矩阵理论研究生课程大作业
学年工科硕士研究生期末考试矩阵论试题

武汉大学数学与统计学院2005-2006学年工科硕士研究生学位课程期末考试《矩阵论》 试题 (A 卷,150分钟)专业 电气工程 班号 姓名 学号注:所有的答题内容必须写在答题纸上,凡写在其它地方的一律无效;交卷时将试卷连同答题纸、草稿纸一并上交。
一、 是非题(满分12“√”,否则打“×”)(√A 是n m ⨯的实矩阵,x 为n 维向量,则⇔=0Ax A T 0=Ax ;()()212200*0*000T T T m j mjm ji A Ax x A Ax Ax a a a Y Ax ⨯=∴==⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⇔=⇔==∑∑Tij m n j=1j=1令Y=(y ),则Y Y=0,即 ( × ) 2.设n 阶方阵A 满足E A =2,则A 的特征值只能是1;也可能是-1,如令1001A ⎛⎫= ⎪-⎝⎭证明:21111111A E A AAx x A Ax A x x A x Ax Ax x λλλλλλλλ----=⇒==⇒=⇒==⇒=⇒=⇒=±(√ ) 3.欧氏空间n R 上的任意两种向量范数都是等价的; 在线性空间中所任意两种范数等价而欧氏空间是一种特殊的线性空间(√ ) 4.设A 为n m ⨯矩阵,B 为n 阶可逆方阵,则---=A B AB 1)(.()()()111()AB B A AB ABB A AB AA AB ABAB B A--------===∴=二、 填空题(本题满分12分,每空3分).设有三个四维向量T T T Z Y X )3,1,1,2(,)1,1,1,1(,)1,1,1,1(=--=-=.则它们的2-范数分别为=2X2 ; =2Y2 ;2Z 且与Z Y X ,,都正交的所有向量为 (4013)k -. 即求1234111101111021130x x x x ⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪--= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的解。
矩阵论大作业

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:姓名:学号:专业:机械设计及理论类别:上课时间: 2013年2月至2013年5月考生成绩:阅卷评语:阅卷教师(签名)利用矩阵论相关知识求解传动轴固有频率的有限元分析法摘要:在结构力学中,求解结构自由振动的固有频率是十分重要的内容。
本文通过对某机器传动轴各个单元进行单元刚度矩阵、单元质量矩阵等特性分析,再把各个单元的特性矩阵组集起来组成结构的总刚度矩阵、总质量矩阵,从而形成结构的自由振动方程式。
最后利用矩阵论相关知识求解自由振动方程式的广义特征值,并通过广义特征值与固有频率的关系求得传动轴的固有频率。
正文一、问题描述已知某机器传动轴两端固定,其传动轴受扭长度L为1500mm,传动轴的横截面积是环形,其外径D为50mm,内径d为45mm,弹性模量E为52。
利2.110/N mm用矩阵论及有限元分析法求解传动轴的固有频率。
二、方法简述1.建立传动轴的有限元分析模型由于传动轴两端固定,采用平面梁单元分析该传动轴。
考虑到本次计算是手算,为了简化计算,将该传动轴划分为(1)、(2)两个单元,共1、2、3三个结点。
由于该结构中一个结点有两个自由度,故总共有1、2、3、4、5、6六个自由度。
建立有限元分析模型及各个部分编号如图1所示。
图1 传动轴有限元分析模型2.平面梁单元的单元刚度矩阵由《机械结构有限元分析》[1]中形状函数N 的构造方法可知,对于该结构的平面梁单元,它有两个节点,四个自由度,采用自然坐标系,通过构造计算可得单元的形函数为()()()()v iiv j j N N N N N θθ⎡⎤=⎣⎦23232332(132)(2)(32)()ξξξξξξξξξ⎡⎤=-+-+--⎣⎦ (1)其中,i j 为结点编号,v 为结点位移,θ为结点转角,xlξ=,l 为梁单元的长度。
平面梁单元的单元刚度矩阵T lk E I B B d x=⎰ (2) 其中E 为弹性模量,I 为惯性矩。
矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业姓名:学号:学院:专业:类别:组数:成绩:人口迁移问题和航班问题(重庆大学 机械工程学院,机械传动国家重点实验室)摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。
本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。
人口迁移问题假设有两个地区——如南方和北方,之间发生人口迁移。
每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样?解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。
则我们可得,1=n 时,一年后北方和南方的人口为⎩⎨⎧+=+=00100175.05.025.05.0y x y y x x (1-1)将上述方程组(1-1)写成矩阵的形式⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛0011y x A y x其中 ⎥⎦⎤⎢⎣⎡=75.05.025.05.0A2=n 时,两年后北方和南方的人口为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛0021122y x A y x A y x依次类推下去,n 年后北方和南方的人口为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x n n n (1-2) N S 0.5 0.25 0.5 0.75现在只需求出n A 就可得出若干年后北方和南方的人口数。
下面将使用待定系数法[1]求n A)1)(25.0(25.025.125.05.0)75.0)(5.0(75.05.025.05.02--=+-=⨯---=----=-λλλλλλλλλA E所以 1,25.021==λλ矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组⎩⎨⎧=+=+125.025.01010a a a a n解方程组得⎪⎪⎩⎪⎪⎨⎧-=+-=75.025.0175.025.025.010n na a 所以⎥⎦⎤⎢⎣⎡+⨯--⨯+=-++-=+=++111025.05.025.05.05.025.025.025.05.025.075.0175.025.0175.025.025.0n n n n nn nAE A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口北方:01075.025.025.075.025.05.025.0y x x n n n +-+⨯+=南方:01075.025.05.075.025.05.05.0y x y n n n +++⨯-=当∞→n 时,得)(31)75.025.025.075.025.05.025.0(lim lim 00010y x y x x n n n n n +=-+⨯+=+∞→∞→()000103275.025.05.075.025.05.05.0lim lim y x y x y n n n n n +=⎪⎪⎭⎫⎝⎛++⨯-=+∞∞→∞→ 由上面计算可以得到,如果移民过程持续下去,北方的人不会全部都到南方。
研究生矩阵理论课后答案4,5章习题

2 1 − 2 3 1 0 4 1 1 0 −1 2 1 −1 0
0 5 0 1 1 0 4 1 1 0 −1 −2 0 −2 0
→
1 1 1 −2 −1 −1
0 5 0 1 1 0 4 1 1 0 1 2 0 2 0
同一向量的三种范数之间的大小关系 习题#5-4:对n维线性空间的任意向量x成 习题#5维线性空间的任意向量x #5
‖x‖∞ ≤‖x‖2 ≤‖x‖1 ≤ n‖x‖∞ ≤ n‖x‖2 ≤ n‖x‖1 ≤ n2‖x‖∞ ≤ …
立
证: |,…,|x ‖x‖∞= max{|x1|, ,|xn|} ≤(Σi=1n|xi|2)1/2 = ‖x‖2 |+…+|x ≤((|x1|+ +|xn|)2)1/2 = ‖x‖1 |,…,|x ≤ n max{|x1|, ,|xn|} = n‖x‖∞
习题#5是正定矩阵,x ,x∈ 习题#5-6A∈Cn×n是正定矩阵,x∈Cn #5
是向量范数. •证明:‖x‖=(x*Ax)1/2 是向量范数. 证明:‖x‖=(x
解1:因A是正定Hermite矩阵A,故存在可逆矩阵B 是正定Hermite矩阵A,故存在可逆矩阵B Hermite矩阵A,故存在可逆矩阵 使得A=B B.则 的上述表示式可写为: 使得A=B*B.则x的上述表示式可写为: (Bx)) ‖x‖=(x*Ax)1/2 =((Bx)*(Bx))1/2 =‖Bx‖2 其中‖‖ 是向量2 范数.再注意可逆矩阵B 其中‖‖2 是向量2-范数.再注意可逆矩阵B的性 Bx=0,即可直接推出非负性 即可直接推出非负性. 质:x=0 ⇔ Bx=0,即可直接推出非负性. ‖kx‖=‖B(kx)‖2=|k|‖Bx‖2=|k|‖x‖ 推出齐次性;三角不等式则由下式推出: 推出齐次性;三角不等式则由下式推出: ‖x+y‖=‖B(x+y)‖2≤‖Bx‖2+‖By‖2
研究生矩阵论课后习题答案(全)习题二

习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ⎡⎤-⎢⎥-⎢⎥⎢⎥+-⎣⎦; (2)22220000000(1)00000λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (3)2222232321234353234421λλλλλλλλλλλλλλ⎡⎤+--+-⎢⎥+--+-⎢⎥⎢⎥+---⎣⎦;(4)23014360220620101003312200λλλλλλλλλλλλλλ⎡⎤⎢⎥++⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦. 解:(1)对矩阵作初等变换133122222222111001100(1)c c r r λλλλλλλλλλλλλλλλλλλλλ+-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥-−−−→-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+---+⎣⎦⎣⎦⎣⎦23221311(1)1010000000(1)00(1)c c c c c c r λλλλλλλλλ+--⨯-⎡⎤⎡⎤⎢⎥⎢⎥−−−→-−−−→⎢⎥⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦,则该矩阵为Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+)1(1λλλ; (2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=,从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦;(3)对矩阵作初等变换1332212132132222222222242322(2)2(2)323212332212435323443322421221762450110221c c c c r r r r c c c λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ-------⎡⎤⎡⎤+--+----⎢⎥⎢⎥+--+-−−−→---⎢⎥⎢⎥⎢⎥⎢⎥+-----⎣⎦⎣⎦⎡⎤-+--++-⎢⎥−−−−→--⎢⎥⎢⎥--⎣⎦3122131211342322(2)3232(1)32(5)(1)27624501100011245001000110010001001000100(1)(c c c r r r r r c c λλλλλλλλλλλλλλλλλλλλλλλλλ---+↔+--⨯-↔⎡⎤-+--++-⎢⎥−−−−−→--⎢⎥⎢⎥⎣⎦⎡⎤-+---++-⎢⎥−−−−→-⎢⎥⎢⎥⎣⎦⎡⎤--+⎢⎥−−−−−→-−−−→-⎢⎥⎢⎥-⎣⎦1)⎡⎤⎢⎥⎢⎥⎢⎥+⎣⎦故该矩阵的Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--)1()1(112λλλ; (4)对矩阵作初等变换152323230100014360220002206200020101001010033122003312200c c c c λλλλλλλλλλλλλλλλλλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥−−−→⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦12213231322000100010002200000020002010100100000100001000c c r r c c c c λλλλλλλλλλλλλλ+-+-⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦2143145425222000101000000000000000000001000000010010000001r r c c c c c c c c λλλλλλλλλλ--↔-↔⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===,于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ--⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦;(2)10010000λαββλαλαββλα+⎡⎤⎢⎥-+⎢⎥⎢⎥+⎢⎥-+⎣⎦; (3)100100015432λλλλ-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥+⎣⎦; (4)0012012012002000λλλλ+⎡⎤⎢⎥+⎢⎥⎢⎥+⎢⎥+⎣⎦. 解:(1)该λ-矩阵的右上角的2阶子式为1,故12()()1,D D λλ==而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故123()()()1,D D D λλλ===而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ⎡⎤++⎢⎥--+--+⎣⎦; (2)3223222212122122λλλλλλλλλλ⎡⎤-+--+⎢⎥-+--⎣⎦. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为12()1,()(1)(1),d d λλλλλ=-=+-因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687⎡⎤⎢⎥---⎢⎥⎢⎥---⎣⎦;(2)452221111-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(3)3732524103-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)111333222-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(5)03318621410⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦;(6)1234012300120001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (2)设该矩阵为A ,则310001000(1)E A λλ⎡⎤⎢⎥-→⎢⎥⎢⎥-⎣⎦,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为1,,,i i λλλ-+-从而A 的Jordan 标准形为1000000i i ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (4)设该矩阵为A ,则21000000E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥⎣⎦,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)设该矩阵为A ,则210001000(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥+⎣⎦,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (6)设该矩阵为A ,则1234012300120001E A λλλλλ----⎡⎤⎢⎥---⎢⎥-=⎢⎥--⎢⎥-⎣⎦, 该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 5.设矩阵142034043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,100050005⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,则1A P P -=Λ.,故4455144441453510354504535A P P -⎡⎤⨯⨯-⎢⎥=Λ=-⨯⨯⎢⎥⎢⎥⨯⨯⎣⎦. 6.设矩阵211212112A --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ-⎡⎤⎡⎤⎢⎥⎢⎥-=-+→-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x -⎡⎤⎛⎫⎪⎢⎥-= ⎪⎢⎥ ⎪⎢⎥--⎣⎦⎝⎭解之,得12100,111X X ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.其通解为1122k X k X +=1212k k k k ⎛⎫⎪⎪ ⎪-⎝⎭,其中21,k k 为任意常数.考虑方程组1122312111222,111x k x k x k k -⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥---⎣⎦⎝⎭⎝⎭11212121211111122200021110002k k k k k k k k k --⎡⎤⎡⎤⎢⎥⎢⎥-→-+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ⎛⎫⎪= ⎪ ⎪⎝⎭.则相似变换矩阵123100[,,]010111P X X X ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦.7.设矩阵102011010A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --⎡⎤⎢⎥-+=-⎢⎥⎢⎥-⎣⎦.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++,则12121n n n n n A a A a A a A a I O ---+++++=,即123121()n n n n n A A a A a A a I a I ----++++=-,因为A 可逆,故(1)0nn a A =-≠,则11231211()n n n n nA A a A a A a I a -----=-++++9.设矩阵2113A -⎡⎤=⎢⎥⎣⎦,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I ----⎡⎤⎡⎤-++-=-==⎢⎥⎢⎥-⎣⎦⎣⎦. 10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2nA 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得21,1,422.n a b c a b c a b c ++=⎧⎪--=⎨⎪++=⎩解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)422575674-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a ⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥--⎣⎦. 解:(1) 设311020111A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 231110002002011100(2)I A λλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥-=-→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则 2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。
研究生 矩阵论 课后答案

|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
华中科技大学研究生数学矩阵论练习和习题省名师优质课赛课获奖课件市赛课一等奖课件

L L{1,2,···,m }
W
W1+W2
矩 矩阵AF m×n,两个子空间
不不变子空间
线线性变换旳数量关系:
➢线性变换旳表达 ➢线性变换旳数量关系 ➢主要旳线性变换
第1章习题选讲
P31,习题一 1(3),2,4,9,10,11 ,17,20, 23(4),26,29,30
第2章推荐习题
P58 1,2,3,6,8,9,11, 12, 13,16,19,20
第2章习题选讲
P58 1,3,6,8,9,11, 13,16, 19,20
线性空间旳问题
线性空间旳表达形式:
集合表达形式:Vn(F)={ 满足旳性质} 向量生成形式:L{1,2,···,m }
子空间类型:
L{1,2,···,m } W1+W2 矩阵AF m×n,两个子空间 不变子空间
线性空间旳数量关系与矩阵
线性变换旳数量关系
线性变换旳给定方式 线性变换旳变换矩阵 空间分解与矩阵分解
复习与习题
2023 级矩阵论考试信息
考试时间:第16周六(12月22日),
考试地点:西12楼(详见网上告知) 答疑时间:第16周三、四、五:下午 答疑地点:逸夫科技楼(北)913#
矩阵论复习(07)
要点:
线性空间旳问题 线性变换旳数量关系 JA,mA() ,f() =|I-A | 之间旳关系 A与f(A)在Jordan原则形上旳关系 正规矩阵旳性质与应用 向量范数与矩阵范数 矩阵幂级数和矩阵函数
试题旳构造
习题选讲
P31,习题一 2,4,10,11 ,17, 23(4),26,29,30 P57,习题二 3,6,11,13, 20
试题旳构造
填空题 25% 计算题60% 证明题 15% 试题样板
研究生矩阵理论课后答案矩阵分析所有习题

其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生“矩阵论”课程课外作业
姓名:学号:
学院:专业:
类别:组数:
成绩:
人口迁移问题和航班问题
(重庆大学 机械工程学院,机械传动国家重点实验室)
摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。
本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。
人口迁移问题
假设有两个地区——如南方和北方,之间发生人口迁移。
每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:
问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样?
解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。
则我们可得,1=n 时,一年后北方和南方的人口为
⎩⎨⎧+=+=001
00175.05.025.05.0y x y y x x (1-1)
将上述方程组(1-1)写成矩阵的形式
⎪⎪⎭
⎫ ⎝⎛=
⎪⎪⎭
⎫
⎝⎛0011y x A y x 其中 ⎥⎦
⎤
⎢⎣⎡=75.05.025.05.0A
2=n 时,两年后北方和南方的人口为
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛0021122y x A y x A y x
依次类推下去,n 年后北方和南方的人口为
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x n n n (1-2) 现在只需求出n A 就可得出若干年后北方和南方的人口数。
下面将使用待定系数法[1]求n A
)1)(25.0(25
.025.125
.05.0)75.0)(5.0(75
.05.025
.05
.02--=+-=⨯---=----=
-λλλλλλλλλA E
所以 1,25.021==λλ
矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组
⎩⎨⎧=+=+125.025.01010a a a a n
解方程组得
⎪⎪⎩
⎪⎪⎨⎧-=
+-=75.025.0175.025.025.010n
n
a a 所以
⎥⎦
⎤⎢⎣⎡+⨯--⨯+=-++-=+=++11
1025.05.025.05.05.025.025.025.05.025.075.0175
.025.0175.025.025.0n n n n n
n n
A
E A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口
北方:01
075.025.025.075.025.05.025.0y x x n n n +-+⨯+=
南方:01
075
.025.05.075.025.05.05.0y x y n n n +++⨯-=
当∞→n 时,得
)(3
1
)75.025.025.075.025.05.025.0(lim lim 0001
0y x y x x n n n n n +=-+⨯+=+∞→∞→ ()000103
2
75.025.05.075.025.05.05.0lim lim y x y x y n n n n n +=⎪⎪⎭⎫
⎝⎛++⨯-=+∞∞→∞→ 由上面计算可以得到,如果移民过程持续下去,北方的人不会全部都到南方。
最终北方的人口是移民前南北人口之和的1/3。
南方人口是北方人口的两倍。
结论
本文论述的南北方人口迁移问题是一个比较理想化的问题,但还是有一些实际的参考价值,通过本问题的演算过程,我们可以推论,若一个地区有人口迁出(迁出率<1),那么只要有人口迁入,则该地区始终有人口住居。
航班问题
一家航空公司经营A 、B 、C 、D 和H 五个城市的航线业务,其中H 为中心城市。
各个城市间的路线见图1。
图 1
假设你想从A 城市飞往B 城市,因此要完成这次路线,至少需要两个相连的航班,即
A →H 和H →
B 。
如果没有中转站的话,就不得不要至少三个相连的航班。
那么问题如下:
(1)从A 到B ,有多少条路线刚好是三个相连的航班; (2)从A 到B ,有多少条路线要求不多于四个相连的航班。
解 为了方便计算,设1、2、3、4、5分别代表A 、B 、C 、D 、H 五个城市。
令()ij a A =,其中ij a 表示i 城市到j 城市单连航班的路线条数()5,4,3,2,1,=j i ,若1=ij a 表示i 城市到j 城市的单连航班有1条,若0=ij a 表示i 城市到j 城市的单连航班有0条[2]。
则表示i 城市到j 城市单连航班的路线条数用矩阵A 表示为
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎣⎡=01
111
1001011000
100011010
A 令()2A b
B ij ==,则ij b 表示i 城市到j 城市两个相连航班的路线条数
⎥⎥⎥
⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢
⎢⎣⎡==41111
1111211121
1121112111
2A B
令()3A c C ij ==,则ij c 表示i 城市到j 城市三个相连航班的路线条数
⎥⎥⎥
⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎢⎣⎡==45555
5232252223
53222522323
A C
令()4A d D ij ==,则ij c 表示i 城市到j 城市四个相连航班的路线条数
⎥⎥⎥
⎥⎥
⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎣⎡==209999
9877797877
97
78797
7784A D
(1)由上面的计算可得,12c 代表从A 到B 刚好是三个相连的航班路线条数。
所以,从A 到B ,有3条路线刚好是三个相连的航班。
(2)要求从A 到B ,不多于四个相连的航班路线条数,即是要把单个相连、两个相连、三 个相连和四个相连的全部航班路线条数加起来。
即 11731012121212=+++=+++d c b a
所以,从A 到B ,有11条路线不多于四个相连的航班。
参考文献
[1]李新,何传江.矩阵理论及其应用[M].重庆:重庆大学出版社,2005.8:117-120 [2]同济大学数学系.工程数学.线性代数[M].北京:高等教育出版社,2007.5:30-37 如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。