握定义是解题关键.1 / 174.〔 3 分〕将一张长方形的纸对折,然后用笔尖在上面扎出“E 〞,再把它铺平,你可见到 的图形是〔〕考点:轴对称图形. 专题:几何图形问题.分析:根据题意可知所得到的图形是轴对称图形,然后认真观察图形,找出符合要求的选项即可.解答:解:观察选项可得:C 选项是轴对称图形,符合题意. 应选 C .点评:此题考查轴对称图形的定义,属于根底题,注意掌握如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴,仔细观察图形是正确解答此题的关键. 5.以下事件中,属于必然事件的是〔〕 A .明天我市下雨B .小李走出校门,看到的第一辆汽车的牌照的末位数字是偶数C .抛一枚硬币,正面向上D .一口袋中装 2 个白球和 1 个红球,从中摸出2 个球,其中有白球 考点:随机事件.分析:必然事件就是一定发生的事件,即发生的概率是1 的事件. 解答:解: A 、 B 、 C 选项为不确定事件,即随机事件,故错误; 一定发生的事件只有第四个答案. 应选 D .点评:解决此题的关键是理解必然事件是一定发生的事件. 6. y 2- 7y+12=(y+p)(y+q) ,那么 p , q 的值分别为〔 〕 A . 3, 4 或 4, 3 B .- 3,- 4 或- 4,- 3 C . 3,- 4 或- 4, 3 D .- 2,- 6 或- 6,- 2考点:多项式乘多项式.分析:先根据多项式相乘的法那么计算〔 y+p 〕〔 y+q 〕,然后根据等式的左右两边对应项系 数相等,列式求解即可得到 p 、q 的值.解答:解:〔 y+p 〕〔 y+q 〕 =y 2+〔 p+q 〕 y+pq ,∵ y 2﹣ 7y+12= 〔 y+p 〕〔 y+q 〕, 22∴y ﹣ 7y+12=y +〔 p+q 〕 y+pq , ∴p+q= ﹣ 7, pq=12 ,解得, p=﹣3, q=﹣4 或 p= ﹣ 4, q=﹣ 3. 应选 B .点评:此题主要考查了多项式乘多项式,解题的关键是利用等式的意义,列出方程,进而求出待定系数的值.7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是〔〕2 / 17A 、4B 、1 15 3C 、1D 、2 5 15第7题考点:几何概率.专题:探究型.分析:先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.解答:解:∵图中共有15 个方格,其中黑色方格5 个,∴黑色方格在整个方格中所占面积的比值= =,∴最终停在阴影方砖上的概率为.应选 B .点评:此题考查的是几何概率,熟知概率公式是解答此题的关键.8.如图, : 1 2 4 , 那么以下结论不正确的选项是( )A、35B、 4 6C 、 AD∥ BCD 、 AB∥ CD考点:平行线的判定与性质.分析:由角的关系,根据平行线的判定,可得AD ∥ BC , AE ∥ FC,由平行线的性质,得∠ 1=∠ 6,再根据条件和等量代换可得,∠2=∠ 4=∠ 6,根据等角的补角相等可得∠ 3=∠ 5.解答:解:∵∠2= ∠4,∠ 1=∠4,∴AE ∥ CF, AD ∥ BC.∴∠ 1=∠ 6.∵∠ 1=∠ 2=∠ 4,∴∠ 2=∠ 4=∠ 6,∴∠ 3=∠ 5.应选 D .点评:灵活运用平行线的性质和判定是解决此类问题的关键.9. 在实数范围内,以下判断正确的选项是〔〕A 、假设 m n ,那么 m nB 、假设 a2b2,那么 a bC 、假设a2( b)2,那么abD 、假设3a3 b,那么a b ;考点:实数.3 / 17分析:A、根据绝对值的性质即可判定;B、根据平方运算的法那么即可判定;C、根据算术平方根的性质即可判定;D、根据立方根的定义即可解答.解答:解: A 、根据绝对值的性质可知:两个数的绝对值相等,那么这两个数相等或互为相反数,应选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如 a=﹣ 3, b=3 ,应选项错误;D、根据立方根的定义,显然这两个数相等,应选项正确.应选 D .点评:解答此题的关键是熟知以下概念:〔1〕一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.〔2〕如果一个数的平方等于a,那么这个数叫作a 的平方根.10.如图, AC、 BD相交于点O,∠ 1= ∠ 2,∠ 3= ∠ 4,那么图中有〔〕对全等三角形。
莆田市南门八年级数学上册第四单元《整式的乘法与因式分解》检测(含答案解析)

一、选择题1.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 2.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814x C .29x - D .6x ±或1-或29x - 3.若3a b +=,1ab =,则()2a b -的值为( )A .4B .5C .6D .74.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 25.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+6.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 2 7.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 8.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷= 9.下列计算正确的是( ) A .(ab 3)2=a 2b 6 B .a 2·a 3=a 6 C .(a +b )(a -b )=a 2-2b 2 D .5a -2a =310.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .611.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫-- ⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc - 12.下列运算正确的是( ) A .x 2·x 3=x 6 B .(x 3)2=x 6 C .(-3x)3=27x 3 D .x 4+x 5=x 9二、填空题13.若x 2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为_________.14.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 15.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 16.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.17.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____18.若ABC 的三边长是a 、b 、c ,且222a b c ab bc ac +=+++,则这个三角形形状是_________角形.19.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.20.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__. 三、解答题21.如图,某长方形广场的四个角都有一块半径为r 米的四分之一圆形的草地,中间有一个半径为r 米的圆形水池,长方形的长为a 米,宽为b 米.(1)整个长方形广场面积为 ;草地和水池的面积之和为 ;(2)若a =70,b =50,r =10,求广场空地的面积(π取3.142,计算结果精确到个位).22.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y +-=.24.计算:(1)23262x y x y -÷(2)()233221688x y z x y z xy +÷(3)运用乘法公式计算:2123124122-⨯25.观察下列关于自然数的等式:(1)217295⨯+⨯= ①(2)2282106⨯+⨯= ②(3)2392117⨯+⨯= ③……根据上述规律解决下列问题:(1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.26.化简:2(3)3(2)m n m m n +-+.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意列出关系式,化简即可得到结果;根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.2.D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 3.B解析:B【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果.【详解】∵3a b +=,∴22()3a b +=,即2229a ab b ++=,将1ab =代入上式得:229217a b +=-⨯=.∵222()2a b a b ab -=+-,∴2()725a b -=-=.故选:B .【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键. 4.D解析:D【分析】根据整式的乘法逐项判断即可求解.解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.5.B解析:B【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.6.D解析:D【分析】根据S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG 代入数值求出图形面积,再根据计算各整式判断即可.【详解】S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG=AD •AB +DC •DE +CF •FH .∵AB =DC =AD =x ,DE =CF =3,FH =2,∴S 楼房的面积=x 2+3x +6.∵(x+3)(x+2)﹣2x= x 2+3x +6,x (x +3)+6= x 2+3x +6,x (x +2)+x 2=2 x 2+2x , 故选:D ..【点睛】此题考查列整式求图形面积,整式的混合运算,掌握整式的运算法则是解题的关键. 7.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.8.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412xx -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.9.A解析:A【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断.【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误;故选:A .【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.10.D解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.11.C解析:C【分析】现根据各数在数轴上的位置确定其取值范围,然后可确定答案.【详解】解:由图知:0<a <1,b >1,c <0, ∴()100a a c b ⎛⎫+>-> ⎪⎝⎭,, ()1a a c b ⎛⎫+- ⎪⎝⎭值为正,C 正确; 而()110c a b c ⎛⎫--< ⎪⎝⎭,()()10a c b --<,()10ac bc -<;A 、B 、D 错误. 故选:C.【点睛】此题主要考查由取值范围确定代数式正负问题,解题的关键是根据点在数轴上的位置判断其正负.12.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.6【分析】原式利用完全平方公式平方差公式化简去括号整理后将已知等式代入计算即可求出值【详解】解:∵x2+4x-4=0即x2+4x=4∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12解析:6【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【详解】解:∵x 2+4x-4=0,即x 2+4x=4,∴原式=3(x 2-4x+4)-6(x 2-1)=3x 2-12x+12-6x 2+6=-3x 2-12x+18=-3(x 2+4x )+18=-12+18=6. 故答案为:6.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.14.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.15.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】 本题考查幂的运算,解题的关键是掌握幂的运算法则.16.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 17.120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120【分析】令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值.【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①,当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②,①+②,得2a 4+2a 2+2a=242,∴a 2+a 4=120.故答案为:120.【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.18.等边【分析】先等式两边同乘以2再移项利用完全平方公式即可得到答案【详解】∵∴∴∴∵∴∴a=b=c ∴这个三角形是等边三角形故答案是:等边【点睛】本题主要考查完全平方公式偶数次幂的非负性以及等边三角形的 解析:等边【分析】先等式两边同乘以2,再移项,利用完全平方公式,即可得到答案.【详解】∵222a b c ab bc ac ++=++,∴222222222a b c ab bc ac ++=++,∴2222222220a b c ab bc ac ++---=,∴222()()()0a b a c b c -+-+-=,∵222()0,()0,()0a b a c b c -≥-≥-≥,∴222()0,()0,()0a b a c b c -=-=-=,∴a=b=c ,∴这个三角形是等边三角形,故答案是:等边【点睛】本题主要考查完全平方公式,偶数次幂的非负性以及等边三角形的定义,熟练掌握完全平方公式,是解题的关键.19.8【分析】先解求出将代入代数式即可得解【详解】∵∴式子展开得:化简得:∴将代入代数式故答案为:8【点睛】此题考查整式的化简求值掌握整式的去括号法则和合并同类项法则是解题的关键解析:8【分析】先解()()223232x x y ---=-,求出0y =,将0y =代入代数式()3()4(2)x y x y x y ++---- 即可得解.【详解】∵()()223232x x y ---=-,∴式子展开得:223232x x y --+=-,化简得:0y =,∴将0y =代入代数式()3()4(2)x y x y x y ++---- 34(2)x x x =+--448x x =-+8=.故答案为:8.【点睛】此题考查整式的化简求值,掌握整式的去括号法则和合并同类项法则是解题的关键. 20.2【分析】由可得:去分母整理可得:从而得到:于是可得答案【详解】解:故答案为:2【知识点】本题考查的是整式的乘法运算完全平方公式的应用因式分解的应用非负数的性质代数式的值利用平方根的含义解方程掌握以 解析:2【分析】 由()()()214b c a b c a -=--可得:()()()21,4b c bc a b c a bc -+=--+去分母整理可得:()220,b c a +-=从而得到:2,b c a +=于是可得答案.【详解】解: ()()()21,4b c a b c a -=-- ()()()21,4b c bc a b c a bc ∴-+=--+ ()()22444b c bc ac a bc ab bc ∴-+=--++,()()22440,b c a a b c ∴++-+=()220,b c a ∴+-=20,b c a ∴+-= 2,b c a ∴+=∴ 2=2,b c a a a+= 故答案为:2.【知识点】本题考查的是整式的乘法运算,完全平方公式的应用,因式分解的应用,非负数的性质,代数式的值,利用平方根的含义解方程,掌握以上知识是解题的关键.三、解答题21.(1)ab 平方米;22r π平方米,(2)2872平方米【分析】(1)根据长方形面积公式即可表示出广场面积;根据圆的面积公式即可表示草地和水池的面积;(2)长方形面积减去草地和水池的面积的和即可得到广场空地的面积,再代入求值即可.【详解】(1)整个长方形广场面积为ab 平方米;草地和水池的面积之和为214r 4π⨯⨯+2r π=22r π平方米,故答案是:ab 平方米;22r π平方米;(2)依题意得:空地的面积为 22ab r π-当a =70,b =50,r =10时,∴ 22270502 3.14210ab r π-=⨯-⨯⨯2871.62872=≈答:广场空地的面积约为2872平方米.【点睛】本题考查列代数式、求代数式的值,列出正确的代数式是正确解答的关键.22.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯ ∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦ ∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-= ∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 24.(1)23y -;(2)22xyz x z +;(3)1【分析】(1)利用单项式除以单项式法则计算;(2)运用多项式除以单项式法则计算;(3)先将124122⨯化为(1231)(1231)+⨯-,利用平方差公式计算,再计算加减法.【详解】解:(1)23262x y x y -÷=23y -;(2)()233221688x y z x y z xy +÷=22xyz x z +;(3)2123124122-⨯=222123(1231)(1231)123(1231)1-+⨯-=--=. 【点睛】此题考查整式的计算法则:单项式除以单项式、多项式除以单项式、平方差公式,熟记法则是解题的关键.25.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.26.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.。
2019-2020学年度上学期八年级入学考试数学试卷

⎩ ⎩ ⎩ ⎩ ⎩2019–2020 学年度八年级入学检测数学试卷一、选择题(本题共 12 小题,每小题 3 分,共 36 分) 1. 下列长度的三条线段中,能组成三角形的是()A. 3cm , 5cm , 8cmB. 8cm , 8cm , 18cmC. 0.1cm , 0.1cm , 0.1cmD. 3cm , 40cm , 8cm2. 下列不等式的变形不正确的是( )A. 若 a > b ,则 a + 3 > b + 3 C. 若- 1< y ,则 x > -2 y2B. 若 a < b ,则-a > -b D. 若-2x > a ,则 x > -1a 23. 如果 x + y -1 和(2x + y - 3)2互为相反数,那么 x ,y 的值为().⎧x = 1 A. ⎨y = 2⎧x = -1 B. ⎨y = -2⎧x = 2C. ⎨y = -1⎧x = -2 D. ⎨y = -14. 如果不等式(a - 2)x > a - 2 的解集是 x < 1,那么 a 必须满足( ) A. a < 0B. a > 1C. a > 2D. a < 2⎧x + 2 y = 25.在方程组⎨2x + y = 1 - m 中,若 x 、y 满足 x + y > 0,则 m 的取值范围是( )A. m > 3B . m ≥ 3C. m < 3D. m ≤ 3A. m > 3B . m < 3 C. m ≥ 3D. m ≤ 37.一个多边形的内角和是外角和的 2 倍,则这个多边形是( )A. 三边形B. 四边形C. 五边形D. 六边形8.用直尺和圆规作一个角等于已知角的示意图如图,可说明∆COD ≌∆C 'O 'D ',进而得出∠A 'O 'B ' = ∠AOB 的依据是( )A. SSSB. SASC. ASAD. AAS第 8 题图第 10 题图9.到三角形三条边的距离都相等的点是这个三角形的( )B. 三条中线的交点 B. 三条高的交点C. 三条角平分线的交点D. 三条边的垂直平分线的交点10.如图,已知在∆ABC 中, AB = AC , D 为 BC 上一点, BF = CD , CE = BD ,那么∠EDF 等于()A. 90︒- ∠AB. 90︒- 1∠A2C. 180︒- ∠AD. 45︒- 1 ∠A211.一个多边形截去一个角后,形成新多边形的内角和为 2520°,则原多边形边数为 ()A. 13B. 15C. 13 或 15D. 13 或 15 或 1712.如图,将∆ABC 沿着过 AB 中点 D 的直线折叠,使点 A 落在 BC 边上的点 A 1 处,称为第 1 次操作,折痕 DE 到 BC 的距离记为 h 1 ;还原纸片后,再将∆ADE 沿着过 AD 中点D 1 的直线折叠,使点 A 落在 DE 边上的点 A 2 处,称为第 2 次操作,折痕 D 1E 1 到 BC 的距离记为 h 2 ……按上述方法不断操作下去,经过第2019 次操作后得到的折痕 D 2018 E 2018 到 BC 的距离记为 h 2019 ,若 h 1 = 1,则 h 2019 的值为()二、填空题(本题共 6 小题,每小题 3 分,共 18 分)15. 如图,已知∆ABC ≌∆ADE , ∠B = 80︒ , ∠C = 25︒ , ∠DAC = 15︒,则∠EAC 的度数为.第 15 题图第 16 题图第 17 题图16. 如图, ∠ACB = 90︒, AC = BC , BE ⊥ CE , AD ⊥ CE ,垂足分别为 E , D ,AD = 25 , DE = 17 ,则 BE =.17. 如图, C 为线段 AE 上一动点(不与点 A ,E 重合),在 AE 同侧分别作等边∆ABC 和等边∆CDE , AD 与 BE 交于点O , AD 与 BC 交于点 P , BE 与CD 交于点Q ,连接PQ , OC ,以下五个结论:① AD = BE ;② PQ AE ;③ AP = BQ ;④ DE = DP ; ⑤ OC 平分∠AOE .一定成立的结论有.⎪18. 如图钢架中,焊上等长的 13 根钢条来加固钢架,若 AP 1 = P 1P 2 = P 2 P 3 =⋯ = P 13 P 14 = P 14 A ,则∠A 的度数是.三、解答题(共 66 分)19. (每小题 4 分,共 8 分)解二元一次方程组:20. (每小题 4 分,共 8 分)解不等式(组) x x -1(1)解不等式 ≥ 3 -,并把解集在数轴上表示出来.52 ⎧ x - 3+ 3 ≥ x +1 (2)解不等式组⎨ 2 ,并写出该不等式组的整数解.⎪⎩1- 3( x -1) < 8 - x21.(6 分)如图,求∠1+∠2 +∠3 +∠4 +∠5 +∠6 +∠7的度数.22.(6 分)列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76 米的长方形空地,设计成长和宽分别相等的9 块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210 元,请计算,要完成这块绿化工程,预计花费多少元?23.(6 分)如图,已知:D,E 分别是∆ABC 的边BC 和边AC 的中点,连接DE ,AD ,若S∆ABC = 24cm2 ,求∆DEC 的面积.24.(8 分)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3 个、乙种书柜2 个,共需资金1020 元;若购买甲种书柜4 个,乙种书柜3 个,共需资金1440 元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20 个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320 元,请设计几种购买方案供这个学校选择.25.(8 分)如图,已知∠A =∠D = 90︒,E、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:(1)Rt∆ABF≌Rt∆DCE ;(2)OE =OF .26.(2+3+3=8 分)如图,A (-2,0).(1)如图①,在平直直角坐标系中,以A 为顶点,AB 为腰在第三象限作等腰Rt∆ABC ,若B (0,-4),求C 点的坐标;(2)如图②,P 为y 轴负半轴上一个动点,以P 为顶点,PA 为腰作等腰Rt∆APD ,过D 作DE ⊥x 轴于E 点,当P 点沿y 轴负半轴向下运动时,试问OP -DE 的值是否发生变化?若不变,求其值;若变化,请说明理由.(3)如图③,已知点F 坐标为(-4,-4 ),G 是y 轴负半轴上一点,以FG 为直角边作等腰Rt∆FGH ,H 点在x 轴上,∠GFH = 90︒,设G (0,m ),H (n ,0),当G 点在y 轴的负半轴上沿负方向运动时,m +n 的和是否变化?若不变,求其值;若变化,请说明理由.27.(2+3+3=8 分)如图,在平面直角坐标系中,点O 为坐标原点,∆ABC 的顶点B、C 的坐标分别为(-2,0)、(3,0),顶点A 在y 轴的正半轴上,∆ABC 的高BD交线段DA 于点E ,且AD =BD .(1)求线段AE 的长;(2)动点P 从点E 出发沿线段EA 以每秒1 个单位长度的速度向终点A 运动,动点Q 从点B 出发沿射线BC 以每秒4 个单位长度的速度运动,P、Q 两点同时出发,且点P 到达A 点处时P、Q两点同时停止运动.设点P 的运动时间为t 秒,∆PEQ 的面积为S ,请用含t 的式子表示S ,直接写出相应的t 的取值范围;(3)在(2)问的条件下,点F 是直线AC 上的一点且CF =BE ,是否存在t 值,使以点B、E、P 为顶点的三角形与以点F、C、Q 为顶点的三角形全等?若存在,请求出符合条件的t 值;若不存在,请说明理由.。
福建省莆田市南门学校八年级上期中考试数学试题
南门学校2019-2019学年上学期八年级期中考试数学试卷(总分值:150分 考试时间:120分钟)一、精心选一选(本大题共10小题,每题4分,共40分,每题给出的四个选项中有且只有一个选项是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过个的一律得0分)1.以下图形中,不是轴对称图形的是( )2.在平面直角坐标系中,点P(-2,3)关于x 轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.以下计算正确的选项是( )A.632a a a =•B.()532a a =C.()2222b a b a =D.a a a =÷234.以下各式中,能用平方差公式计算的是( )A.()()q p q p --+B.()()p q q p --C.()()x y y x 5335-+D.()()b a b a 2332-+5.如图中的两个三角形全等的是( )A.③④B.②③C.①②D.①④6.计算()()424221x x x -•-•⎪⎭⎫⎝⎛-的结果为( )A.64x -B.74x -C.84xD.84x -7.假设等腰三角形的底角是顶角的2倍,那么这个等腰三角形的底角的度数是( )A.36°B.72°C.36°或72°D.无法确定8.如图,在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=6,DE=3,那么△BCE 的面积等于( )A.10B.9C.8D.69.有理数n m y x 、、、满足,,n m y x ==1010那么y x 3210+等于( )A.n m 32+B.32n mC.n m 32•D.32n m +10.假设812++kx x 是一个完全平方式,那么k 的值为( )A.18B.-18C.±18D.±9二、细心填一填(本大题共6小题,每题4分,共24分)11.如图,△ABC ≌△DCB,假设∠A=75°,∠ACB=45°,那么∠BCD 等于_______°.第11题 第15题 第16题12.假设()(),n mx x x x ++=+-284那么=+n m _______.13.计算=•n n x x 2________.14.假设长方形的面积是,a ab a 7232++宽为a ,那么它的长为_______.15.如图,在△ABC 中,AD=DE,AB=BE,∠A=80°,那么∠CED=________°.16.如图,在△ABC 中,∠ABC=∠ACB,∠A=40°,P 是△ABC 内一点,且∠1=∠2,那么∠BPC=___°.三、耐心做一做(本大题共9小题,共86分,解容许写出必要的文字说明、证明过程或演算步骤)17.(此题总分值8分)计算(1)⎪⎭⎫ ⎝⎛--•3222434y xy y x x (2)()()()2212-+-+x x x 18.(此题总分值8分)如下图,AB=AC,AE=AF,AE ⊥EC,AF ⊥BF,垂足分别是点E 、F.求证:∠1=∠2.19.(此题总分值8分):,,35-==+xy y x 求:(1)()()y x --11的值;(2)22y x +的值.20.(此题总分值8分)在一条公路旁有A 、B 两个工厂,要在公路旁修一个汽车站,请分别按如下要求确定汽车站M 的位置:(1)在图①中,要求车站M 到AB 两厂的距离相等;(2)在图②中,要求车站M 到AB 两厂的距离之和AM+BM 最短。
福建省莆田市2019—2020学年上学期八年级第一次月考试题(无答案)
A DB 2019-2020年八(上)数学第一次月考试卷一 选择题1.使两个直角三角形全等的条件是( )A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条边对应相等2.如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E , DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF , ③BD=CD ,④AD ⊥BC 。
其中正确的个数有( )3. 如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( ) A .61° B .60° C .39° D . 37°4.在实数 ,0, , , ,0.101001000 1……(每两个1之间依次多1个0)中,无理数的个数是( ) A. 2个 B.3个 C.4个 D. 5个 5.一个等腰三角形的两边长分别为2和5,则它的周长 为A .9或12B .7C .9D .12 6.一个多边形内角和是10800,则这个多边形的边数为 ( ) A. 6 B. 7 C. 8 D 、.97.如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A :AB=CDB :EC=BFC :∠A=∠D D :AB=BC8. 下列说法不.正确的是( )A .一个无理数的相反数一定是无理数B .一切实数都可以进行开立方运算,只有非负数才能进行开平方运算C .一个有理数与一个无理数的和或差一定是无理数9.如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A :1个 B :2个 C :3个 D :4个10.如右图所示,已知△ABC 和△BDE 都是等边三角形。
则下列结论正确的有( ① AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=600,⑤△BFG 是等边三角形;⑥ FG ∥AD 。
莆田市南门八年级数学上册第二单元《全等三角形》检测(含答案解析)
一、选择题1.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°2.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .73.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对 4.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS5.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 6.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 7.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 8.到ABC 的三条边距离相等的点是ABC 的( ) A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点9.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 11.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 12.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°二、填空题13.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.14.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则点A 到直线CD 的距离是_____.15.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.16.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.17.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).18.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.19.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.20.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题21.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.23.在Rt ABC △中,90C ∠=︒,8cm AC =,6cm BC =,点D 在AC 上,且6cm AD =,过点A 作射线AE AC ⊥(AE 与BC 在AC 同侧),若点P 从点A 出发,沿射线AE 匀速运动,运动速度为1cm/s ,设点P 运动时间为t 秒.连结PD 、BD .(1)如图①,当PD BD ⊥时,求证:PDA DBC △≌△;(2)如图②,当PD AB ⊥于点F 时,求此时t 的值.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.25.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.26.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:C .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 2.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.3.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.4.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C解析:C【分析】利用基本作图对三个图形的作法进行判断即可.【详解】解:在图1中,利用基本作图可判断AD 平分∠BAC ;在图2中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线;在图3中,利用作法得AE=AF ,AM=AN ,则可判断△AMF ≌△ANE ,所以∠AMD=∠AND , 再根据ME=AM-AE=AN-AF=FN ,∠MDE=∠NDF 可判断△MDE ≌△NDF ,根据三角形面积公式则可判定D 点到AM 和AN 的距离相等,则可判断AD 平分∠BAC .故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,解决本题的关键是掌握角平分线的作法.6.B解析:B【分析】先分别写出这些定理的逆命题,再进行判断即可.【详解】解:A.直角三角形的两锐角互余的逆命题是两锐角互余的三角形是直角三角形,是真命题;B.全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C.两直线平行,同位角相等的逆命题是同位角相等,两直线平行,是真命题;D.角平分线上的点到角两边的距离相等的逆命题是到角两边的距离相等的点在角平分线上,是真命题.故选:B.【点睛】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.B解析:B【分析】根据正方形的性质得到AB=AD,∠BAD=90︒,由旋转的性质推出ADE≌ABF,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90︒,由旋转得ADE≌ABF,∴∠FAB=∠EAD,∴∠FAB+∠∠BAE=∠EAD+∠BAE,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B.【点睛】此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键.8.D解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC的三条边距离相等,角平分线上的点到角的两边的距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.9.C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.10.B解析:B【分析】由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.11.B解析:B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD 平分∠BCA ,∴∠ACB=2∠BCD ,∵∠ADC 是△BDC 的外角,∴∠ADC=∠B+∠BCD ,∵∠ADC=γ,∴∠BC D=γ-β,∵∠MAC 是△ABC 的外角,∴∠MAC=∠B+∠ACB ,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B .【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.12.B解析:B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∴18034146AED∠=︒-︒=︒,∵BE⊥AE,∴90AEB=︒∠,∴36090146124BED∠=︒-︒-︒=︒;故答案选B.【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键。
2019-2020学年福建省莆田市城厢区南门中学八年级(上)开学数学试卷
2019-2020学年福建省莆田市城厢区南门中学八年级(上)开学数学试卷一、选择题(本大题共10小题,共30.0分)1.在实数、0、、3中,最小的实数是A. B. 0 C. D. 32.若,则m的值为A. 2B. 3C. 4D. 53.如果是一个完全平方式,那么k的值是A. 5B.C. 10D.4.已知不等式组的解集是,则m的取值范围是A. B. C. D.5.将一张长与宽的比为2:1的长方形纸片按如图、所示的方式对折,然后沿图中的虚线裁剪,得到图,最后将图的纸片再展开铺平,则所得到的图案是A. B. C. D.6.如图,下列能判定的条件有个.;;;.A. 1B. 2C. 3D. 47.线段CD是由线段AB平移得到的.点的对应点为,则点的对应点D的坐标为A. B. C. D.8.若的积中不含有x的一次项,则k的值是A. 0B. 5C.D. 或59.下列说法错误的是A. 有一个外角是锐角的三角形是钝角三角形B. 有两个角互余的三角形是直角三角形C. 直角三角形只有一条高D. 任何一个三角形中,最大角不小于60度10.根据下列已知条件,能唯一画出的是A. ,,B. ,,C. ,,D. ,二、填空题(本大题共6小题,共18.0分)11.内角和与外角和之比是5:1的多边形是______ 边形.12.若点在第四象限,则实数m的取值范围是______.13.计算______.14.如图,,,,则______度.15.已知 ≌ ,,,,则的周长是______.16.如图,有两个长度相同的滑梯即,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则______ 度.三、计算题(本大题共2小题,共12.0分)17.计算:18.解方程组:四、解答题(本大题共7小题,共56.0分)19.先化简,再求值:,其中,.20.如图,已知与互补,,试说明.21.已知:如图,,,,请问 ≌ 吗?并加以证明.22.数学课上,张老师举了下面的例题:例1:等腰三角形ABC中,,求的度数.答案:例2:等腰三角形ABC中,,求的度数,答案:或或张老师启发同学们进行变式,小敏编了如下一题:变式:等腰三角形ABC中,,求的度数.请你解答以上的变式题.解后,小敏发现,的度数不同,得到的度数的个数也可能不同,如果在等腰三角形ABC中,设,当有三个不同的度数时,请你探索x的取值范围.23.某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y张.根据题意,填写下表中的空格:现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?24.如图,四边形ABCD中,,,E是AB的中点,.求证:;求证:AC是线段ED的垂直平分线;是等腰三角形吗?并说明理由.25.已知如图,在平面直角坐标系中,点、分别是x轴上两点,且m、n满足,点是y轴正半轴上的动点.求三角形的面积用含h的代数式表示;过点P作,,且,.连接AD、BC相交于点E,再连PE,求的度数;连CD与y轴相交于点Q,当动点P在y轴正半轴上运动时,线段PQ的长度变不变?如果不请求出其值;如果变化,请求出其变化范围.答案和解析1.【答案】A【解析】解:,..,..其中最小的实数是.故选:A.先估算出的大小,然后再比较即可.本题主要考查的是比较实数的大小,估算出的大小是解题的关键.2.【答案】A【解析】解:,,,,故选:A.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得,再解即可.此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法法则.3.【答案】D【解析】解:由于,.故选:D.这里首末两项是x和5这两个数的平方,那么中间一项为加上或减去x和5的积的2倍,故.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.4.【答案】C【解析】解:由得,由得,不等式组解集是.故选:C.先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.【答案】A【解析】解:严格按照图中的顺序向右翻折,向右上角翻折,剪去右上角,展开得到结论.故选:A.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.本题主要考查剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.6.【答案】C【解析】解:利用同旁内角互补,判定两直线平行,故正确;利用内错角相等,判定两直线平行,,,而不能判定,故错误;利用内错角相等,判定两直线平行,故正确;利用同位角相等,判定两直线平行,故正确.故选:C.在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.7.【答案】C【解析】解:平移中,对应点的对应坐标的差相等,设D的坐标为;根据题意:有;,解可得:,;故D的坐标为.故选:C.直接利用平移中点的变化规律求解即可.本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.8.【答案】B【解析】解:,不含有x的一次项,,解得.故选:B.根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.本题考查了多项式乘多项式的运算法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.9.【答案】C【解析】解:A、有一个外角是锐角,说明在内角中一定有个钝角,所以正确;B、有两个角互余,即相加等于,则另外一个角为,所以正确;C、任何三角形每一边上都可以做出该边的高,所以错误;D、任何一个三角形中,最大角不小于60度正确,若最大角小于,则内角和就不够,所以正确.故选:C.各选项中只有C是错误的,任何三角形每一边上都可以做出该边的高,而不是只有一条高.本题考查了钝角三角形、直角三角形的概念.注意D中,如果最大角小于,则三个角的和就小于,与三角形的内角和定理,内角和为相矛盾.10.【答案】C【解析】解:A、因为,所以这三边不能构成三角形;B、因为不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选:C.要满足唯一画出,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.11.【答案】十二【解析】解:设多边形的边数为n,则::1,,解得.故答案为:十二.根据多边形的内角和公式,结合比例式列出方程,然后解方程即可得解.本题考查了多边形的内角与外角,熟记内角和公式与外角和是解题的关键.12.【答案】【解析】解:点在第四象限,,解得.故答案为:.根据第四象限内点的坐标特点列出关于m的不等式,求出m的取值范围即可.本题考查的是解一元一次不等式,熟知第四象限内点的坐标特点是解答此题的关键.13.【答案】【解析】解:,故答案为:.根据积的乘方求出,再根据幂的乘方求出即可.本题考查了积的乘方和幂的乘方的应用,注意:,.14.【答案】25【解析】解:在中,,.,.要求的度数,只需根据平行线的性质求得的度数.显然根据三角形的内角和定理就可求解.本题考查了平行线性质的应用,锻炼了学生对所学知识的应用能力.15.【答案】21【解析】解: ≌ ,,,,,,,的周长是:.故答案为:21.直接利用全等三角形的性质得出对应边相等进而求出答案.此题主要考查了全等三角形的性质,正确得出对应边的关系是解题关键.16.【答案】90【解析】解:与均是直角三角形,,≌.故填90由图可得,与均是直角三角形,由已知可根据HL判定两三角形全等,再根据全等三角形的对应角相等,不难求解.此题主要考查学生对全等三角形的判定及性质的综合运用能力.17.【答案】解:原式.【解析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:方程组整理得:,把代入得:,解得:,把代入得:,则方程组的解为.【解析】方程组整理后,利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【答案】解:原式,则当,时,原式.【解析】首先利用完全平方公式和平方差公式对括号内的式子进行化简,然后进行整式的除法计算即可化简,然后代入求值.本题主要考查平方差公式的利用,熟记公式并灵活运用是解题的关键.20.【答案】解:与互补已知,同旁内角互补,两直线平行,两直线平行,内错角相等,又已知,,即,内错角相等,两直线平行,两直线平行,内错角相等.【解析】根据已知可得出,进而由可证得,故能得出,即能推出要证的结论成立.本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键21.【答案】解:,,在与中,≌ .【解析】根据全等三角形的判定定理解答即可.本题考查了全等三角形的判定定理的应用,能熟练地掌握全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.22.【答案】解:若为顶角,则;若为底角,为顶角,则;若为底角,为底角,则;故或或;分两种情况:当时,只能为顶角,的度数只有一个;当时,若为顶角,则;若为底角,为顶角,则;若为底角,为底角,则.当且且,即时,有三个不同的度数.综上所述,可知当且时,有三个不同的度数.【解析】由于等腰三角形的顶角和底角没有明确,因此要分类讨论;分两种情况:;,结合三角形内角和定理求解即可.本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.23.【答案】【解析】解:根据题意,填表如下:由题意得解得.设换取1元的张数为a、5元的张数为b,由题意得,且,则、5、10、15,对应、19、18、17,也就是共有4种方案:张1元,20张5元;张1元,19张5元;张1元,18张5元;张1元,17张5元.根据题意直接列出代数式填表即可;根据表格列出方程组解答即可;设换取1元的张数为a、5元的张数为b,根据题意列出方程,进一步与1元的张数不超过5元的张数,结合求得答案即可.此题考查二元一次方程与方程组的实际运用,根据题意,找出蕴含的数量关系是解决问题的关键.24.【答案】解:,,,,,,,在和中,≌是AB的中点,即,,,点A在ED的垂直平分线上到角两边相等的点在角的平分线上,,,,,,在和中,,≌,点C在ED的垂直平分线上是线段ED的垂直平分线.是等腰三角形≌ ,≌ ,,,是等腰三角形.【解析】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明三角形全等.利用已知条件证明 ≌ ,根据全等三角形的对应边相等即可得到;分别证明,,根据线段垂直平分线的逆定理即可解答;是等腰三角形,由 ≌ ,得到,又有 ≌ ,得到,所以,即可解答.25.【答案】解:,,,,,解得,,,则,三角形的面积;如图1,连接BD,,,在和中,,≌,,点P、E、B、D四点共圆,,,,;线段PQ的长度不变,且,理由是:如图2,过D作轴于G,,,,,,在和中,,≌ ,,,,过C作轴于H,同理可得, ≌ ,,,,设直线CD的解析式为:,把C、D两点的坐标代入得:,解得,则直线CD的解析式为:,,.【解析】根据非负数的性质分别求出m、n,根据三角形的面积公式解答即可;连接BD,证明 ≌ ,根据全等三角形的性质得到,证明P、E、B、D四点共圆,根据圆内接四边形对角互补可得结论;线段PQ的长度不变,且,证明 ≌ 和 ≌ ,分别表示C、D两点的坐标,利用待定系数法求直线CD的解析式,可得Q的坐标,可得PQ的长.本题考查的是全等三角形的判定和性质、待定系数法求一次函数解析式、圆内接四边形的性质,掌握全等三角形的判定定理和性质定理、待定系数法求一次函数解析式的一般步骤是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年福建省莆田市城厢区南门中学八年级(上)开学
数学试卷
一、选择题(共10小题)
1. 在实数−3、0、−√2、3中,最小的实数是( )
A.−3
B.0
C.−√2
D.3
2. 若3×32m ×33m =311,则m 的值为( )
A.2
B.3
C.4
D.5
3. 如果x 2+kx +25是一个完全平方式,那么k 的值是( )
A.5
B.±5
C.10
D.±10
4. 已知不等式组{x +8<4x −1x >m
的解集是x >3,则m 的取值范围是( ) A.m <3
B.m >3
C.m ≤3
D.m ≥3
5. 将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图
③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )
A.
B. C. D.
6. 如图,下列能判定AB // CD 的条件有( )个.
(1)∠B +∠BCD =180∘;
(2)∠1=∠2;
(3)∠3=∠4;
(4)∠B =∠5.
A.1
B.2
C.3
D.4
7. 线段CD是由线段AB平移得到的.点A(−1, 4)的对应点为C(4, 7),则点B(−4, −1)的对应点D的坐标为()
A.(2, 9)
B.(5, 3)
C.(1, 2)
D.(−9, −4)
8. 若(x+k)(x−5)的积中不含有x的一次项,则k的值是()
A.0
B.5
C.−5
D.−5或5
9. 下列说法错误的是()
A.有一个外角是锐角的三角形是钝角三角形
B.有两个角互余的三角形是直角三角形
C.直角三角形只有一条高
D.任何一个三角形中,最大角不小于60度
10. 根据下列已知条件,能唯一画出△ABC的是( )
A.AB=3,BC=4,AC=8
B.AB=4,BC=3,∠A=30∘
C.∠A=60∘,∠B=45∘,AB=4
D.∠C=90∘,AB=6
二、填空题(共6小题)
11. 内角和与外角和之比是5:1的多边形是________边形.
12. 若点(2, m−1)在第四象限,则实数m的取值范围是________.
13. 计算(________.
14. 如图,AB // CD,AC⊥BC,∠BAC=65∘,则∠BCD=________度.
15. 已知△ABC≅△A′B′C′,AB=6,BC=7,CA=8,则△A′B′C′的周长是________.
16. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=________度.
三、解答题
17. 计算:√9+√8
3−|1−√2|
18. 解方程组:{x−2y=7
1−3x=y−1
2
19. 先化简,再求值:[(x−y)2+(x+y)(x−y)]÷2x,其中x=3,y=1.
20. 如图,已知∠BAP与∠APD互补,∠1=∠2,试说明∠E=∠F.
21. 已知:如图,∠1=∠2,AB=AD,∠B=∠D,请问△ABC≅△ADE吗?并加以证明.
22. 数学课上,张老师举了下面的例题:
例1等腰三角形ABC中,∠A=110∘,求∠B的度数.(答案:35∘)
例2等腰三角形ABC中,∠A=40∘,求∠B的度数,(答案:40∘或70∘或100∘)
张老师启发同学们进行变式,小敏编了如下一题:
变式等腰三角形ABC中,∠A=80∘,求∠B的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x∘,当∠B有三个不同的度数时,请你探索x的取值范围.
23. 某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中
10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y张.
(1)根据题意,填写下表中的空格:
________________-10130钱数(元)________5________________-10)300
(2)求出x、y的值;
(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张
数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?
24. 如图,四边形ABCD中,∠DAB=∠ABC=90∘,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.
25. 已知如图,在平面直角坐标系中,点B(m, 0),A(n, 0)分别是x轴上两点,且m,n
满足(m−3)2+|n−1|=0,点P(0, ℎ)是y轴正半轴上的动点.
(1)求三角形△ABP的面积(用含ℎ的代数式表示);
(2)过点P作DP⊥PB,CP⊥PA,且PD=PB,PC=AP.
①连接AD,BC相交于点E,再连PE,求∠BEP的度数;
②连CD与y轴相交于点Q,当动点P在y轴正半轴上运动时,直接写出PQ的长度.。