第六章习题与复习题(二次型)----高等代数

合集下载

《线性代数》考点强化班 配套讲义 第六章 二次型

《线性代数》考点强化班 配套讲义 第六章 二次型
2 2 4
2 0 2 E AT A 0 2 2 ( 2)( 6) 。
2 2 4
故 AT A 的特征值为 1 0, 2 2, 3 6 .
2 0 2 1 0 1
由 E
AT
A
0
2 2 0 1 1 ,得 AT A 的对应于特征值 1 0 的特征量
2 2 4 0 0 0
则原二次型化为标准形 f 2z12 2z22 ,
1 0 1
【例 4】
已知 A
0
1
1 0
1 a
,二次型
f
(x1 ,
x2 ,
x3 )
xT
AT A x 的秩为 2。
பைடு நூலகம் 0 a 1
(1)求实数 a 的值;
(2)求正交变换 x Qy 将 f 化为标准形,
【分析】第一问利用秩的结论 r AT A r( A) 简化计算,第二问是一个常规的化为标准
0 02
1 1 0 (Ⅱ)这里 A 1 1 0 ,可求出其特征值为 1 2 2, 3 0 .
0 0 2
解 (2E A)x 0 ,得特征向量为:1 1,1, 0T ,2 0, 0,1T ,
解 (0E A)x 0 ,得特征向量为:3 1, 1, 0T
由于1, 2 已经正交,直接将1,2 ,3 单位化,得:
形问题。
【详解】(1)由 f (x1 , x2 , x3 ) xT AT A x 的秩为 2,即 r AT A 2 ,于是 r( A) 2 ,因此
A 的任意 3 阶子式都为 0.故
1 01 10 1 0 1 1 0 1 1 1 a 0, 1 0 a 0 0 1 a
解得 a 1.
2 0 2 (2)当 a 1时, AT A 0 2 2 ,

《工程高等代数》6第六章相似矩阵与二次型习题解答

《工程高等代数》6第六章相似矩阵与二次型习题解答

习 题 六A 组1.填空题(1)已知向量[]TT(1,2,3),(4,,6),,7t =-=-=a b a b ,则t = . 解72. (2)设04=x ,A 为正交矩阵,则0=Ax . 解 4.(3)设P 为n 阶可逆矩阵,12130000,00n a a a -⎛⎫⎪⎪= ⎪⎪ ⎪⎝⎭A B =P A P,则B 的特征值为 .解 33312,,,na a a . (4)已知3阶方阵A 的特征值分别为1,1,2-,则矩阵322=-B A A 的特征值是 ,=B .解 1,3,0;0--.(5)如果n 阶矩阵A 的元素全为1,那么A 的n 个特征值是 . 解 ,0,0,,0n .(6)矩阵022222222--⎛⎫⎪- ⎪ ⎪--⎝⎭的非零特征值是 . 解 4.(7)设010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,1-=B P AP ,其中P 为三阶可逆矩阵, 则200422-=B A . 解 300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭.(8) 设()33ija ⨯=A 是实正交矩阵,且111=a ,T (1,0,0)=b ,则线性方程组Ax =b 的解是 .解 T (1,0,0).(9)二次型22121212(,)24f x x x x x x =+-的矩阵是 .解 1222-⎛⎫ ⎪-⎝⎭.(10)二次型222123112213233(,,)2222f x x x x x x x x x x x x =-+-++的秩是 . 解 2.(11)二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . 解 2.(12)二次型T f =x Ax 是正定的充分必要条件是实对称矩阵A 的特征值都是 . 解 正数. 2.选择题(1)已知[]1,2,,1===a b a b ,则向量a 与b 的夹角为 . (A )0; (B )4π; (C )3π; (D )2π. 解 (C ).(2)n 阶方阵A 的两个不同的特征值所对应的特征向量 . (A )线性相关; (B )线性无关; (C )正交; (D )内积为1. 解 (B ).(3)设P 为三阶可逆矩阵,123894765⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,123,,λλλ是1-=B P AP 的三个特征值,则123λλλ++的值为 .(A )1; (B )10; (C )15; (D )19. 解 (C ).(4)设P 为可逆矩阵,λ=≠Ax x 0,11--=B P A P ,则矩阵B 的特征值和特征向量分别是 .(A )λ和x ; (B )1λ-和x ; (C )1λ-和1-P x ; (D )λ和Px .解 (C ).(5)设A 是n 阶实对陈矩阵,P 是n 阶可逆矩阵.已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()T1-P AP属于特征值λ的特征向量是 .(A )1-P α; (B )TP α; (C )P α; (D )()T1-Pα.解 (B ).(6)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是 .(A )01≠λ; (B )02≠λ; (C )01=λ; (D )02=λ. 解 (B ).(7)设A ,B 为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则下列命题正确的是 . (A )λλ-=-E A E B ; (B )A 与B 有相同的特征值与特征向量; (C )A 与B 都相似于一个对角矩阵; (D )对任意常数t ,t -E A 与t -E B 相似.解 (D ).(8)n 阶方阵A 具有n 个不同的特征值是A 与对角矩阵相似的 . (A )充分必要条件; (B )充分非必要条件;(C )必要非充分条件; (D )既非充分也非必要条件. 解 (B ).(9)设矩阵001010100⎛⎫⎪= ⎪ ⎪⎝⎭B ,已知矩阵A 相似于B ,则(2)R -A E 与()R -A E 之和等于 .(A )2; (B )3; (C )4; (D )5. 解 (C ).(10)设1111111111111111⎛⎫ ⎪⎪⎪⎪⎝⎭A =,400000000000000⎛⎫ ⎪⎪⎪ ⎪⎝⎭B =,则A 与B . (A )合同且相似; (B )合同但不相似; (C)不合同但相似; (D)不合同且不相似. 解 (A ).(11)二次型222123123121323(,,)()444f x x x a x x x x x x x x x =+++++经正交变换=x Py 可以化成标准形216f y =,则a 的值是 .(A )1; (B )2; (C )3; (D )无法确定. 解 (B ).3.利用Schimidt 正交化方法将下列向量组规范正交化. (1) TTT123(1,2,1),(1,3,1),(4,1,0)=-=-=-a a a ; 解 先正交化T 11(1,2,1)==-b a ,[][]12T 22111,5(1,1,1),3=-=-b a b a b b b ,[][][][]1323T 33121122,,(2,0,2),,=--=b a b a b a b b b b b b , 再单位化得T T 1212122,1),1,1,1),==-==-b b e e bb T 3330,1)==b e b . (2) 矩阵111011101110-⎛⎫⎪-⎪ ⎪- ⎪ ⎪⎝⎭的列向量组. 解 先正交化,111011⎛⎫⎪ ⎪==⎪- ⎪ ⎪⎝⎭b a , [][]1222111111103,21012,33111⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b a b a b b b ,[][][][]13233312112211111033,,2211123,,31550114--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=--=++= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭b a b a b a b b b b b b .再单位化得1212121103,1211⎛⎫⎛⎫ ⎪⎪-⎪⎪====⎪⎪-⎪⎪⎪⎪⎝⎭⎝⎭b b e e b b ,3331334-⎛⎫ ⎪⎪==⎪⎪⎪⎝⎭b e b . 4.设向量T 1(1,1,1)=a ,求非零向量2a ,3a ,使得1a ,2a ,3a 是正交向量组.解 根据题意,2a ,3a 应满足方程T10=x a ,即0x y z ++=.解得基础解系为T1(1,1,0)=-ξ和T 2(1,0,1)=-ξ.正交化得到T21(1,1,0),==-a ξ [][]22T 32122,1(1,1,2),2=-=--ξa a ξξa a . 5.求下列矩阵的特征值和特征向量.(1)1124-⎛⎫ ⎪⎝⎭; (2)110430102-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (3)123213336⎛⎫⎪⎪ ⎪⎝⎭.解 (1)特征多项式为11(3)(2)24λλλλ--=---,得到特征值为122,3λλ==.对于12λ=,解齐次线性方程组11110220x x --⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系11⎛⎫⎪-⎝⎭,对应的特征向量可取1111,01k k ⎛⎫=≠ ⎪-⎝⎭p .对于23λ=,解齐次线性方程组11210210x x --⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系12-⎛⎫⎪⎝⎭,对应的特征向量可取2221,02k k -⎛⎫=≠ ⎪⎝⎭p .(2)特征多项式为2110430(2)(1)12λλλλλλ---=--=---A E , 得到特征值为值1231,2λλλ===.对于121λλ==,解齐次线性方程组123210042001010x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 得基础解系121⎛⎫ ⎪⎪ ⎪-⎝⎭,对应的特征向量可取11112,01k k ⎛⎫⎪=≠ ⎪ ⎪-⎝⎭p .对于32λ=,解齐次线性方程组123310*********x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系001⎛⎫⎪⎪ ⎪⎝⎭,对应的特征向量可取2220001k k ⎛⎫⎪=≠ ⎪ ⎪⎝⎭p .(3)特征多项式为(1)(9)λλλλ-=+-A E ,得到特征值为1230,1,9λλλ==-=.对于10λ=,解齐次线性方程组(0)-=A E x 0,得基础解系1111-⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,特征向量为1111,01k k -⎛⎫ ⎪-≠ ⎪ ⎪⎝⎭.对于21λ=-,解齐次线性方程组()+=A E x 0,得基础解系2110-⎛⎫⎪= ⎪ ⎪⎝⎭ξ,特征向量为2211,00k k -⎛⎫ ⎪≠ ⎪ ⎪⎝⎭. 对于39λ=,解齐次线性方程组(9)-=A E x 0,得基础解系3112⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,特征向量为3311,02k k ⎛⎫ ⎪≠ ⎪ ⎪⎝⎭.6.设3111-⎛⎫=⎪⎝⎭A ,234()16842ϕ=++++A E A A A A ,求()ϕA 的特征值和特征向量.解 A 的特征多项式为231(2)11λλλλ---==--A E ,得到A 的特征值为122λλ==.对于122λλ==,解齐次线性方程组110110x y -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得特征向量11⎛⎫= ⎪⎝⎭ξ.因为2是A 的特征值,所以(2)80ϕ=是()ϕA 的特征值,11k k ⎛⎫= ⎪⎝⎭ξ为()ϕA 的全部特征向量()0k ≠.7.证明(1)若n 阶方阵A 满足2=A A ,则A 的特征值为0或1;(2)若n 阶方阵A 满足k=A E ,则A 的特征值λ满足1kλ=.证明 (1)设≠x 0满足λ=Ax x ,λ是A 的特征值,则22λ=A x x , 故22λλ===x Ax A x x ,得(1)λλ-=x 0,因为≠x 0,所以0λ=或1λ=.(2)设≠x 0满足λ=Ax x ,则k k λ===x A x Ex x .因此(1)kλ-=x 0,而≠x 0,故1k λ=.8.设11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 与000010002⎛⎫ ⎪= ⎪ ⎪⎝⎭Λ相似,求a ,b .解 由于A 的特征值与Λ的特征值相同,也是0,1,2,因此()20120,20,b a ab ⎧=--=⨯⨯=⎪⎨-==⎪⎩A A E 得0a b ==.9.设方阵12422421x --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A 与54y ⎛⎫⎪=⎪ ⎪-⎝⎭Λ相似,求,x y .解 由A 与Λ相似可知,A 的特征值为1235,,4y λλλ===-,于是1154,52442429360,425x y x x ++=+-⎧⎪--⎪⎨+=-+-=-=⎪⎪--⎩A E 得4x =,5y =.10.设A 与B 均为n 阶方阵,0≠A ,证明AB 与BA 相似.证明 由0≠A 知1-A 存在,于是11()()--==A AB A A A BA BA ,因此AB 与BA 相似.11.若A 与B 相似,C 与D 相似,则分块矩阵⎛⎫ ⎪⎝⎭A 00C 与⎛⎫⎪⎝⎭B00D 相似. 证明 由条件可知,存在可逆矩阵1P ,2P ,使得111122,--==P AP B P CP D ,于是111111111111222222------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭P 0P 0B 0A 0P AP 0P A 0P 00P 0P 0D 0C 0P CP 0P C 0P 11122-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P0P 0A 00P 0P 0C , 所以⎛⎫ ⎪⎝⎭A 00C 与⎛⎫⎪⎝⎭B 00D 相似.12.已知3阶矩阵A 与三维向量x ,使得向量组x ,Ax ,2A x 线性无关,且满足3232=-A x Ax A x .(1)记()2,,P =x Ax A x ,求三阶矩阵B ,使1-=A PBP ; (2)计算行列式+A E .解 (1)设123123123a a a b b b c c c ⎛⎫⎪⎪ ⎪⎝⎭B =,则由=AP PB 得 ()()123232123123a a a ,,,,b b b c c c ⎛⎫ ⎪= ⎪ ⎪⎝⎭Ax A x A x x Ax A x . 上式可写为2111a b c Ax =x +Ax +A x , 22222a b c A x =x +Ax +A x , 32333a b c A x =x +Ax +A x .将3232=-A x Ax A x 代入得2233332a b c -Ax A x =x +Ax +A x .由于x ,Ax ,2A x 线性无关,故1110,1a c b ===; 2220,1a b c ===; 3330,3,2a b c ===-,从而000103012⎛⎫ ⎪⎪ ⎪-⎝⎭B =.(2)由(1)知A 与B 相似,故+A E 与+B E 相似,从而1001134011+=+==--A E B E .13.求下列矩阵多项式.(1)设3223-⎛⎫=⎪-⎝⎭A ,求109()5ϕ=-A A A ;(2)212122221⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,求1098()65ϕ=-+A A A A .解 (1)由(1)(5)0λλλ-=--=A E 得特征值为121,5λλ==.对于11λ=,解方程组()-=A E x 0得特征向量111⎛⎫= ⎪⎝⎭ξ,取111⎛⎫= ⎪⎝⎭p .对于25λ=,解方程组(5)-=A E x 0得特征向量211-⎛⎫=⎪⎝⎭ξ,取211-⎛⎫= ⎪⎝⎭p . 令1211(,)11-⎛⎫==⎪⎝⎭P p p ,则115-⎛⎫== ⎪⎝⎭P AP Λ,于是9999199911111151511,11511221515--⎛⎫+-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭A P P Λ 10101010110101515121515-⎛⎫+-== ⎪-+⎝⎭A P P Λ,10911()5211ϕ⎛⎫=-=- ⎪⎝⎭A A A .(2)由(1)(5)(1)0λλλλ-=-+--=A E 求得特征值1231,1,5λλλ=-==.对于11λ=-,解方程组()+=A E x 0,得1112⎛⎫⎪= ⎪ ⎪-⎝⎭p .对于21λ=,解方程组()-=A E x 0,得2110⎛⎫ ⎪=- ⎪ ⎪⎝⎭p .对于15λ=,解方程组(5)-=A E x 0,得3111⎛⎫ ⎪= ⎪ ⎪⎝⎭p .因此,123111(,,)111201⎛⎫ ⎪==- ⎪ ⎪-⎝⎭P p p p ,且1115--⎛⎫ ⎪==⎪ ⎪⎝⎭P AP Λ, 888888188888888111(1)112251515111111330152515632015222151525-⎛⎫⎛⎫--+-+-+⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==--=-++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+-++⎝⎭⎝⎭⎝⎭⎝⎭A P P Λ, 10988888888888888888888()65()(5)2515151123121152515112132315152522022425151522411525152243151525448ϕ=-+=--⎛⎫+-+-+-⎛⎫⎛⎫⎪ ⎪⎪=-++-+- ⎪ ⎪⎪⎪⎪ ⎪-+-++-⎝⎭⎝⎭⎝⎭⎛⎫+-+-+-⎛⎫⎪ =-++-+- ⎪ ⎪-+-++--⎝⎝⎭A A A A A A E A E 1122112.224⎪⎪⎪⎭-⎛⎫⎪=- ⎪ ⎪--⎝⎭14.求一个正交相似变换矩阵,把下列对称矩阵化为对角矩阵.(1)220212020-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ; (2)222254245-⎛⎫⎪- ⎪ ⎪--⎝⎭A =. 解 (1)由(1)(4)(2)0λλλλ-=--+=A E ,得到A 的特征值为1232,1,4λλλ=-==,对于12λ=-,解齐次线性方程组(2)+=A E x 0得特征向量1122⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得111232⎛⎫⎪= ⎪ ⎪⎝⎭p .对于21λ=,解齐次线性方程组()-=A E x 0得特征向量2212⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得221231⎛⎫⎪=- ⎪ ⎪⎝⎭p .对于34λ=,解齐次线性方程组(4)-=A E x 0得特征向量3221⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得121231⎛⎫⎪=- ⎪ ⎪⎝⎭p .写出正交矩阵12212123221⎛⎫ ⎪=- ⎪ ⎪-⎝⎭P ,则1214--⎛⎫⎪= ⎪ ⎪⎝⎭P AP . (2)由2(1)(10)0λλλ-=--=A E ,得到A 的特征值为12310,1λλλ===.对于110λ=,解齐次线性方程组(10)-=A E x 0得特征向量1122⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得111232⎛⎫⎪= ⎪ ⎪-⎝⎭p .对于221λλ==时,解齐次线性方程组()-=A E x 0得特征向量23221,221-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.123,,ξξξ是正交向量组,将23,ξξ单位化得2322111,23321-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .取正交矩阵12212123221-⎛⎫ ⎪= ⎪ ⎪-⎝⎭P ,则有11011-⎛⎫⎪= ⎪ ⎪⎝⎭P AP .15.设三阶实对称矩阵A 的特征值为6,3,3,与特征值6对应的特征向量为T 1(1,1,1)=p ,求矩阵A . 解 设123,,p p p 分别是对应于特征值6,3,3的特征向量,则23,p p 应与1p 正交,即满足方程1230++=x x x ,解得23111,001--⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p ,于是123111(,,)110101--⎛⎫ ⎪== ⎪ ⎪⎝⎭P p p p ,1633-⎛⎫⎪= ⎪ ⎪⎝⎭P AP ,因此,1641131413114-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P P .16.设A ,B 为同阶方阵,(1)如果A ,B 相似,试证A ,B 的特征多项式相等;(2)举一个二阶方阵的例子说明(1)的逆命题不成立; (3)当A ,B 均为实对称矩阵时,试证(1)的逆命题成立. 解 (1)若A ,B 相似,则存在可逆矩阵P ,使1-=P AP B ,故()()11111.λλλλλλ------=-=-=-=-=-E B P EP P AP P E A PP E A P P E A P E A(2)令0100⎛⎫⎪⎝⎭A =,0000⎛⎫ ⎪⎝⎭B =,则2λλλ-=-=E A E B ,但A 与B 不相似.否则由1-=P AP B =0得A =0,矛盾.(3)A ,B 均为实对称矩阵时, A ,B 均相似于对角阵. 若A ,B 的特征多项式相等,则特征值相等,记为12,,,n λλλ ,有A 相似于1n λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,B 也相似于1n λλ⎛⎫⎪⎪ ⎪⎝⎭ ,存在可逆矩阵P ,Q 使得111n λλ--⎛⎫⎪= ⎪⎪⎝⎭P AP =Q BQ ,于是()()111---=PQ A PQ B ,由1-PQ 可逆知A ,B 相似. 17.设三阶实对称矩阵A 的秩为2,126λλ==是A 的二重特征值.若T 1(1,1,0)=α,T 2(2,1,1)=α,T 3(1,2,3)=--α, 都是A 的属于特征值6的特征向量.(1)求A 的另一特征值和对应的特征向量;(2)求矩阵A .解 (1)因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个.由题设知T 1(1,1,0)=α,T 2(2,1,1)=α为A 的属于特征值6的线性无关特征向量.又A 的秩为2,于是||0=A ,所以A 的另一特征值30λ=.设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T 10=αα,T 20=αα,即121230,20.x x x x x +=⎧⎨++=⎩解得基础解系为T (1,1,1)=-α,故A 的属于特征值30λ=全部特征向量为T (1,1,1)k k =-α,其中k 为任意不为零的常数.(2) 令矩阵12(,,)=P ααα,则1660-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1011612164221126111624233300110224111333-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪==-=- ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪- ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪- ⎪⎝⎭A P P .18.用矩阵表示下列二次型.(1)222(,,)2846f x y z x y z xy yz =+--+;(2)22221234123412131424(,,,)532468f x x x x x x x x x x x x x x x x =+-++-++.解 (1)120(,,)(,,)223038x f x y z x y z y z -⎛⎫⎛⎫⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭. (2)1212343451231304(,,,)20103401x x f x x x x x x -⎛⎫⎛⎫ ⎪⎪ ⎪⎪= ⎪ ⎪-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭. 19.用正交变换法将下列二次型化为标准型.(1)22212312313(,,)2628f x x x x x x x x =+++; (2)22212312323(,,)2334f x x x x x x x x =+++;(3)2222123412341214(,,,)22f x x x x x x x x x x x x =++++-233422x x x x -+.解 (1)二次型的矩阵为204060402⎛⎫⎪= ⎪ ⎪⎝⎭A ,由0λ-=A E 求得A 的特征值为1232,6λλλ=-==.对于12λ=-,解(2)+=A E x 0得特征向量1101⎛⎫⎪= ⎪ ⎪-⎝⎭p .对于236λλ==,解(6)-=A E x 0得特征向量23011,001⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .123,,p p p 是正交的,单位化后并写成正交矩阵10100101⎛⎫⎪=⎪⎪-⎭P . 令=x Py ,这一正交变换把原二次型化为标准形222123266f y y y =-++.(2)二次型的矩阵为200032023⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,由(2)(1)(5)0λλλλ-=---=A E 求得A 的特征值为1231,2,5λλλ===.对于11λ=,解方程组()-=A E x 0得特征向量1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得1011⎛⎫⎪=-⎪⎪⎭p . 对于22λ=,解方程组(2)-=A E x 0得特征向量2100⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得2100⎛⎫⎪= ⎪ ⎪⎝⎭p .对于35λ=,解方程组(5)-=A E x 0得特征向量3011⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得3011⎛⎫⎪=⎪⎪⎭p .于是正交矩阵123010(,,)00⎛⎫ ⎪ ⎪== ⎝P p p p ,在正交变换=x Py 下,22212325f y y y =++. (3)二次型的矩阵为1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A . 由2(1)(1)(3)0λλλλ-=+--=A E 得A 的特征值12341,1,3λλλλ=-===.对于11λ=-,解方程组()+=A E x 0得特征向量11111⎛⎫ ⎪- ⎪= ⎪- ⎪ ⎪⎝⎭ξ,单位化得1111121⎛⎫⎪- ⎪= ⎪- ⎪ ⎪⎝⎭p .对于231λλ==,解方程组()-=A E x 0得A 的特征向量231001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,23,ξξ是正交的,只需单位化得231001,1001⎛⎫⎛⎫ ⎪ ⎪⎪⎪==⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭p p . 对于43λ=,解方程组(3)-=A E x 0得特征向量41111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭ξ,单位化得4111121-⎛⎫⎪- ⎪= ⎪ ⎪ ⎪⎝⎭p .写出正交矩阵11022110221102211022⎛⎫-⎪ ⎪ --= ⎪- ⎪ ⎪ ⎝P , 在正交变换=x Py 下,222212343f y y y y =-+++. 20.用配方法化下列二次型为标准形,并写出变换矩阵.222123123121323(,,)2224f x x x x x x x x x x x x =+++++.解222222123123233123(,,)()(),f x x x x x x x x x y y y =++++-=+-其中,112322333,,,y x x x y x x y x =++⎧⎪=+⎨⎪=⎩ 即 11222333,,,x y y x y y x y =-⎧⎪=-⎨⎪=⎩ 故所用的变换矩阵为110011001-⎛⎫⎪- ⎪ ⎪⎝⎭. 21.判定下列二次型的正定性.(1)2221231231223(,,)56444f x x x x x x x x x x =++--;(2)222123123121323(,,)10282428f x x x x x x x x x x x x =++++-.解 (1) 二次型的矩阵为520262024-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A , 因为 525250,260,26284026024-->=>--=>--,所以f 正定.(2) 二次型的矩阵为10412421412141⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,因为 10412104100,0,421404212141>>-<-,所以f 非正定,也非负定.22.确定t 的取值范围,使得下列的二次型为正定.(1)222123123121323(,,)5422f x x x x x tx x x x x x x =+++--; (2)222123123121323(,,)5224f x x x tx x x tx x x x x x =++--+.解 (1)二次型的矩阵为52121111t -⎛⎫⎪=- ⎪ ⎪--⎝⎭A .要使f 正定,就要求A 的顺序主子式都大于零,即 50>,521021=>,5212112011t t--=->--, 得2t >.即当2t >时,f 是正定的.(2)二次型的矩阵为112125t t t--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .要使f 正定,就要求A 的顺序主子式都大于零,即 0t >,(1)01t tt t t -=->-,21125510125t t tt t ---=-+->-,t <<t <<时,f 是正定的. 23.设A 是可逆实矩阵,证明T A A 是正定矩阵.证明 由T T T ()=A A A A 知,T A A 是对称矩阵.对任意的≠x 0,有≠Ax 0,所以()()()2TT T 0==>x A A x Ax Ax Ax ,从而T A A 是正定矩阵.24.设A 是三阶实对称矩阵,已知A 的秩()2R =A ,且满足条件22+A A =0, (1)求A 的全部特征值;(2)当k 为何值时,矩阵k A+E 为正定矩阵,其中E 为三阶单位矩阵.解 (1)设λ为A 的一个特征值,对应的特征向量为α,则()λ=≠A 0ααα,22λ=A αα,于是()()2222λλ+=+AA αα.由条件22+A A =0得()22λλ+=0α.又≠0α,所以220λλ+=,即2λ=-或0λ=.因为实对称矩阵A 必可对角化,又()2R =A ,所以A 与对角矩阵220-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似.因此,矩阵A 的全部特征值为1232,0.λλλ==-=(2)矩阵k A+E 仍为实对称矩阵,由(1)知k A +E 的全部特征值为2,2,.k k k -+-+于是,当2k >时,k A+E 的全部特征值大于零,从而矩阵k A+E 为正定矩阵.B 组1.已知向量T (1,,1)k =a 是矩阵211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆矩阵1-A 的特征向量,求常数k 的值.解 设1-A 的特征向量T (1,,1)k =a 对应的特征值为λ,则有1λ-=A a a ,λ=a Aa ,即1211112111121k k λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 解得2k =-或1.2.若矩阵22082006a ⎛⎫⎪= ⎪ ⎪⎝⎭A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使1.-=P AP Λ解 矩阵A 的特征多项式为2222082(6)(2)16(6)(2)06a λλλλλλλλ--⎡⎤-=---=---=-+⎣⎦-E A , 故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故621==λλ应有两个线性无关的特征向量,即3(6)2R --=E A ,于是有(6)1R -=E A .由42021068400000000a a --⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭E A知0a =.因此,对应于621==λλ的两个线性无关的特征向量可取为1001⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ, 2120⎛⎫⎪= ⎪ ⎪⎝⎭ξ.当23-=λ时,4202102840001008000--⎛⎫⎛⎫ ⎪⎪--=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭E A ,解方程组12320,0,x x x +=⎧⎨=⎩得对应于23-=λ的特征向量3120⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令011022100⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,则P 可逆,并有1-=P AP Λ.3.设矩阵1322010232,101,223001-*⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A PB P A P ,求2+B E 的特征值和特征向量.解 计算出1011100001--⎛⎫ ⎪= ⎪ ⎪⎝⎭P , 522252225*--⎛⎫⎪=-- ⎪ ⎪--⎝⎭A1700254223-*⎛⎫ ⎪==-- ⎪ ⎪--⎝⎭B P A P , 9002274225⎛⎫ ⎪+=-- ⎪ ⎪--⎝⎭B E .由22(3)(9)0λλλ+-=--=B E E 得2+B E 的特征值为1239,3λλλ===.对于129λλ==,由()λ-=A E x 0求得对应的线性无关特征向量为12121,001--⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .因此,对应于129λλ==的全部特征向量为1122k k +p p ,12,k k 不同时为零.对于33λ=,由()λ-=A E x 0求得特征向量为3011⎛⎫⎪= ⎪ ⎪⎝⎭p .因此,对应于33λ=的全部特征向量为33k p ,3k 不为零.4.设,A B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求可逆矩阵P ,使1-=P AP B .解 (1)由于,A B 相似,所以,A B 有相同的特征值,即1232,b λλλ===.由于2是A 的二重特征值,所以2是2(2)(3)3(1)0a a λλλλ⎡⎤-=--++-=⎣⎦A E 的二重根,解得5a =.由22(2)(812)(2)(6)λλλλλλ-=--+=--A E 得到36b λ==.(2)对于122λλ==,解方程组(2)-=A E x 0得基础解系12111,001⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .对于36λ=,解方程组(6)-=A E x 0得基础解系3123⎛⎫⎪=- ⎪ ⎪⎝⎭p .令123111(,,)102013⎛⎫ ⎪==-- ⎪ ⎪⎝⎭P p p p ,有1-=P AP B .5.已知111⎛⎫ ⎪= ⎪ ⎪-⎝⎭p 是矩阵2125312a b -⎛⎫⎪= ⎪ ⎪--⎝⎭A 的一个特征向量, (1)求,a b 的值和特征向量p 对应的特征值; (2)问A 是否可对角化?说明理由.解 (1)由2121()531121a bλλλλ--⎛⎫⎛⎫⎪⎪-=-= ⎪⎪ ⎪⎪----⎝⎭⎝⎭A E p 0得2120,530,120.a b λλλ---=⎧⎪+--=⎨⎪-+++=⎩解得3,0,1a b λ=-==-.(2)因为212533102-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A ,所以3(1)λλ-=-+A E ,1λ=-是三重根.但()2R +=A E ,从而1λ=-对应的线性无关的特征向量只有一个,故A 不能对角化.6.设矩阵21112111a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 可逆,向量11b ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求a ,b 和λ的值.解 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且*λ=A αα.两边同时左乘矩阵A ,得*λ=AA A αα,λ=AA αα,即211111211111b b a λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A . 由此,得方程组3,22,1.b b b a b λλλ⎧+=⎪⎪⎪+=⎨⎪⎪++=⎪⎩AA A 由第一、二个方程解得1=b ,或2-=b .由第一、三个方程解得2a =.由于 21112132411a a==-=A ,故特征向量α所对应的特征值433b bλ==++A .所以,当1=b 时1=λ; 当2-=b 时4λ=.7.设矩阵12314315a -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解 A 的特征多项式为21232(2)01431431515110(2)143(2)(8183).15a a a a λλλλλλλλλλλλλλ------=-=--------=--=--++---E A当2=λ是特征方程的二重根时,则有,03181622=++-a 解得2a =-.当2a =-时,A 的特征值为2,2,6, 矩阵2-E A 123123123-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得23a =-.当32-=a 时,A 的特征值为2,4,4,矩阵32341032113⎛⎫- ⎪ ⎪⎪- ⎪ ⎪⎪-- ⎪⎝⎭E A =的秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.8.设n 阶矩阵111b b b b b b ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭A ,(1)求A 的特征值和特征向量;(2)求可逆矩阵P , 使得1-P AP 为对角矩阵. 解 (1)① 当0≠b 时,[][]111||1(1)(1)1n b b b b n b b b b λλλλλλ--------==-------- E A .得A 的特征值为11(1)n b λ=+-,21n b λλ===- . 对于11(1)n b λ=+-,1(1)(1)11(1)1(1)1(1)11(1)11111111111111111111111100000000n bb b n b n b b n b b n b n n n n n n n λ------⎛⎫⎛⎫ ⎪ ⎪------ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭-----⎛⎫⎛ ⎪ -------- ⎪ ⎪ →→ ⎪ -------- ⎪ ⎪⎝⎭⎝E A 11111001000101.00001100000000n n n n n ⎫⎪⎪⎪⎪⎪⎪⎭--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪→→⎪ ⎪-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可解得T1(1,1,1,,1)= ξ,所以A 的属于1λ的全部特征向量为T1(1,1,1,,1)k k = ξ,其中k 为任意不为零的常数.对于21b λ=-,有2111000000b b b b b b b b b λ---⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪-=→ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭E A .可解得T 2(1,1,0,,0)=- ξ,T 3(1,0,1,,0)=- ξ, ,T (1,0,0,,1)n =- ξ.故A 的属于2λ的全部特征向量为2233n n k k k +++ ξξξ,其中n k k k ,,,32 是不全为零的常数.②当0=b 时,100010||(1)001n λλλλλ---==-- E A .因此特征值为11n λλ=== ,任意非零列向量均为特征向量.(2)①当0≠b 时,A 有n 个线性无关的特征向量,令12(,,,)n = P ξξξ,则11(1)11n b b b -+-⎛⎫ ⎪-⎪= ⎪ ⎪ ⎪-⎝⎭P AP . ②当0=b 时,=A E ,对任意可逆矩阵P , 均有1-=P AP E .9.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123=++A αααα,2232=+A ααα,32323=+A ααα.(1)求矩阵B , 使得()()123123,,,,=A B αααααα;(2)求矩阵A 的特征值;(3)求可逆矩阵P , 使得1-P AP 为对角矩阵.解 (1)由123123100(,,)(,,)122113⎛⎫ ⎪= ⎪ ⎪⎝⎭A αααααα可知,100122113⎛⎫ ⎪= ⎪ ⎪⎝⎭B .(2)因为123,,ααα是线性无关的三维列向量,可知矩阵()123,,=C ααα可逆,所以1-=C AC B ,即矩阵A 与B 相似,由此可得矩阵A 与B 有相同的特征值.由2100122(1)(4)0113λλλλλλ--=---=--=---E B , 得矩阵B 的特征值,也即矩阵A 的特征值1231,4λλλ===.(3)对应于121==λλ,解齐次线性方程组()-E B x =0,得基础解系T 1(1,1,0)=-ξ,T 2(2,0,1)=-ξ.对应于43=λ,解齐次线性方程组()4-E B x =0,得基础解系()T30,1,1=ξ.令矩阵()123120,,101011--⎛⎫ ⎪== ⎪ ⎪⎝⎭Q ξξξ,则 1100010004-⎛⎫ ⎪= ⎪ ⎪⎝⎭Q BQ .因 ()()1111----==Q BQ Q C ACQ CQ A CQ ,记矩阵()()123121323120,,101,2,011--⎛⎫⎪===-+-++ ⎪ ⎪⎝⎭P CQ ααααααααα,P 即为所求的可逆矩阵.10.设实对称矩阵111111aa a ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,求可逆矩阵P ,使1-P AP 为对角矩阵,并计算-A E .解 由2(1)(2)0a a λλλ-=----+=A E ,得到A 的特征值1231,2a a λλλ==+=-.对于121a λλ==+,由()λ-=A E x 0,求得两个线性无关的特征向量12111,001⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .对于32a λ=-,由()λ-=A E x 0,求得对应的特征向量3111-⎛⎫⎪= ⎪ ⎪⎝⎭p .令123111(,,)101011-⎛⎫ ⎪== ⎪ ⎪⎝⎭P p p p ,则1112a a a -+⎛⎫ ⎪==+ ⎪ ⎪-⎝⎭P AP Λ.并且,1112(3)a a ----=-=-=-=-A E P P PP P E P E ΛΛΛ.11.设11111,1112a a a ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,线性方程组=Ax β有解但不惟一,(1)求a 的值;(2)求正交矩阵Q ,使得T Q AQ 是对角矩阵.解 (1)因为线性方程组=Ax β有解但不惟一,所以21111(1)(2)011aa a a a ==--+=A .当1a =时,()()R R ≠A A β,方程组无解.当2a =-时,()()R R =A A β,方程组有解但不惟一.因此,2a =-.(2)可计算出112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,于是由(3)(3)0λλλλ-=-+=A E ,得到13λ=,23λ=-,30λ=.由()λ-=A E x 0求得对应的特征向量分别为1231110,2,1111⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭p p p .单位化后(已是正交的)得到正交矩阵0⎛ =⎝Q . 于是,T330⎛⎫ ⎪=- ⎪ ⎪⎝⎭Q AQ . 12.已知二次型222123232332(0)f x x x ax x a =+++>可以通过正交变换化成标准形22212325f y y y =++,求参数a 及所用的正交变换. 解 二次型的矩阵为2000303a a ⎛⎫⎪= ⎪ ⎪⎝⎭A .由题意知A 的特征值为1231,2,5λλλ===.将11λ=代入22(2)(69)0a λλλλ-=--+-=A E ,0a >,得2a =.于是200032023⎛⎫⎪= ⎪ ⎪⎝⎭A .对于11λ=,解方程组()-=A E x 0得特征向量1011⎛⎫⎪= ⎪ ⎪-⎝⎭ξ,单位化得1011⎛⎫⎪=⎪⎪-⎭p . 对于22λ=,解方程组(2)-=A E x 0得特征向量2100⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,取2100⎛⎫⎪= ⎪ ⎪⎝⎭p .对于35λ=,解方程组(5)-=A E x 0得特征向量3011⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得3011⎛⎫⎪=⎪⎪⎭p .故所用的正交变换矩阵为01000⎛⎫⎪ ⎪ =⎝P . 13.判断二次型12111n n i i i i i f x x x-+===+∑∑是否正定.解 二次型的矩阵为110000211102210100021000102110001221000012⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A . 计算得到A 的任意k 阶顺序主子式1(1)02kk k ⎛⎫=+> ⎪⎝⎭A ,因此,二次型是正定的. 14.设二次型22212313222(0)f ax x x bx x b =+-+>,其中二次型的矩阵A 的特征值之和为1,特征值之积为12-.(1)求,a b 的值;(2)利用正交变换把二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.解 (1)二次型对应的矩阵为002002a b b ⎛⎫⎪= ⎪ ⎪-⎝⎭A .设A 的特征值为123,,λλλ,则 123221a λλλ++=+-=,21230020421202a ba b b λλλ==--=--. 解得1,2a b ==.(2)由102020202⎛⎫⎪= ⎪ ⎪-⎝⎭A ,得2(2)(3)λλλ-=--+A E ,于是A 的特征值为1232,3λλλ===-. 对于122λλ==,由(2)-=A E x 0,求得两个线性无关的特征向量12200,110⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .对于33λ=-,由(3)+=A E x 0,求得特征向量3102⎛⎫ ⎪= ⎪ ⎪-⎝⎭p .由于123,,p p p 已是正交,单位化后得到正交矩阵0100⎫⎪⎪=⎪ ⎪Q .于是有T223⎛⎫ ⎪= ⎪ ⎪-⎝⎭Q AQ .在正交变换=x Qy 下,有 222123223f y y y =+-. 15.证明二次型T f =x Ax 在1=x 时的最大(小)值为矩阵A 的最大(小)特征值. 证明 设存在正交变换=x Py ,将T f =x Ax 化为标准形2221122n n f y y y λλλ=+++ .不妨设1λ是A 的特征值中的最大值,则2222221122112()n n n f y y y y y y λλλλ=+++≤+++ .由于正交变换不改变向量的长度,而1=x ,所以1=y ,故22222211221121()n n n f y y y y y y λλλλλ=+++≤+++= .并且,f 可以达到上限1λ,只要取121,0n y y y ==== 即可.故二次型T f =x Ax 在1=x 时的最大值为矩阵A 的最大特征值.最小值的情形同理可证.16.设U 为可逆矩阵,T=A U U ,证明Tf =x Ax 是正定二次型.证明 设≠x 0,由U 为可逆矩阵知≠Ux 0,于是2T T T T ()0f ====>x Ax x U Ux Ux Ux Ux,故Tf =x Ax 是正定二次型.17.设对称矩阵A 为正定矩阵,证明存在可逆矩阵U ,使得T=A U U .证明 若A 为正定阵,则存在正交矩阵P ,使得121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ P AP Λ, 其中,每个0i λ>.而T⎫⎪ ⎪⎪=⎪⎪⎝QQ Λ, 1T T T ()()-===A P P PQQ P PQ PQ Λ.令()T=U PQ ,则T =A U U .而,P Q 均可逆,所以U 可逆.18.设,A B 都是n 阶正定矩阵,证明+A B 也是n 阶正定矩阵. 证明 由于T T ,==A A B B ,所以T T T ()+=+=+A B A B A B ,即+A B 是对称矩阵.又,A B 都是n 阶正定矩阵,即对任意的非零向量x ,有T T 0,0>>x Ax x Bx ,因此T T T ()0+=+>x A B x x Ax x Bx ,故+A B 是n 阶正定矩阵.19.设12,p p 分别是矩阵A 的属于特征值12,λλ的特征向量,且12λλ≠,试证12+p p 不可能是A 的特征向量.证明 由条件有111222,λλ==Ap p Ap p .设12+p p 是A 的某个特征值0λ的特征向量,则12012()()λ+=+A p p p p .另一方面,12121122()λλ+=+=+A p p Ap Ap p p .因此,101202()()λλλλ-+-=p p 0.由于12,p p 线性无关,故102λλλ==,矛盾.故12+p p 不可能是A 的特征向量.20. 已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换=x Qy ,把),,(321x x x f 化成标准形; (3)求方程123(,,)0f x x x =的解. 解 (1)二次型对应矩阵为110110002a a a a -+⎛⎫ ⎪=+- ⎪ ⎪⎝⎭A .由二次型的秩为2知,1101100002a a a a-+=+-=A ,得0a =. (2)这里110110002⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,可求出其特征值为0,2321===λλλ.由(2)-=E A x 0,求得特征向量12101,001⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα.由(0)-=E A x 0,求得特征向量3110⎛⎫⎪=- ⎪ ⎪⎝⎭α.由于12,αα已经正交,直接将12,αα,3α单位化,得1231011,0,1010⎛⎫⎛⎫⎛⎫⎪ ⎪⎪===-⎪ ⎪⎪⎪ ⎪⎪⎭⎝⎭⎭ηηη. 令()123,,=Q ηηη,即为所求的正交变换矩阵.由=x Qy ,可化原二次型为标准形2212312(,,)22f x x x y y =+. (3)由),,(321x x x f ==+222122y y 0,得1230,0,y y y k ===(k 为任意常数).从而所求解为 ()12330,,00c k c k ⎛⎫⎛⎫⎪ ⎪====- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x Qy ηηηη,其中c 为任意常数.21.设A 是n 阶实对称矩阵,且2=A A ,证明存在正交矩阵P 使得1r-⎛⎫=⎪⎝⎭E P AP 0.证明 根据定理,对于n 阶实对称矩阵,存在正交矩阵1P 使得12111n λλλ-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P AP ,其中12,,,n λλλ 是A 的n 个特征值.由于2=A A ,故A 的特征值满足2λλ=,即0,1λ=.设()R r =A ,则12,,,n λλλ 这n 个数中有r 个1,n r -个0.调整12,,,n λλλ 的顺序使得前r 个数为1,后n r -个为0,相应地调整1P 的列,得到P ,P 仍为正交矩阵,且1r-⎛⎫= ⎪⎝⎭E P AP 0. 22.设A 是n 阶实对称矩阵,且2=A E ,证明存在正交矩阵P 使得1rn r --⎛⎫= ⎪-⎝⎭E P AP E . 证明 根据定理,对于n 阶实对称矩阵,存在正交矩阵1P 使得12111n λλλ-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P AP ,其中12,,,n λλλ 是A 的n 个特征值.由于2=A E ,故A 的特征值满足21λ=,即1,1λ=-.设()R r =A ,则12,,,n λλλ 这n 个数中有r 个1,n r -个1-.调整12,,,n λλλ 的顺序使得前r 个数为1,后n r -个为1-,相应地,调整1P 的列得到P ,P 仍为正交矩阵,且1rn r --⎛⎫= ⎪-⎝⎭E P AP E . 23.设A 是一个n 阶实对称矩阵,若对于任一n 维列向量都有T 0=x Ax ,则=A 0.证明 设T f =x Ax ,取T(0,,0,1,0,,0)i = x (i x 的第i 个坐标为1,其余都是0),则有 T 0i i ii f a ===x Ax , 1,2,,i n = .再取(,)T (0,,0,1,0,,0,1,0,,0)i j = x ((,)i j x 的第,i j 个坐标为1,其余都是0,i j ≠),则有 (,)T (,)0()2i j i j ii jj ij f a a a ===++x Ax ,所以0ij a =.综合可得=A 0.24. 设T ⎛⎫= ⎪⎝⎭AC D C B 为正定矩阵,其中A ,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (1)计算T P DP ,其中1m n -⎛⎫-= ⎪⎝⎭E A C P O E ; (2)利用(1)的结果判断矩阵T 1--B C A C 是否为正定矩阵,并证明你的结论.解 (1)由T 1m T n -⎛⎫= ⎪-⎝⎭E O P C A E ,有 1T1T T 1m m T n n ---⎛⎫-⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭E O A C A O E A C P DP =C A E C B O B C A C O E . (2)矩阵T 1--B C A C 是正定矩阵.由(1)的结果可知,矩阵D 合同于矩阵T 1-⎛⎫ ⎪-⎝⎭A O M =OBC A C . 由D 为正定矩阵可知,矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故T 1--B C A C 为对称矩阵.对T (0,0,,0)= x 及任意的T 12(,,,)n y y y =≠ y 0,有()T TT T 1T 1,()0--⎛⎫⎛⎫=-> ⎪⎪-⎝⎭⎝⎭A 0x x y y B C A C y 0B C A C y ,故T 1--B C A C 为正定矩阵.。

线性代数第六章习题册答案

线性代数第六章习题册答案

第六章 二次型1. 用矩阵记号表示下列二次型:(1);4427),,(222yz xz xy z y x z y x f ----+=(2)22312121321542),,(x x x x x x x x x f -++=; (3)),,,(4321x x x x f .46242423241312124232221x x x x x x x x x x x x x x -+-+-+++=解:(1)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=z y x z yxz y x f 722211211),,( (2) ()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=321321321002052/222/21),,(x x x x x x x x x f(3) ()⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=4321432143211001231223111211),,,(x x x x x x x x x x x x f 2. 求一个正交变换将下列二次型化成标准形:),,(321x x x f 322322214332x x x x x +++=.解:0)5)(1)(2(32023002=---=---=-λλλλλλλE A 得11=λ,22=λ,53=λ当11=λ时,特征向量为T)(11-01=ξ 当22=λ时,特征向量为T )(0012=ξ 当53=λ时,特征向量为T)(1103=ξ取⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2102121021-010P , 则利用正交变换Py x =,二次型可化为标准型 23222152y y y f ++= 3. 求一个正交变换将下列二次型化成标准形:23322231212132128244),,(x x x x x x x x x x x x f -+-+-=. 解:0)7()2(2-4242-22212=+--=-----=-λλλλλλE A 得=1λ22=λ,73-=λ当=1λ22=λ,时,特征向量为T )(1021=ξ,T )(012-2=ξ,通过施密特正交化得到T )(10251e 1=,Te )(452-5312= 当73-=λ时,特征向量为T)(11-213-=ξ,单位化得T )(22131e 3--= 取⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32534513253503153252P , 则利用正交变换Py x =,二次型可化为标准型 232221722y y y f -+= 4. 求一个正交变换将下列二次型化成标准形:),,,(4321x x x x f 43324121242322212222x x x x x x x x x x x x +--++++=.解:0)3)(1()1(11011110011110112=-+-=--------=-λλλλλλλλE A得121==λλ,13-=λ,34=λ当121==λλ时,特征向量为T )(01011=ξ,T)(10102=ξ 当13-=λ时,特征向量为T )(11113--=ξ 当34=λ时,特征向量为T )(11114--=ξ 取⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=21211021210121211021211P ,则利用正交变换Py x =,二次型可化为标准型 24232221y 3+-+=y y y f5. 二次型)0(a 2332),,(32232221321>+++=a x x x x x x x x f 通过正交变换可化为标准形23222132152),,(y y y y y y f ++=,求参数a 及所用的正交变换矩阵. 解:二次型矩阵为⎪⎪⎪⎭⎫⎝⎛=3030002a a A特征值为11=λ,22=λ,53=λ,得10=A ,故10)9(22=-=a A ,又0>a ,得2=a . 当11=λ时,特征向量为T)(11-01=ξ 当22=λ时,特征向量为T )(0012=ξ 当53=λ时,特征向量为T)(1103=ξ取⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2102121021-010P ,用正交变换Py x =,二次型标准型为 23222152y y y f ++=6. 用配方法化),,(321x x x f 32312321222x x x x x x +++=为规范形,写出所用变换的矩阵. 解:),,(321x x x f 2322223132312321))222x x x x x x x x x x x ++-+=+++=((由⎪⎩⎪⎨⎧=+==+33222131y x x y x y x x 得⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,取⎪⎪⎪⎭⎫⎝⎛--=110010111C ,C 可逆, 由变换Cy x =得二次型的规范型为),,(321x x x f 232221y y y +-=7. 判别下列二次型的正定性:(1)),,(321x x x f 312123222122462x x x x x x x ++---=;(2)424131212423222162421993x x x x x x x x x x x x f -++-+++=4312x x -.解:(1)负定 (2)正定8. 二次型323121242322214321222)(),,,(x x x x x x x x x x t x x x x f -+++++=,t 取何值时是正定二次型?解: 二次型矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000011011011t t t ,二次型正定即要求所有顺序主子式 0)2()1(100011011011,0)2()1(111111,0111,0222>-+=-->-+=-->-=>=t t tt t t t tt t t t t t t 可得2t >时此二次型正定.9. 已知A 为n 阶方阵,E A -是正定矩阵,证明A 为正定矩阵.证明:因为E A -是正定矩阵,所以()E A E A E A T T-=-=-,所以 A A T=,即A 为对称矩阵.设λ为A 的任意一个特征值,则1-λ是E A -的一个特征值,因为E A -为正定矩阵,所以01>-λ,从而0>λ,因此A 为正定矩阵.10. 设C 为可逆矩阵,A C C T=,证明x x A T=f 为正定二次型..证明:)()(TCx Cx Cx C x f TTT===x x A令y x =C ,因为C 可逆,对任意0≠x ,有0≠y , 从而0)()(>==y y Cx Cx f TT,为正定二次型。

线性代数 第六章 二次型 例题

线性代数 第六章 二次型 例题

2
2
2
0 3. 设 A= 1 0 0
1 0 0 0 0 0 已知 A 一个特征值为 3, (1)求 y,(2)求可逆矩阵 P 及对角阵 Λ, 0 ������ 1 0 1 2
������
使(AP) AP=Λ。
2 1 3 ������ 4. 设 A= −1 1 0 求可逆矩阵 P 及对角阵 Λ,使(AP) AP=Λ。 −1 0 − 1
线性代数第六章二次型例题
1. 用配方法将以下二次型化为标准型,并写出所用可逆线性变换 (1) (2) (3) (4) (5) f(������1 , ������2 , ������3 )=������1 2 +2������2 2 +2������1 ������2 -2������1 ������3 f(������1 , ������2 , ������3 )=������1 2 +2������2 2 +4������3 2 + 2������1 ������2 +4������2 ������3 f(������1 , ������2 , ������3 )=2������1 2 +5������2 2 +4������3 2 + 4������1 ������2 -4������1 ������3 -8������2 ������3 f(������1 , ������2 , ������3 )=������1 ������2 -4������2 ������3 f(������1 , ������2 , ������3 )=������1 2 +4������2 2 +4������3 2 − 4������1 ������2 + 4������1 ������3 -4������2 ������3

线性代数第六章二次型试题及答案

线性代数第六章二次型试题及答案

第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii iij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。

实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。

规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只1,-1,0,称为二次型的规范型。

二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。

线性代数第 六章二次型试题及答案

线性代数第    六章二次型试题及答案
相似的矩阵一定有相等的特征值,但是特征值相等的矩阵不 一定等价。
特征值相同的实对称矩阵A和B一定相似,因为实对称矩阵 都能相 似对角化,特征值相同的实对称矩阵相似于同一个对角阵,根 据相似的传递性,A和B一定相似。
特征值相同的普通矩阵A和B可能相似,也可能不相似。 若A和B都能相似对角化,一定相似。 若一个能对角化,一个不能对角化,一定不相似。 若都不能对角化,可能相似,也可能相似。 例题:已知矩阵A和B,判断能否相似,
Abj=0, j=1,2,…,s b1,b2,…,bs均为Ax=0的解(r(A)+r(B)≤n) 若bj≠0且A为n阶方阵时,bj为对应特征值λj=0的特征向量 A的列向量组线性相关,B的行向量组线性相关。
AB=CA(b1, b2,…, br)=(C1, C2,…, Cr)
Abj=Cj,j=1,2,…,r bj为Ax=Cj的解. C1, C2,…, Cr可由A的列向量组α1, α2,…, αs线性表示.
因为(2,1,2)T是A的特征向量,所以,

二、化二次型为标准型
1.用配方法将下列二次型化为标准形,并判断正、负惯性指数的个数, 然后写出其规范形。
(1)Leabharlann 解:先集中含有x1的项,凑成一个完全平方,再集中含有x2的项,凑 成完全平方
=
设,, 标准型:,正惯性指数:,负惯性指数: 规范性:
(2) f(x1,x2,x3)= x12+2x22+2x1x2-2x1x3+2x2x3. 解:f(x1,x2,x3)= (x12+2x1x2-2x1x3)+2x22+2x2x3= 设 ,,标准型: 正惯性指数:,负惯性指数:,规范性: (3) f(x1,x2,x3)= -2x1x2+2x1x3+2x2x3. 解:像这种不含平方项的二次型,应先做线性变换: ,,, 设: , 标准型:,规范性: 2.设二次型f(x1,x2,x3)=X TAX=ax12+2x22-2x32+2bx1x3,(b>0),其中A的特征 值之和 为1, 特征值之积为-12.(1) 求a,b.(2) 用正交变换化f(x1,x2,x3)为标准型。 解:二次型的矩阵:,因为, (2)

线性代数第六章二次型试题及答案-二次型f

线性代数第六章二次型试题及答案-二次型f

第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii i ij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。

实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。

规二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只 1,-1,0,称为二次型的规型。

二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …12 …n 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。

线性代数二次型习题及答案

线性代数二次型习题及答案

第六章 二次型1.设方阵1A 与1B 合同,2A 与2B 合同,证明12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T1111=B C A C ,因为2A 与2B 合同,所以存在可逆矩2C ,使T2222=B C A C .令 12⎛⎫=⎪⎝⎭C C C ,则C 可逆,于是有 TT 1111111T2222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭B C A C C AC B C A C C A C 1T 2⎛⎫= ⎪⎝⎭A C C A 即 12A ⎛⎫ ⎪⎝⎭A 与12⎛⎫ ⎪⎝⎭B B 合同.2.设A 对称,B 与A 合同,则B 对称证:由A 对称,故T=A A .因B 与A 合同,所以存在可逆矩阵C ,使T=B C AC ,于是T T T T T T ()====B C AC C A C C AC B即B 为对称矩阵.3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使BP P AP P T T 与均为对角阵.证:因为A 是正定矩阵,所以存在可逆矩阵M ,使E AM M =T记T1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使T 11diag(,,)n D μμ==Q B QT 11,,.n μμ=B M BM 其中为的特征值令P=MQ ,则有D BP PE AP P ==T T ,,A B 同时合同对角阵.4.设二次型2111()mi in n i f ax a x ==++∑,令()ij m n a ⨯=A ,则二次型f 的秩等于()r A .证:方法一 将二次型f 写成如下形式:2111()mi ij j in n i f a x a x a x ==++++∑设A i = 1(,,,,)i ij in a a a ),,1(m i =则 1111111jn i ij in i m mj mj m a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A于是 1T T T TT 11(,,,,)mi m i i i i m =⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭∑A A A A A A A A A A故 2111()mi ij j in n i f a x a x a x ==++++∑=1211[(,,)]i m j n ij i in a x x x a a =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑=11111[(,,)(,,)]i m j n ij i ij in j i in n a x x x x a a a a x a x =⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑=1T11(,,)()mj n i i j i n x x x x x x =⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭∑A A=X T(A TA )X因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) .方法二 设11,1,,i i in n y a x a x i n =++=. 记T 1(,,)m y y =Y ,于是=Y AX ,其中T 1(,,)n x x =X ,则222T T T 11()m i m i f y y y ===++==∑Y Y X A A X .因为A A T为对称矩阵,所以A A T就是所求的二次型f 的表示矩阵. 显然r (A A T )=r (A ),故二次型f 的秩为r (A ) . 5.设A 为实对称可逆阵,Tf x x =A 为实二次型,则A 为正交阵⇔可用正交变换将f 化成规范形.证:⇒设i λ是A 的任意的特征值,因为A 是实对称可逆矩阵,所以i λ是实数,且0,1,,i i n λ≠=.因为A 是实对称矩阵,故存在正交矩阵P ,在正交变换=X PY 下,f 化为标准形,即T T T T T1()diag(,,,,)i n f λλλ====X AX Y P AP Y Y DY Y Y22211i i n n y y y λλλ=++++ (*)因为A 是正交矩阵,显然T1diag(,,,,)i n λλλ==D P AP 也是正交矩阵,由D 为对角实矩阵,故21i λ=即知i λ只能是1+或1-,这表明(*)恰为规范形.⇐因为A 为实对称可逆矩阵,故二次型f 的秩为n . 设在正交变换=X QY 下二次型f 化成规范形,于是T T()f ==X AX Y Q AQ Y 222211r r n y y y y +=++---T =Y DY其中r 为f 的正惯性指数,diag(1,,1,1,,1)=--D .显然D 是正交矩阵,由T =D Q AQ ,故T=A QDQ ,且有T T ==A A AA E ,故A是正交矩阵.6.设A 为实对称阵,||0<A ,则存在非零列向量ξ,使T0<ξAξ. 证:方法一因为A 为实对称阵,所以可逆矩阵P ,使T 1diag(,,,,)i n λλλ==P AP D其中(1,,)i i n λ=是A 的特征值,由||0<A ,故至少存在一个特征值k λ,使0k λ<,取010⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ξP ,则有T T0(0,,1,,0)10⎛⎫⎪⎪⎪= ⎪⎪⎪⎝⎭ξAξP AP 1(0,,1,0,0)kn λλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭010⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭0k λ=< 方法二(反证法)若∀≠X 0,都有T0≥X AX ,由A 为实对称阵,则A 为半正定矩阵,故||0≥A 与||0<A 矛盾.7.设n 元实二次型AX X T =f ,证明f 在条件122221=+++n x x x 下的最大值恰为方阵A 的最大特征值.解:设f n 是λλλ,,,21 的特征值,则存在正交变换=X PY ,使2222211T T T )(n n y y y f λλλ+++=== Y AP P Y AX X设k λ是n λλλ,,,21 中最大者,当122221T =+++=n x x x X X 时,有122221T T T T =+++===n y y y Y Y PY P Y X X因此k n k n n y y y y y y f λλλλλ≤+++≤+++=)( 222212222211这说明在22221n x x x +++ =1的条件下f 的最大值不超过k λ.设 TT 10)0.,0,1,0,,0(),,,,( ==n k y y y Y 则 10T0=Y Yk n n k k y y y y f λλλλλ=+++++=22222211令00PY X =,则1T 00T0==Y Y X X并且k f λ===0T T 00T00)()(Y AP P Y AX X X这说明f 在0X 达到k λ,即f 在122221=+++n x x x 条件下的最大值恰为方阵A 的最大特征值.8.设A 正定,P 可逆,则T P AP 正定.证:因为A 正定,所以存在可逆矩阵Q ,使T=A Q Q , 于是 TTTT()==P AP P Q QP QP QP ,显然QP 为可逆矩阵,且T T T T ()()==P AP QP QP P AP ,即T P AP 是实对称阵,故T P AP 正定.9.设A 为实对称矩阵,则A 可逆的充分必要条件为存在实矩阵B ,使AB +A B T 正定. 证:先证必要性取1-=B A ,因为A 为实对称矩阵,则2E A A E A B AB =+=+-T 1T )(当然A B AB T+是正定矩阵. 再证充分性,用反证法.若A 不是可逆阵,则r (A )<n ,于是存在00,≠=X AX 使00因为A 是实对称矩阵,B 是实矩阵,于是有0 )()()(0T T00T 00T T 0=+=+AX B X BX AX X A B AB X这与AB T+AB B A 是正定矩阵矛盾.10.设A 为正定阵,则2*13-++A A A 仍为正定阵.证:因为A 是正定阵,故A 为实对称阵,且A 的特征值全大于零,易见2*1,,-A A A全是实对称矩阵,且它们的特征值全大于零,故2*1,,-A A A 全是正定矩阵,2*13-++A A A 为实对称阵. 对∀≠X 0,有T 2*1T 2T *T 1(3)0--++=++>X A A A X X A X X A X X A X即 2*13-++A A A 的正定矩阵.11.设A 正定,B 为半正定,则+A B 正定.证:显然,A B 为实对称阵,故+A B 为实对称阵. 对∀≠X 0,T0>X AX ,T 0≥X BX ,因T ()0+>X A B X ,故+A B 为正定矩阵.12.设n 阶实对称阵,A B 的特征值全大于0,A 的特征向量都是B 的特征向量,则AB 正定.证:设,A B 的特征值分别为,(1,,)i i i n λμ=.由题设知0,0,1,,i i i n λμ>>=.因为A 是实对称矩阵,所以存在正交矩阵1(,,,,)i n =P P P P ,使T 1diag(,,,,)i n λλλ=P AP即 ,i i i i λ=AP P P 为A 的特征向量,1,,i n =. 由已知条件i P 也是B 的特征向量,故1,,,i i ii i n μ==BP P因此 ()i i i i i i μλμ==ABP A P P ,这说明i i λμ是AB 的特征值,且0i i λμ>,1,,i n =.又因为 T 111diag(,,,,),i i n n λμλμλμ-==ABP P P P .故 11diag(,,,,)i i n n λμλμλμ=AB P P ,显然AB 为实对称阵,因此AB 为正定矩阵. 13.设n n ij a ⨯=)(A 为正定矩阵,n b b b ,,,21 为非零实数,记()ij i j n n a b b ⨯=B则方阵B 为正定矩阵.证:方法一 因为A 是正定矩阵,故A 为对称矩阵,即ji ij a a =,所以i j ji j i ij b b a b b a =,这说明B 是对称矩阵,显然211112*********222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭B =1111110000n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 对任给的n 维向量1(,,)T 0n x x =≠X ,因n b b b ,,,21 为非零实数,所以),,(11n n x b x b T 0≠,又因为A 是正定矩阵,因此有1111110000TT n n n nn n a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭X BX X X =),,(11n n x b x b 1111n n nn a a a a ⎛⎫⎪ ⎪⎝⎭11n n b x b x ⎛⎫ ⎪ ⎪⎝⎭0> 即B 是正定矩阵. 方法二 记211112121122121222221121n n n n n n n n nn n n a b a b b a b b a b b a b a b b a b b a b b a b b ⎛⎫ ⎪= ⎪⎪ ⎪⎝⎭B则因为A 是实对称矩阵,显然B 是实对称矩阵,B 的k 阶顺序主子阵k B 可由A 的阶顺序主子阵分别左,右相乘对角阵100n b b ⎛⎫⎪ ⎪⎝⎭而得到,即=k B 1111110000k k k kk k a a b b b a a b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 计算k B 的行列式,有012>=∏=k k A B ni i b故由正定矩阵的等价命题知结论正确.14.设A 为正定矩阵,B 为实反对称矩阵,则0>+B A .证:因为M 是n 阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M 的特征值及特征向量写成复数形式,进一步可以证明对于n 阶实矩阵M ,如果对任意非零列向量X ,均有0T >MX X可推出M 的特征值(或者其实部)大于零. 由于M 的行列式等于它的特征值之积,故必有0>M .因为A 是正定矩阵,B 是反对称矩阵,显然对任意的 非零向量X ,均有,0)(T >+X B A X而A +B 显然是实矩阵,故0>+B A .15.设A 是n 阶正定矩阵,B 为n ⨯m 矩阵,则r (B TAB )=r (B ).证:考虑线性方程组T00==BX B ABX 与,显然线性方程组0=BXT 0=B ABX 的解一定是的解.考虑线性方程组T0=B ABX ,若0X 是线性方程组T 0=B ABX 的任一解,因此有0T 0=B ABX .上式两端左乘有T0XT 00()()0=BX A BX因为A 是正定矩阵,因此必有00=BX ,故线性方程组0=BX 与 T0=B ABX 是同解方程组,所以必有r (B T AB )= r (B ).16.设A 为实对称阵,则存在实数k ,使||0k +>A E . 证:因为A 为实对称阵,则存在正交矩阵P ,使11diag(,,,,)i i λλλ-=P AP .其中i λ为A 的特征值,且为实数,1,,2i =. 于是11diag(,,,,)i n λλλ-=A P P11||||||i n kk kkλλλ-++=++A E PP 1()ni i k λ==+∏取1max{||1}i i nk λ≤≤=+,则1()0nii k λ=+>∏,故 ||0k +>A E .17.设A 为n 阶正定阵,则对任意实数0k >,均有||nk k +>A E . 证:因为A 为正定矩阵,故A 为实对称阵,且A 的特征值0,1,,i i n λ>=. 则存在正交矩阵P ,使1111,iin n λλλλλλ--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP A P P 于是对任意0k >,有11||||||i n kk kkλλλ-++=++A E PP 1()n i i k λ==+∏1ni k =>∏n k =.18.设A 为半正定阵,则对任意实数0k >,均有||0k +>A E . 证:因为A 为半正定矩阵,故A 为实对称矩阵,且A 的特征值0i λ≥,1,,i n =. 则存在正交矩阵P ,使11diag(,,,,)i n λλλ-=P AP ,11diag(,,,,)i n λλλ-=A P P于是对任意0k >,有11||||diag(,,,,)||i n k k k k λλλ-+=+++A E P P 1()ni i k λ==+∏n k ≥0>.19.A 为n 阶实矩阵,λ为正实数,记Tλ=+B E A A ,则B 正定.证:T T T T()λλ=+=+=B E A A E A A B ,故B 是实对称矩阵. 对∀≠X 0,有(,)0,(,)0>≥X X AX AX ,因此有TTT()λ=+X BX X E A A X T T Tλ=+X X X A AX (,)(,)λ=+X X AX AX 0>故 Tλ=+B E A A 为正定矩阵.20.A 是m ⨯n 实矩阵,若A A T 是正定矩阵的充分必要条件为A 是列满秩矩阵. 证:先证必要性方法一设A A T 是正定矩阵,故00∀≠X ,有0)()()(0T 00T T 0>=AX AX X A A X由此00≠AX ,即线性方程组0=AX 仅有零解,所以r (A )=n ,即A 是列满秩矩阵.方法二因为A A T是正定矩阵,故r(A A T)=n ,由于n r r n ≤≤≤)()(T A A A所以r (A )=n . 即A 是列满秩矩阵.再证充分性:因A 是列满秩矩阵,故线性方程组仅有零解,0∀≠X ,X 为实向量,有0≠AX .因此0),()()()(T T T >==AX AX AX AX X A A X显然A A T 是实对称矩阵,所以A A T 是正定矩阵.21.设A 为n 阶实对称阵,且满足2640-+=A A E ,则A 为正定阵.证:设λ为A 的任意特征值,ξ为A 的属于特征值λ的特征向量,故≠ξ0,则22,λλ==A ξξA ξξ由 2640-+=A A E 有 264-+=A ξAξξ02(64)λλ-+=ξ0由 ≠ξ0,故 2640λλ-+=.30λ=>.因为A 为实对称矩阵,故A 为正定阵.22.设三阶实对称阵A 的特征值为1,2,3,其中1,2对应的特征向量分别为T T 12(1,0,0),(0,1,1)==ξξ,求一正交变换=X PY ,将二次型Tf =X AX 化成标准形.解:设T3123(,,)x x x =ξ为A 的属于特征值3的特征向量,由于A 是实对称矩阵,故123,,ξξξ满足正交条件12312310000110x x x x x x ⋅+⋅+⋅=⎧⎨⋅+⋅+⋅=⎩ 解之可取3(0,1,1)=-ξ,将其单位化有T T T123(1,0,0),,===P P P令123100(,,)0⎛⎫⎪⎪⎪== ⎪⎪⎝P P P P.则在正交变换=X PY下,将f化成标准形为T T T222123()23f y y y===++X AX Y P AP Y23.设1222424aa-⎛⎫⎪=- ⎪⎪⎝⎭A二次型Tf=X AX经正交变换=X PY化成标准形239f y=,求所作的正交变换.解:由f的标准形为239f y=,故A的特征值为1230,9λλλ===.故2122||24(9)24aaλλλλλλ---=--=----E A令0λ=,则12224024aa----=---解之4a=-.由此122244244-⎛⎫⎪=--⎪⎪-⎝⎭A对于12λλ==有1221220244000244000---⎛⎫⎛⎫⎪ ⎪-=-→⎪ ⎪⎪ ⎪--⎝⎭⎝⎭E A可得A的两个正交的特征向量12222,112-⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ对于39λ=,可得A 的特征向量为122⎛⎫ ⎪- ⎪ ⎪⎝⎭将特征向量单位化得1232211112,1,2333122-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P P P则1232211(,,)2123122-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P P P P 为正交矩阵, 正交变换=X PY 为22112123122-⎛⎫ ⎪=- ⎪ ⎪⎝⎭X Y .注:因特征向量选择的不同,正交矩阵P 不惟一.24.已知二次型22212312132(1)22f x x k x kx x x x =++-++正定,求k .解:二次型的表示矩阵1120101kk k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭A由A 正定,应有A 的各阶顺序主子式全大于0. 故 102||0k k A ⎧>⎪⎨⎪>⎩,即2220(2)0k k k k ⎧-<⎪⎨-->⎪⎩. 解之 10k -<<.25.试问:三元方程2221231213231233332220x x x x x x x x x x x x +++++---=,在三维空间中代表何种几何曲面.解:记222123121323123333222f x x x x x x x x x x x x =+++++---则 111232233311(,,)131(1,1,1)113x x f x x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=+--- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设 311131113⎛⎫ ⎪= ⎪ ⎪⎝⎭A .则2||(2)(5)λλλ-=--E A . 故A 的特征值为1232,5λλλ===.对于122λλ==,求得特征向量为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.由Schmidt 正交化得1212111,201⎛⎫- ⎪-⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭ββ.对于35λ=得特征向量3111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,标准化得123,,0⎛⎛ ⎪=== ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭P P P 令123(,,)0⎛ ==⎝P P P P则在正交变换=X PY 下2221233225f y y y =++于是0f =为2221233225(1020y y y ++-= 为椭球面.26.求出二次型222123123123(2)(2)(2)f x x x x x x x x x =-+++-+++-的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有2221231213234442f x x x x x x x x x =++--+2221231213234424x x x x x x x x x +++-+-2221231213234244x x x x x x x x x ++++--222123121323666666x x x x x x x x x =++---2221231213236()x x x x x x x x x =++---2221232323113336[()]22442x x x x x x x =--++-22123231196()()222x x x x x =--+- 令 1123223331122y x x x y x x y x⎧=--⎪⎪=-⎨⎪=⎪⎩即 11223311122011001y x y x y x ⎛⎫--⎪⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则可逆变换为1122331112011001x y x y x y ⎛⎫ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭在此可逆线性变换下f 的标准形为2212962f y y =+. 27.用初等变换和配方法分别将二次型(1)222112412142432442f x x x x x x x x x =--++-+ (2)2122313262f x x x x x x =-+化成标准形和规范形,并分别写出所作的合同变换和可逆变换. 解:先用配方法求解(1)2221112142424(44)322f x x x x x x x x x =-+--++2221242424(22)66x x x x x x x =--+++-222124244(22)(3)3x x x x x x =--++--令 11242243344223y x x x y x x y x y x =-+⎧⎪=-⎪⎨=⎪⎪=⎩ 即 11242243344243x y y y x y y x y x y =++⎧⎪=+⎪⎨=⎪⎪=⎩令 1204010300100001⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型f 经可逆线性变换=x Py 化成标准形22211243f y y y =-+-若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即11223344y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 则原二次型1f 经可逆线性变换=x PQz 化成规范形2221124f y y y =-+-.(2)先线性变换11221233x y y x y y x y=+⎧⎪=-⎨⎪=⎩原二次型化成22212132313232()6622f y y y y y y y y y y =--+++221213232248y y y y y y =--+2221322332()282y y y y y y =--+-222132332()2(2)6y y y y y =---+令113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,即113223332y z z y z z y z =+⎧⎪=+⎨⎪=⎩. 令1110110001⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,2101012001⎛⎫ ⎪= ⎪⎪⎝⎭P则原二次型2f 经可逆线性变换12=x P P z 化成标准形2222123226f z z z =-+若再令112233w w w ⎧=⎪⎪=⎨⎪=⎪⎩ 即11223322z w z w z w ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩令22⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎝⎭Q则原二次型2f 经可逆线性变换12=x P P Qw 化成规范形2222123f w w w =-+.用初等变换法求解(1)设1202230100002102--⎛⎫⎪- ⎪=⎪⎪ ⎪-⎝⎭A41202100023010100()0000001021020001--⎛⎫⎪- ⎪=⎪ ⎪ ⎪-⎝⎭A E 2121221021000010321000000001023020001r r c c +⨯+⨯--⎛⎫⎪- ⎪−−−→⎪⎪⎪--⎝⎭4141(2)(2)10001000010321000000001003062001r r c c +-⨯+-⨯-⎛⎫⎪- ⎪−−−−→ ⎪ ⎪ ⎪--⎝⎭42423310001000010021000000001000034301r r c c +⨯+⨯-⎛⎫ ⎪⎪−−−→ ⎪ ⎪ ⎪-⎝⎭331000100001002100000000100001033r c -⎛⎫⎪⎪ ⎪→- ⎝⎭令 T11000210000104301⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P ,T21000210000100⎛⎫ ⎪⎪ ⎪=P则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211233f y y y =-+-. 二次型经过可逆线性变换2=x P z 化成规范形2221124f z z z =-+-.(2)设011103130⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A3011100()103010130001⎛⎫⎪=-⎪ ⎪-⎝⎭A E 3232(1)(1)010100103010036011r r c c +-⨯+-⨯⎛⎫⎪−−−−→- ⎪ ⎪--⎝⎭ 313133010100100010006311r r c c +⨯+⨯⎛⎫ ⎪−−−→ ⎪ ⎪-⎝⎭1212210100100010006311r r c c ++⎛⎫⎪−−−→ ⎪ ⎪-⎝⎭21211()21()2200110111000222006311r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→-- ⎪ ⎪-⎝⎭112233,,,10000100001266r c r c r c ⎛⎫⎪ ⎪ ⎪→- ⎪ - ⎝⎭令 T111011022311⎛⎫ ⎪ ⎪=-⎪ ⎪-⎝⎭P ,T200⎛⎫ ⎪ ⎪ ⎪= ⎪⎝P 则原二次型2f 经过可逆线性变换1=x P y 化成标准形22221231262f y y y =-+ 二次型经过可逆线性变换2=x P z 化成规范形2222123f z z z =-+28.用三种不同方法化下列二次型为标准形和规范形.(1)2221122332343f x x x x x =+++(2)222221234121423342222f x x x x x x x x x x x x =++++--+解:先用配方法求解(1)222112233423()33f x x x x x =+++22212332523()33x x x x =+++ 令 112233323y x y x x y x =⎧⎪⎪=+⎨⎪=⎪⎩ 即 112233323x y x y y x y =⎧⎪⎪=-⎨⎪=⎪⎩令 1002013001⎛⎫⎪⎪=- ⎪ ⎪⎝⎭P则二次型1f 经可逆线性变换=x Py 化成标准形 22211235233f y y y =++ 若再令1122333z z z y ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩ 即1122335y z y z y z ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩ 令35⎫⎪ ⎪ ⎪= ⎪ ⎝⎭Q原二次型1f 经可逆线性变换=x PQz 化成规范形2221123f z z z =++.(2)22222112142342334(22)22f x x x x x x x x x x x x =+-+++-+ 221243233424()222x x x x x x x x x x =+-+-++ 2222124324244()()(2)3x x x x x x x x x =+-+-+--+令 11242243234442y x x x y x x y x x x y x =+-⎧⎪=-⎪⎨=-++⎪⎪=⎩ 即 11242243234442x y y y x y y x y y y x y =--⎧⎪=+⎪⎨=++⎪⎪=⎩令 110101020*******--⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭P 则二次型2f 经可逆线性变换=x Py 化成标准形2222212343f y y y y =-++若再令11223344z y z y z y z =⎧⎪=⎪⎨=⎪⎪=⎩ 即112233443y z y zy z y z =⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩令111⎛⎫ ⎪⎪⎪=⎝Q 原二次型2f 经可逆线性变换=x PQz 化成规范形222221234f z z z z =-++.用初等变换法求解(1)设200032023⎛⎫ ⎪= ⎪ ⎪⎝⎭A3200100()032010023001⎛⎫ ⎪= ⎪⎪⎝⎭A E 32322()32()320010003001052000133r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪- ⎪⎝⎭112310000010000010155r c r c ⎛⎫ ⎪ ⎪⎪→ ⎪ - ⎝⎭令TT1200100010,0020130⎫⎪⎛⎫ ⎪⎪ ⎪⎪== ⎪⎪ ⎪ - ⎪ ⎝⎭⎝P P 则原二次型1f 经过可逆线性变换1=x P y 化成标准形22211235233f y y y =++. 二次型经过可逆线性变换2=x P z 化成规范形2221123f z z z =++.(2)设1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A 41101100011100100()0111001010110001-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A E 2121(1)(1)10011000001111000111001011110001r r c c +-⨯+-⨯-⎛⎫ ⎪-- ⎪−−−−→ ⎪- ⎪ ⎪-⎝⎭414110001000001111000111001001101001r r c c ++⎛⎫⎪-- ⎪−−−→ ⎪- ⎪ ⎪⎝⎭ 323210001000001111000112111001201001r r c c ++⎛⎫ ⎪-- ⎪−−−→ ⎪--- ⎪ ⎪⎝⎭343410001000000111000032011101201001r r c c ++⎛⎫ ⎪- ⎪−−−→ ⎪ ⎪ ⎪⎝⎭ 3232(2)(2)10001000000111000030211101001001r r c c +-⨯+-⨯⎛⎫ ⎪- ⎪−−−−→ ⎪- ⎪ ⎪⎝⎭242410001000020101010030211101001001r r c c ++⎛⎫⎪ ⎪−−−→ ⎪- ⎪ ⎪⎝⎭ 42421()21()210001000020001010030211111100010222r r c c +-⨯+-⨯⎛⎫ ⎪ ⎪−−−−→ ⎪- ⎪ ⎪-- ⎪⎝⎭223344100010000100000010333300010r cr cr c⎛⎫⎪→ ⎪-⎪-⎝令T1100001012111111022⎛⎫⎪⎪= ⎪-⎪⎪-⎪⎝⎭PT210000022⎛⎫⎪=-⎝⎭P则原二次型2f可经可逆线性变换1=x P y化成标准形2222212341232f y y y y=++-.2f可经可逆线性变换2=x P z化成规范形222221234f z z z z=++-用正交变换法求解(1)1f的矩阵为200032023⎛⎫⎪= ⎪⎪⎝⎭A,由200||032(1)(2)(5)023λλλλλλλ--=--=-----E A,知A的特征值为1,2,5.对11λ=,解123100002200220xxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,取111⎛⎫⎪= ⎪⎪-⎝⎭T,单位化1⎛⎫⎪⎪⎪= ⎪⎝P,对22λ=,解123000001200210xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--=⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,得1231xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,取21⎛⎫⎪= ⎪⎪⎝⎭P,对35λ=解123300002200220xxx⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得12311xx kx⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭取311⎛⎫⎪= ⎪⎪⎝⎭T,单位化得322⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎝⎭P,令0102222⎛⎫⎪⎪⎪= ⎪⎪⎪- ⎪⎝⎭P,则P为正交阵,经正交变换=X PY,原二次型f化为T22212325f y y y==++X AX.(2)2f的矩阵为1101111001111011-⎛⎫⎪-⎪=⎪-⎪⎪-⎝⎭A由11011110||01111011λλλλλ-----=----E A2(1)(3)(1)λλλ=+--知A的特征值为1,3,1,1-.对11λ=-,解12342101012100,0121010120xxxx--⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-- ⎪⎪ ⎪=⎪⎪ ⎪--⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭得12341111xxkxx⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪-⎪ ⎪⎪⎪⎝⎭⎝⎭,取11111⎛⎫⎪- ⎪=⎪-⎪⎪⎝⎭T单位化得112121212⎛⎫⎪⎪⎪-⎪= ⎪⎪-⎪⎪⎪⎝⎭P,对23λ=,解12342101012100,0121010120xxxx-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪- ⎪⎪ ⎪=⎪⎪ ⎪-⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭得12341111xxkxx-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪⎪ ⎪⎪⎪⎝⎭⎝⎭.取 21111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭T 单位化得 212121212⎛⎫- ⎪ ⎪ ⎪- ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P . 对341λλ==,解12340101010100,010*******x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 得 12123410011001x x k k x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取 341001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭T T , 再令340202,002⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎝⎭⎝⎭P P 令11022110222110222110222⎛⎫- ⎪ --⎪= ⎪- ⎪ ⎝⎭P ,则P 为正交阵,经正交变换=X PY , 原二次型f 化为T 222212343f y y y y ==-+++X AX .29.判断下列二次型正定,负定还是不定.(1)2221223121326422f x x x x x x x =---++解:二次型1f 的矩阵为211160104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭AA 的各阶顺序全子式2112120,110,1603801614---<=>-=-<--. 所以二次型1f 是负定二次型.(2)22222123412131424343919242612f x x x x x x x x x x x x x x =+++-++--解:二次型2f 的矩阵为11211303209613619-⎛⎫ ⎪--⎪= ⎪- ⎪ ⎪--⎝⎭A A 的各阶顺序主子式1110,2013->=>-,1121306029--=>,11211303240209613619---=>--- 所以二次型2f 是正定二次型.(3)222231234131423147644f x x x x x x x x x x =+++++-解:二次型3f 的矩阵为10320120321402007⎛⎫⎪- ⎪=⎪- ⎪ ⎪⎝⎭A A 的各阶顺序主子式1010,1001>=>,103012103214-=>-,1320120330321402007-=-<-. 所以二次型3f 是不定二次型.30.求一可逆线性变换=X CY ,把二次型2221123121325424f x x x x x x x =++--化成规范形2221123f y y y =++,同时也把二次型22221231313233322242f x x x x x x x x x =++--- 化成标准形2222112233f k y k y k y =++.解:记T1f =X AX ,其中212150204--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A31213121121220021290115022040121001112010*********r r r r c c c c ++++⎛⎫ ⎪--⎛⎫ ⎪- ⎪- ⎪ ⎪ ⎪ ⎪--⎛⎫ ⎪=−−−→ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭A E 323229292009002160091101292019001r r c c ++⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123123343410001000156610363004r r r c c c ⨯⨯⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪−−−→⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭取5661036004⎛⎫⎪⎪⎪⎪= ⎪ ⎪3 ⎪ ⎪⎝⎭P ,则T =P AP E 记 T2f =X BX,其中3012032122⎛⎫- ⎪ ⎪=- ⎪ ⎪-- ⎪⎝⎭B则T150036601210032061225133006644⎛⎫⎫⎪⎪⎛⎫-⎪⎪ ⎪ ⎪⎪ ⎪ ⎪==-⎪ ⎪ ⎪ ⎪ ⎪--⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭B P BP5066104636113100234⎛⎫⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭314413444142⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪-⎪⎪⎭2311113442⎛⎫== ⎪⎭B 其中231132⎛⎫ = ⎪⎭B 显然12,B B 都是实对称矩阵,它们的特征值为14倍的关系,特征向量相同.231||13λλλ---=--EB 30(3)14)1(3)04)4λλλλλ---=----2(4)0λλ=-=则2B 的特征值为230,4λλλ===,故1B 的特征值为0,1,1. 以下求2B 的特征向量.对于10λ=,求得11⎛ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭α,单位化后11212⎛⎫- ⎪ ⎪ ⎪= ⎪ ⎪γ 对于234λλ==,求得2311,001⎛⎫⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα由Schmidt 标准正交化后得23121,20⎛⎫ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭γγ令123112211(,,)220⎛⎫- ⎪ ⎪ ⎪==-⎪ ⎪Q γγγ. 则Q 为正交矩阵,且有T T T 10()11⎛⎫ ⎪== ⎪ ⎪⎝⎭Q B Q Q P BP Q令511662*********304⎛⎫⎛⎫⎪- ⎪⎪ ⎪⎪ ⎪⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭CPQ 23130⎫⎪⎪=⎪⎪⎭于是 TTT==Q P APQ Q EQ E即 T=C AC ET 011⎛⎫ ⎪= ⎪ ⎪⎝⎭C BC在可逆线性变换=X CY 下2221123f y y y =++22223f y y =+.(注:经验算本题所得C 是正确的,需要注意的是C 并不惟一)31.求一可逆线性变换=X PY ,将二次型f 化成二次型g .2221231213232938410f x x x x x x x x x =+++--222123121323236448g y y y y y y y y y =++--+解:Tf =X AX ,242495253-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A , T g =Y BY ,222234246--⎛⎫⎪=- ⎪ ⎪-⎝⎭B 将,A B 分别作合同变换如下:21313221323122242200200495011010253011000100121121010010011001001001r r r r r r c c c c c c -++-++-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E 在可逆线性变换1=X C Z 下22122f z z =+ 其中 1121011001--⎛⎫ ⎪= ⎪ ⎪⎝⎭C 21313221323122220020023401201024602400100111111010010012001001001r r r r r r c c c c c c ++++++--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎛⎫=−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B E 在可逆线性变换2=YC Z 下22122g z z =+.其中 2111012001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭C由 12-=Z C Y 得1112-==X C Z C C Y令 1112121111136011012003001001001-------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭P C C 在可逆线性变换=X PY 下22122f g z z ==+.32.A 是正定矩阵,AB 是实对称矩阵,则AB 是正定矩阵的充分必要条件是B 的特征值全大于零.证:先证必要性.设λ 为B 的任一特征值,对应的特征向量为,,0≠X X 则 且有X BX λ=用A X T 左乘上式有AX X X AB X T T )(λ=因为AB ,A 都是正定矩阵,故0,0)(T T >>AX X X AB X于是0>λ,即B 的特征值全大于零.再证充分性.因为A 是正定矩阵,所以A 合同于单位矩阵,故存在可逆矩阵P ,使E AP P =T (1)由AB 是对称矩阵,知P AB P )(T也是实对称矩阵,因此存在正交矩阵Q ,使),,,,diag(])([1T T n i μμμ ==D Q P AB P Q (2)即有),,,,diag()()(1TT n i μμμ ==D PQ B A P Q (3)其中n i μμμ,,,,1 是P AB P )(T的特征值. 在(1)的两端左乘TQ ,右乘Q 有E PQ A P Q E Q AP P Q ==))(()(T T T T 即这说明)()(TTPQ A P Q 与互逆,也就是说1T T )()(-=PQ A P Q将上式代入(3),说明矩阵B 与对角阵D 相似,故它们的特征值相等;由条件知B 的特征值全大于零,因此对角阵D 的特征值也全大于零. 由(2)知AB 与D 合同,因此AB 的特征值全大于零.33.设,A B 为n 阶实正定阵,证明:存在可逆阵P ,使T =P AP E 且T 12diag(,,,)n λλλ=P BP ,其中120n λλλ≥≥≥>为||0λ-=A B 的n 个实根.证:因A 正定,故存在可逆矩阵1P ,使T 11=P AP E因B 正定,故存在可逆矩阵2P ,使T 22=B P P于是T T T T 1112212121()()==P BP P P P P P P P P易见T11P BP 为正定矩阵,不妨设它的特征值为120n λλλ≥≥≥>.则 TTT11111||||λλ-=-E P BP P AP P BP T11||||||λ=-P A B P 故 T11||0||0λλ-=⇔-=E P BP A B 即 120n λλλ≥≥≥>为||0λ-=A B 的几个实根.由 T11P BP 为正定阵,知其为实对称矩阵,所以存在正交矩阵Q ,使 T T 1112()diag(,,,)n λλλ=Q P BP Q 令 1=P PQ ,则 TT 12,diag(,,,)n λλλ==P AP E P BP34.设A 为n 阶实正定阵,B 为n 阶实半正定阵,则||||+≥A B A . 证:因为A 是n 阶正定矩阵,所以存在n 阶可逆矩阵C ,使得T =C AC E . 因为B 是n 阶半正定阵,则TC BC 仍是实对称半正定阵,故存在正交阵Q ,使得1T T T 1()()diag(,,,,)i n D -===Q C BC Q Q C BC Q λλλ其中 0,1,,i i n λ≥=为T C BC 的特征值,且有T T ()=Q C AC Q E令=P CQ ,则P 为可逆矩阵,于是T T ,==P AP E P BP DT T T ()+=+=+P A B P P AP P BP E D上式两端取行列式,得T1||||||||(1)1ni i λ=+=+=+≥∏P A B P E D ||||||T =P A P因 T||||0=>P P , 故 ||||+≥A B A .35.设,A B 均为实正定阵,证明:方程||0λ-=A B 的根全大于0.证:由33题知T11||0||0λλ-=⇔-=E P BP A B . 其中T11P BP 为正交矩阵,它的特征值0i λ>,1,,i n =,故||0λ-=A B 的根全大于0.36.设A 为n 阶正定矩阵,试证:存在正定矩阵B ,使2B A =. 证:因为A 是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P ,使12-1T n λλλ⎛⎫ ⎪===⎪ ⎪ ⎪⎝⎭P AP P AP D 其中n λλλ,,,21 为A 的n 个特征值,它们全大于零.令),,,2,1(n i i i ==λδ 则21111222222n n n n δλδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D而 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪⎪⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122T T n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 B =12Tn δδδ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭P P显然B 为正定矩阵,且2B A =.37.设A 为n 阶可逆实方阵,证明:A 可表示为一个正定阵与一正交阵的乘积.证:因为A 是n 阶可逆实方阵,故TA A 是正定矩阵,所以存在n 阶正定矩阵B ,使T 2=A A B .于是有1T 11T T 11T 21()()()()------===AB AB B A AB B B B E这说明1-AB 是正交阵. 令 1-=ABQ则 =A QB ,其中Q 是正交矩阵,B 是正定矩阵.38.A 、B 为n 阶正定矩阵,则AB 也为n 阶正定矩阵的充分必要条件是:AB =BA ,即A 与B 可交换.证:方法一 先证必要性.由于A 、B 、AB 都是正定矩阵,所以知它们都是对称矩阵,因此有AB AB B B A A ===T T T )(,,于是BA A B AB AB ===T T T )(即A 与B 可交换.再证充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.因为,A B 是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P 、Q ,使Q Q B P P A T T ,==于是Q PQ P AB T T =上式左乘Q ,右乘1-Q 得)()()(T T T T T 1PQ PQ PQ QP Q AB Q ==-这说明AB 与对称矩阵)()(TTT PQ PQ 相似;因为P TQ 是可逆矩阵,故矩阵)()(TTT PQ PQ 是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零. 综合上述知AB 正定. 方法二必要性同方法一,以下证明充分性. 由条件AB=BA 得AB B A BA AB ===T T T T )()(因此AB 是对称矩阵.由于A 正定,所以存在可逆矩阵Q ,使A=Q T Q于是T T T T 1()λλλ--=-=-E AB E Q QB E Q QBQ QT T 1T T T 1T T T 1T()()()()λλλ---=-=-=-Q E Q Q QBQ Q Q E QBQ Q E QBQT 00λλ-=⇔-=E AB E QBQ这说明AB 与TQBQ 有相同的特征值.因为B 是正定矩阵,易见TQBQ 也是正定矩阵,故它的特征值全大于零,所以AB 的特征值也全大于零.综合上述知AB 正定.39.设A 、B 为实对称矩阵,且A 为正定矩阵,证明:AB 的特征值全是实数. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=, 于是有T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ即T||0||0λλ-=⇔-=E AB E QBQ .因为B 是实对称矩阵,所以TQBQ 也是实对称矩阵,因此它的特征值都是实数,故AB 的特征值也都是实数.40.设A 是正定矩阵,B 是实反对称矩阵,则AB 的特征值的实部为零. 证:因为A 是正定矩阵,故存在可逆矩阵Q ,使Q Q A T=T T T T 1T T T 1T()()()λλλλλ---=-=-=-=-E AB E Q QB E Q QBQ Q Q E QBQ Q E QBQ因为B 是实反对称矩阵,所以TQBQ 也是实反对称矩阵,因此它的特征值实部为零,故AB 的特征值实部也为零.41.设A 是正定矩阵,B 是半正定的实对称矩阵,则AB 的特征值是非负的实数. 证:由于A 是正定的,所以1-A 也是正定的,于是存在可逆矩阵P ,使得P P A T 1=-,因此1T T T 11T T 111T 11T 111T 1()()()()()λλλλλλλλ-------------=-=-=-=-=-=-=-E AB A A B A P P B A P E P BP PA P P E P BP A A E P BP E P BP E P BP即0)(01T 1=-⇔=---BP P E AB E λλ.由于B 是半正定的实对称矩阵,故1T1)(--BPP 是半正定的实对称矩阵,因此0)(1T 1=---BP P E λ的根是非负实数.于是0=-AB E λ的根也是非负实数,即AB的特征值是非负的实数.42.求证实二次型∑∑==++=n r ns sr n xx s r krs x x f 111)(),,( 的秩和符号差与k 无关.证:二次型的矩阵为22334(1)2344652(2)3465963(3)(1)2(2)3(3)22k k k nk n k k k nk n k k k nk n nk n nk n nk n n k n +++++⎛⎫ ⎪+++++ ⎪+++++= ⎪⎪⎪+++++++⎝⎭A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题6.11.写出下列二次型的矩阵.(1)222123123121323(,,)f x x x x x x x x x x x x =+++++(2)12341223(,,,)f x x x x x x x x =-(3)1234135(,,,)246785T f x x x x X X ⎛⎫⎪= ⎪ ⎪⎝⎭2.将二次型2221231231223(,,)32810f x x x x x x x x x x =+-+-表成矩阵形式,并求该二次型的秩.3.设A = ⎪⎪⎪⎭⎫ ⎝⎛321000000a a a ,B = ⎪⎪⎪⎭⎫ ⎝⎛13200000a a a 证明A 与B 合同,并求可逆矩阵C ,使得B =TC A C .4.如果n 阶实对称矩阵A 与B 合同,C 与D 合同,证明A O B O O C O D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭与合同.习题6.21.用正交变换法化下列实二次型为标准形,并求出所用的正交变换.(1)22212312323(,,)2334f x x x x x x x x =+++2.已知二次型2221231231223(,,)222f x x x x x x cx x x x =++++的秩为2.(1) 求c;(2) 求一正交变换化二次型为标准形.3.已知二次型2212323121323(,,)43248f x x x x x ax x x x x x =-+-+经正交变换化为标准形2221236,,f y y by a b =++求的值与所用正交变换.22224. 222444,,.x x ay z bxy xy yz y Q z a b Q ξηζηζ⎛⎫⎛⎫⎪ ⎪+++++== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭+=2已知二次曲面方程可经正交变换化为椭圆柱面方程求的值与正交矩阵5.用配方法化下列二次型为标准形,并求出所用的可逆线性变换.(1)222123123121323(,,)25228f x x x x x x x x x x x x =+++++6.在二次型f (x 1,x 2,x 3 )=213232221)()()(x x x x x x -+-+-中,令⎪⎩⎪⎨⎧-=-=-=133322211xx y x x y x x y 得f =232221y y y ++可否由此认定上式为原二次型f 的标准形且原二次型的秩为3 ?为什么?若结论是否定的,请你将f 化为标准形并确定f 的秩.7.判断矩阵01111213A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭与是否合同.习题6.31.判定下列实二次型的正定性.(1)2221231231223(,,)23442f x x x x x x x x x x =++-- (2)222123123121323(,,)23222f x x x x x x x x x x x x =---+-+(3)123121323(,,)5f x x x x x x x x x =+- (4)∑∑≤<≤=+nj i jini ixx x1122. a 为何值时,实二次型222123123121323(,,)(2)22f x x x x a x ax x x x x x x =++++--是正定的.21013. 020,(),101A B kE A k B k B ⎛⎫ ⎪==+ ⎪ ⎪⎝⎭ΛΛ设矩阵其中为实数.(1)求对角阵,使与相似;(2)求参数的值,使为正定矩阵.习题六 (A)一、填空题1.二次型222123123121323(,,)23246f x x x x x x x x x x x x =+-+-+的矩阵为 .2.2123123(,,)()f x x x ax bx cx =++二次型的矩阵为.3.已知二次型的矩阵为124214447-⎛⎫⎪- ⎪ ⎪--⎝⎭,则该二次型为.4.二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为.5.化二次型222123123(,,)43f x x x x x x =+-为规范形,所用的可逆线性变换矩阵为. 6.二次型123121323(,,)f x x x x x x x x x =++的规范形为 .7.已知实对称矩阵A 与矩阵100012022T X AX ⎛⎫⎪- ⎪ ⎪⎝⎭合同,则二次型的规范形为.8.已知2221231231223(,,)22f x x x x x x x x ax x =++++正定,则a =. 9.当t 满足, 2221231231213(,,)4242f x x x x x x tx x x x =---++是负定的. 10.已知二次型222123123121323(,,)222f x x x x ax x x x ax x x x =+++--的正、负惯性指数均为1,则a =.二、单项选择题1. 已知二次型22212312312(,,)(1)(1)22(1)f x x x a x a x x a x x =-+-+++的秩为2,则a =( ).(A) 0 (B) 1 (C) 2 (D) 32. 设100020005A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 则下列矩阵中与A 合同的矩阵是( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛-100010001 (B)100020001-⎛⎫⎪- ⎪ ⎪-⎝⎭ (C) ⎪⎪⎪⎭⎫ ⎝⎛--500010002 (D)⎪⎪⎪⎭⎫ ⎝⎛300010002 3. , T T Tn f X AX A A X CY f Y BY ====如果元二次型(其中)可经可逆线性变换化为则下列结论不正确的是().(A) A 与B 合同 (B) A 与B 等价 (C) A 与B 相似 (D) A 与B 的秩相等 4. 设A, B 都是正定阵, 则( ).(A) AB, A + B 一定都是正定阵 (B) AB 是正定阵, A + B 不是正定阵 (C) AB 不一定是正定阵, A + B 是正定阵 (D) AB, A + B 都不是正定阵 5. 下列条件不能保证n 阶实对称矩阵A 为正定的是( ). (A) 1A -正定(B) 二次型f=X T AX 的负惯性指数为零 (C) 二次型f=X T AX 的正惯性指数为n (D) A 合同于单位矩阵22212312323123 (,,)(2)(23)(3)( ).() 1 () 1 () 1 ()1f x x x x ax x x x x x ax A a B a C a D a =+-+++++<-≠-≠>6.二次型正定的充要条件是7. 已知实对称矩阵A 满足A 2-5A+6E=O ,则A ( ).(A) 正定 (B) 半正定 (C) 负定 (D) 不定8. 已知二次型222123123121323(,,)22248f x x x x x x ax x x x x x =--+++经正交变换化为 222123227f y y y =+-,则a =( ). (A)1 (B) -1 (C) 2 (D)-2 9. 下列矩阵合同于单位矩阵的是( ).(A) 121242363⎛⎫ ⎪⎪ ⎪⎝⎭ (B)101040101-⎛⎫⎪ ⎪ ⎪--⎝⎭(C) ⎪⎪⎪⎭⎫ ⎝⎛811172121 (D)212134244--⎛⎫ ⎪- ⎪ ⎪⎝⎭10. 设矩阵211112111120A B A B --⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭与矩阵,则与( ).(A) 合同且相似 (B) 合同但不相似(C) 不合同但相似 (D) 既不合同也不相似(B)1.已知22082006B a ⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于对角阵.(1)求a 的值;(2)求正交变换使二次型X T BX 为标准形.222123123121323123(,,)55266 2.(1);(2)(,,)1f x x x x x cx x x x x x x c f x x x =++-+-=2. 已知二次型的秩为求和二次型矩阵的特征值指出方程表示哪种二次曲面.3. 已知实二次型f=X T AX 中矩阵A 的特征值为1,2,5,A 属于特征值1与2的特征向量分别为12(0,1,1),(1,0,0),TTαα=-=求该二次型. 4.设二次型123(,,)f x x x 经正交变换1123212331232221231(22)31 (22)31(22)342,x y y y x y y y x y y y f y y y ⎧=++⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩=+-化为了标准形求该二次型。

5.设A 是n 阶对称矩阵,如果对任一n 维向量X ,都有f=X T AX=0,证明A=O .6.设f =TX A X 为n 元实二次型,λ与μ分别为其矩阵A 的最大特征值与最小特征值,证明对任一实n 维向量X ,总有μTX X ≤TX A X ≤λTX X .7.试证:若A 是n 阶方阵,则TA A 是半正定矩阵.8.设A 为n 阶实对称矩阵且满足A A A ++23= 3 E ,证明A 是正定矩阵. 9.设实对称矩阵A 与B 合同,若A 是正定矩阵,证明B 是正定矩阵. 10.设A 是实对称矩阵.证明:当实数t 充分大时,t E +A 是正定矩阵. 11.设B 为可逆矩阵,A =B T B ,证明f =TX A X 为正定二次型.。

相关文档
最新文档