神经内分泌和免疫系统的相互调节

合集下载

神经内分泌免疫系统间的相互调节作用

神经内分泌免疫系统间的相互调节作用

神经内分泌免疫系统间的相互调节作用《神经内分泌免疫系统间的相互调节作用》嘿,朋友们!想象一下,你的身体就像一个超级复杂但又超级有序的大工厂。

在这个工厂里,有三个特别重要的部门,那就是神经系统、内分泌系统和免疫系统。

它们就像是三位配合默契的好伙伴,相互调节、相互协作,共同维持着你身体这个大工厂的正常运转。

有一天,你因为一些事情心情特别不好,就像那天空突然布满了乌云。

这时候神经系统这个急性子家伙就开始行动啦!它感受到你的情绪变化,迅速发出信号。

内分泌系统这个慢性子呢,也不慌不忙地开始调整各种激素的分泌。

你瞧,就像有一群小精灵在身体里忙碌地传递着各种信息。

这时候免疫系统也察觉到了异样,它可是个厉害的卫士呢!它会根据神经系统和内分泌系统的指示,调整自己的状态。

比如说,当你压力特别大的时候,免疫系统可能就会稍微有点松懈,就像一个累坏了的士兵,战斗力可能会下降那么一点点。

但要是你心情特别好,吃嘛嘛香,那免疫系统就像打了鸡血一样,活力满满,时刻准备着对抗那些入侵身体的坏家伙。

咱们来具体说说这三个小伙伴是怎么相互调节的吧。

神经系统就像个指挥官,它通过神经信号快速地传达各种指令。

内分泌系统呢,就像个魔法师,它用各种激素来施展魔法,影响身体的各种功能。

而免疫系统呢,就是那个勇敢的战士,负责保护身体免受外敌的侵害。

神经系统可以直接影响内分泌系统。

比如说,当你紧张的时候,神经系统会让肾上腺分泌出更多的肾上腺素,让你心跳加快、血压升高,准备好应对紧急情况。

这就好像神经系统对着内分泌系统喊:“嘿,伙计,快给我来点能量!”内分泌系统马上就行动起来,给身体提供动力。

反过来,内分泌系统也能影响神经系统。

那些激素就像魔法药水一样,可以改变神经系统的功能。

比如甲状腺激素能让你更有精神,更聪明伶俐。

而免疫系统和神经系统、内分泌系统之间的关系也很密切呢!当神经系统和内分泌系统出问题的时候,免疫系统也可能会跟着乱了套。

免疫力与内分泌系统的协调作用

免疫力与内分泌系统的协调作用

免疫力与内分泌系统的协调作用引言免疫力和内分泌系统是人体免疫功能的重要组成部分,对维持人体内环境的稳定起着关键作用。

免疫力是人体抵抗外界病原体入侵和其他损害因素的能力,而内分泌系统则通过分泌激素调节身体的生理功能。

这两个系统之间通过细胞信号传导和调节机制进行密切的相互作用,以保持人体机能的平衡和稳定。

本文将深入探讨免疫力和内分泌系统之间的协调作用及其生理机制。

免疫系统的基本原理免疫系统是人体抵抗疾病和保持健康的重要系统,它由多种器官、组织和细胞组成,分为先天免疫和获得性免疫两部分。

先天免疫是人体天生具备的抵抗病原体入侵的能力,包括炎症反应、天然杀伤细胞等。

获得性免疫则是在接触到病原体后的一种主动免疫反应,主要由T细胞和B细胞介导。

免疫系统的正常功能依赖于细胞间的相互作用和信号传导,而内分泌系统在其中起着重要的调节作用。

内分泌系统的基本原理内分泌系统是由主要分泌内分泌激素的腺体和组织组成的调节系统。

内分泌激素通过血液循环传输到靶细胞,通过与细胞表面的受体结合,调控细胞的生理功能和代谢活动。

内分泌系统包括下丘脑垂体系统、甲状腺、肾上腺皮质、生殖腺等多个组织和器官,细胞间通过激素作用相互影响和调节。

免疫力与内分泌系统的相互关系免疫力和内分泌系统之间的相互关系相当复杂和紧密。

内分泌系统通过分泌激素调节免疫细胞的增殖、分化和功能,从而影响免疫系统的整体功能。

免疫系统受到内分泌激素的影响,通过调节免疫细胞的数量和活性来维持免疫功能的平衡。

下面将重点讨论免疫力与内分泌系统在以下几个方面的协调作用:1. 免疫细胞的增殖和分化内分泌激素对免疫细胞的增殖和分化发挥重要调节作用。

免疫细胞,在受到外界刺激后,需要通过增殖和分化来增加数量和提高活性。

一些内分泌激素如促甲状腺激素(TSH)、生长激素(GH)、促肾上腺皮质激素(ACTH)等可以促进免疫细胞的增殖和分化,从而增强免疫功能。

2. 免疫细胞的活性和功能内分泌激素通过与免疫细胞表面受体结合,调节免疫细胞的活性和功能。

神经、内分泌和免疫系统之间的相互关系

神经、内分泌和免疫系统之间的相互关系

神经、内分泌和免疫系统之间的相互关系自从1928年XXX发现硬骨鱼下丘脑的神经细胞具有内分泌细胞的特征,并最先提出神经内分泌(neuroendocrine)概念后,启发了有关领域研究的新思路。

随后众多的研究逐渐证实了神经系统与内分泌系统活动联系紧密。

近二十余年来,分子生物学技术以及免疫学的迅速发展,又促使人们发现神经、内分泌和免疫系统能够共享某些信息分子和受体,都通过类似的细胞信号转导途径发挥作用,这又使人们意识到机体还存在一个调节系统——免疫系统。

Besedovskyn于1977年最先提出神经-内分泌-免疫网络(neuroendocrine-XXX)的概念。

三个系统各具独特功能,相互交联,优势互补,形成调节环路。

这个网络通过感受内外环境的各种变化,加工、处理、储存和整合信息,共同维持内环境的稳态,保证机体生命活动正常运转。

神经、内分泌和免疫三大调节系统以共有、共享的一些化学信号分子为通用语言进行经常性的信息交流,相互协调,构成整体性功能活动调制网络。

内分泌、神经和免疫系统组织都存在共同的激素、神经递质、神经肽和细胞因子,而且细胞表面都分布有相应的受体。

大部分在脑内发现的神经肽和激素同时也存在于外周免疫细胞中,而且结构和功能与神经、内分泌细胞的完全相同。

再如,淋巴细胞和巨噬细胞等存在生长激素、促肾上腺皮质激素受体和内啡肽受体等,胸腺细胞也分布有生长激素释放激素、催乳素等受体。

利用组织化学、放射免疫自显影等技术证实,无论在基础状态下还是诱导后,脑组织中都存在多种细胞因子的受体或相应的mRNA。

中枢神经系统也存在白介素和干扰素等细胞因子。

在正常情况下,内分泌系统就存在一些细胞因子,而且经诱导后还可以产生许多细胞因子。

总之,神经、内分泌和免疫三大调节系统之间存在着紧密的联系,彼此之间通过化学信号分子进行信息交流和协调。

这种联系构成了神经-内分泌-免疫网络,共同维持机体内环境的稳态,保证机体生命活动的正常运转。

神经系统、免疫、内分泌系统的相互影响

神经系统、免疫、内分泌系统的相互影响

神经系统、免疫、内分泌系统的相互影响一.神经系统对免疫系统的影响大量的临床资科和实验研究表明精神因素能影响疾病的发生、发展与预后。

在日常生活中人们住往有切身的体会,在精神紧张、过度疲劳、悲伤等条件下机体的抵抗力降低,容易诱发很多疾病。

在病人得知身患绝症时,精神打击导致疾病的急剧恶化,加速病人的死亡。

抑郁症、精神分裂症等心因性疾病病人有免疫功能异常。

动物实验也有相当多的资科证明精神活动对免疫功能有影响,愉快的情绪能使免疫功能增强,淋巴细胞对有丝分裂原植物血凝素的增殖反应增强、NK细胞活性增强;恶劣的情绪可使免疫功能抑制。

1.中枢神经系统对免疫功能的影响实验证明定位刺激或损毁中枢神经系统的某些部位的研究发现,损毁脑干上部可使速发和迟发某些部位对免疫功能有影响。

损毁脑干不同部过敏反应增强;而损毁脑干尾部则可抑制上述反应;损毁脑干中部特别是脑桥网状结构,可以降低由注射佐剂引发的关节炎。

有关损毁下丘脑不同部位的研究较多。

损毁双侧下丘脑前部可抑制脾脏和胸腺的功能,使T淋巴细胞对有丝分裂原的增殖、NK细胞毒性、抗体产生和致死性的过敏反应均受到抑制,而垂体切除则可消除上述变化。

损毁下丘脑其它区域所得结果不完全一致,例如损毁下丘脑后部可抑制T、B淋巴细胞活性,但可使同种移植排斥反应增强。

损毁海马或杏仁核对胸腺和脾脏的细胞数无影响,但可使淋巴细胞对有丝分裂原的反应增强电刺激背侧中脑导水管周围灰质可抑制周围血NK细胞活性。

损毁大脑皮层也可以改变机体的免疫功能,且存在不对称现象。

切除左侧前额叶或顶叶皮层可抑制细胞免疫和体液免疫反应,切除右侧前额叶或顶叶皮层可使免疫反应增强,切除左侧或右侧枕叶均对免疫反应无影响。

2.外周神经对免疫系统的直接作用免疫器官的神经支配被视为神经免疫调节的直接通道。

形态学研究表明:胸腺、骨髓、脾脏、淋巴结以及消化道淋巴组织都有植物神经的支配。

实验证明,在自身免疫性疾病动物模型上,疾病症状加重出现交感神经支配减少,且化学切除交感神经可使病情恶化。

第五节神经-内分泌-免疫调节网络

第五节神经-内分泌-免疫调节网络
第三节 神经-内分泌- 免疫调节网络
neuroendocrineimmunoregulation network
1
掌握要点:
1.神经内分泌系统与免疫系统的相互调节 下丘脑-垂体-肾上腺轴 下丘脑-垂体-性腺轴 下丘脑-垂体-甲状腺轴 下丘脑-垂体-PRL、GH轴
2
1977年Besdovsky首次提出体内存在神经-免 疫-内分泌网络的假说。
1979年Spector将神经内分泌与免疫系统相互 作用称之为神经免疫调节,相继又提出了精神神 经免疫学、心理免疫学、行为免疫学、免疫精神 病学、思维与免疫力等新概念。
1982年,Blatock将该学科的研究领域称之为 神经免疫内分泌学(neuroimmunoendocrinology)。
3
神经-免疫-内分泌调节网络的研究成果: 1.免疫器官具有丰富的神经支配; 2.免疫器官及免疫活性细胞上可合成多种激素、
44
2.细胞因子对下丘脑-垂体-性腺轴的影响 (1)对下丘脑的影响
27
28
依据: (1)下丘脑具有高密度的IL-1受体 (2)IL-1给予途径与ACTH高峰出现时间和幅度的关系
出现高峰时间:脑室内注射﹤静脉注射(30 min)﹤ 腹腔注射(2 h) 幅度:脑室内注射>静脉注射>腹腔注射 (3)静脉注射IL-1:CRH ↑→血浆ACTH↑ 连续注射IL-1:下丘脑CRH及其mRNA↑ (4)抗CRH血清可部分阻断IL-1→ACTH↑效应
29
多数免疫指标中IL-1α﹥IL-1β 对于HPA轴IL-1α﹤IL-1β ②TNFα:下丘脑CRH↑→HPA激活 ③IL-6:下丘脑→HPA激活
30
(2)细胞因子对垂体的作用 ①IL-1 IL-1 →垂体→ACTH↑ 依据: (a)10-7mmol/L的重组人IL-1β→腺垂体细胞

免疫系统与内分泌系统的相互作用

免疫系统与内分泌系统的相互作用

免疫系统与内分泌系统的相互作用在我们的身体中,存在着两个至关重要的调节系统——免疫系统和内分泌系统。

它们就像是身体这座“大工厂”里的两个“核心部门”,各自有着独特的职责和功能,但又紧密合作、相互影响,共同维持着身体的健康和平衡。

免疫系统,大家可以把它想象成身体的“保卫部队”。

它的主要任务是识别和抵御外来的病原体,如细菌、病毒和寄生虫等,同时还要清除体内变异或受损的细胞,防止疾病的发生和发展。

免疫系统由各种免疫细胞、免疫器官和免疫分子组成,它们协同工作,形成了一道坚固的防线。

内分泌系统呢,则像是身体的“信息传递员”。

它通过分泌各种激素,将信息传递到身体的各个部位,从而调节细胞的代谢、生长、发育和生殖等生理过程。

内分泌系统中的主要成员包括下丘脑、垂体、甲状腺、胰岛、肾上腺等内分泌腺,以及它们所分泌的激素。

那么,免疫系统和内分泌系统是如何相互作用的呢?首先,激素能够影响免疫系统的功能。

例如,糖皮质激素是一种由肾上腺分泌的激素,在应激状态下会大量释放。

它可以抑制免疫细胞的活性,减少炎症反应,从而避免免疫系统过度激活对身体造成损伤。

但如果糖皮质激素长期大量分泌,就可能导致免疫功能下降,增加感染和疾病的风险。

甲状腺激素对免疫系统也有着重要的调节作用。

甲状腺功能亢进时,甲状腺激素分泌过多,会导致免疫功能增强,可能引发自身免疫性疾病;而甲状腺功能减退时,甲状腺激素分泌不足,免疫功能则会减弱。

胰岛素是调节血糖的重要激素,同时也与免疫系统有关。

胰岛素能够促进免疫细胞的生长和增殖,增强免疫应答。

相反,糖尿病患者由于胰岛素分泌不足或作用缺陷,往往免疫功能受损,容易并发各种感染。

反过来,免疫系统也会对内分泌系统产生影响。

当身体受到病原体入侵时,免疫系统会被激活,产生一系列的细胞因子和炎症介质。

这些物质不仅可以直接作用于内分泌器官,影响激素的分泌,还可以通过神经通路将信息传递给下丘脑和垂体,从而调节内分泌系统的功能。

例如,在感染期间,细胞因子如白细胞介素-1、肿瘤坏死因子α等会刺激下丘脑释放促肾上腺皮质激素释放激素,进而促进肾上腺皮质分泌糖皮质激素,以应对炎症反应。

例析神经—体液—免疫系统的相互作用

例析神经—体液—免疫系统的相互作用作者:赵国平来源:《中学生物学》2013年第10期内环境稳态是机体进行正常生命活动的必要条件,而神经-体液-免疫调节网络是机体维持稳态的主要调节机制,这说明神经系统与内分泌系统、免疫系统这三个系统具有相互的联系。

神经—体液—免疫系统的相互关系是一个重要的生理学问题,这个问题不只是关系到生理学,而且与心理学、医学有关;这也是医学的基本问题。

神经系统、内分泌系统和免疫系统有以下3个方面的关系:①这三个系统有共同的信号分子及受体。

免疫细胞分泌激素,非免疫细胞产生白细胞因子。

例如,白细胞分泌促甲状腺激素(TSH)、促肾上腺皮质激素(ACTH)、生长激素、催乳素以及下丘脑促肾上腺皮质激素释放激素(CRH)。

激素和细胞因子的受体在多种组织上发现。

脑中的神经元有免疫细胞产生的细胞因子的受体;天然杀伤细胞有阿片受体和β肾上腺素能受体。

神经系统、内分泌系统与免疫系统共同具有化学信号分子和它们的受体。

②激素和神经肽能改变免疫细胞的机能。

多年来已经知道不同的应激刺激(包括过冷、过热、中毒、感染、创伤、发热、缺氧、疼痛、疲劳、恐惧等)都可以激活下丘脑—垂体—肾上腺系统,引起血液中肾上腺皮质激素含量升高,抑制免疫机能,如抑制淋巴细胞增殖,减少抗体产生,降低天然杀伤细胞的活性等。

P物质(一种神经肽)能促进巨噬细胞的吞噬作用,促进B淋巴细胞合成免疫球蛋白,刺激肥大细胞释放组织胺。

P物质既影响非特异性免疫,又影响特异性免疫。

刺激支配骨髓的交感神经可以增加抗体合成和细胞毒T细胞的产生。

③来自免疫系统的细胞因子能影响神经内分泌机能。

应激物如细菌病毒感染、肿瘤可以通过免疫细胞释放的细胞因子在中枢神经系统中引发应激反应。

白细胞介素-1可能是这类反应中研究得最多的细胞因子。

但是淋巴细胞分泌的ACTH引发皮质醇释放也受到很大的重视。

以前已经相信皮质醇的分泌依赖于通过下丘脑CRH-腺垂体ACTH路径传达的神经信号。

神经内分泌调节

神经内分泌调节神经内分泌调节是机体对外界刺激做出反应的重要机制之一。

在人体中,神经系统和内分泌系统相互作用,通过神经递质和激素的释放,调节和平衡机体内各种生理过程。

本文将探讨神经内分泌调节的作用、机制以及其在生理和疾病中的重要性。

一、神经内分泌调节作用神经内分泌调节通过神经递质和激素的相互作用,调控机体内部各种生理过程,比如能量平衡、生长发育、免疫功能、睡眠与觉醒等。

它可以迅速调整机体状态,使其适应不同的环境和需求。

神经内分泌调节的作用可以具体分为以下几个方面:1. 能量平衡调节:神经内分泌调节对能量代谢有着重要影响。

举例来说,下丘脑-垂体-甲状腺轴通过甲状腺激素的释放,调节基础代谢率和能量消耗,维持体内能量平衡。

2. 生长发育调节:神经内分泌调节对人体的生长和发育起着至关重要的作用。

例如生长激素通过促进骨骼和肌肉的增长,调节身体的发育和成熟。

3. 免疫功能调节:神经内分泌调节与免疫系统之间存在着密切的联系。

一些神经递质和激素可以影响免疫细胞的分化、增殖和活性,调节机体的免疫功能。

4. 睡眠与觉醒调节:神经内分泌调节对睡眠和觉醒的调控至关重要。

例如褪黑素的分泌受到光暗周期的影响,调节生物钟和睡眠周期。

二、神经内分泌调节机制神经内分泌调节的机制涉及多个脑区、神经递质和激素的相互作用。

下丘脑是神经内分泌调节的核心区域之一,它通过释放促释放激素和抑制激素,调控垂体前叶激素的合成和释放。

这些激素进一步通过血液循环作用于全身,调节各个器官和组织的功能。

此外,神经内分泌调节还包括自主神经系统的参与。

交感神经和副交感神经通过释放不同的神经递质,如肾上腺素和乙酰胆碱,调节心血管、呼吸、消化等多个器官系统的功能。

三、神经内分泌调节与生理疾病神经内分泌调节在疾病的发生和发展中起着重要作用。

许多疾病与神经内分泌不平衡密切相关。

例如,肥胖症与能量平衡调节失衡有关,甲状腺功能减退与下丘脑-垂体-甲状腺轴的异常有关,糖尿病与胰岛素的分泌和作用异常有关。

神经生物学第七章 神经、内分泌与免疫系统的关系

▪ 经过40多年的努力,垂体分泌的所有经典激素均在下丘 脑中找到了其特异性的调节激素,完善了垂体激素经典 调控的概念。
下丘脑调节因子的化学性质和主要作用
(3) 下 丘 脑 调 节 性 多 肽 发 挥作用的途径
下丘脑—垂体门脉系统
下丘脑的促垂体区核团神 经元轴突投射到正中隆 起,将下丘脑调节肽释 放入第一级毛细血管网 (下丘脑-垂体门脉系 统),到第二级毛细血 管网转运到腺垂体,调 节后者的分泌活动。
神经垂体主要贮存抗利尿激素 (antidiuretic hormone, ADH, 血管升压素)和催产素 (oxytocin, OXT)
下丘脑的内分泌区主要集 中在正中隆起、弓状核、 视交叉上核、腹内侧核和 室周核等基底部的“促垂 体 区”(hypophysiotropic area),以及视上核、室旁 核等核团
海马、杏仁核破坏:免疫功能增强:淋巴细胞绝对 数、免疫球蛋白、淋巴细胞反应性和NK细胞活 性增加
3、应激与免疫 ➢应激的类型:过冷、过热、中毒、感染、
创伤、外科手术、发热、缺氧、疼痛、过 劳、恐惧等
➢一般情况下,应激可激活下丘脑-垂体- 肾上腺轴的作用,引起肾上腺皮质激素升 高,导致免疫功能下降
二)、神经递质对免疫系统的调节作用 1、儿茶酚胺 情绪激动、恐惧使机体儿茶酚胺升高或外给儿茶酚胺:
数量
4、组胺 抑制单核细胞产生IL-1、IFN-、IL-2 抑制巨噬细胞产生补体
三)、神经肽对免疫系统的调节作用
神经肽(neuropeptide):一类生物活性肽。 1、内源性阿片肽:-内啡肽(endophin)、亮啡
肽、甲啡肽
对免疫功能的作用较复杂:不能定论。 低浓度-内啡肽促进淋巴细胞转化,高浓度抑制
▪ TRH成为第一个被分离纯化并被阐明结构与功能 的下丘脑激素,它为3肽,因此也是迄今为止所 知的最小的活性肽之一。

神经、内分泌和免疫系统之间的相互关系

内分泌系统与神经、免疫系统的功能联系自从1928 年Ernest Scharrer 发现硬骨鱼下丘脑的神经细胞具有内分泌细胞的特征,并最先提出神经内分泌(neuroendocrine )概念后,启发了有关领域研究的新思路。

随后众多的研究逐渐证实了神经系统与内分泌系统活动联系紧密。

近二十余年来,分子生物学技术以及免疫学的迅速发展,又促使人们发现神经、内分泌和免疫系统能够共享某些信息分子和受体,都通过类似的细胞信号转导途径发挥作用,这又使人们意识到机体还存在一个调节系统——免疫系统。

Besedovskyn 于1977 年最先提出神经- 内分泌- 免疫网络(neuroendocrine-immune network )的概念。

三个系统各具独特功能,相互交联,优势互补,形成调节环路(图1 )。

这个网络通过感受内外环境的各种变化,加工、处理、储存和整合信息,共同维持内环境的稳态,保证机体生命活动正常运转。

图1 内分泌、神经和免疫系统的调节功能联系GH :生长激素;PRL :催乳素一、神经- 内分泌- 免疫网络的物质基础神经、内分泌和免疫三大调节系统以共有、共享的一些化学信号分子为通用语言进行经常性的信息交流,相互协调,构成整体性功能活动调制网络。

内分泌、神经和免疫系统组织都存在共同的激素、神经递质、神经肽和细胞因子(cytokine ),而且细胞表面都分布有相应的受体。

大部分在脑内发现的神经肽和激素同时也存在于外周免疫细胞中,而且结构和功能与神经、内分泌细胞的完全相同。

再如,淋巴细胞和巨噬细胞等存在生长激素(GH )、促肾上腺皮质激素(ACTH )受体和内啡肽受体等,胸腺细胞也分布有生长激素释放激素(GHRH )、催乳素(PRL )等受体。

利用组织化学、放射免疫自显影等技术证实,无论在基础状态下还是诱导后,脑组织中都存在多种细胞因子的受体或相应的mRNA 。

中枢神经系统也存在白介素和干扰素等细胞因子。

在正常情况下,内分泌系统就存在一些细胞因子,而且经诱导后还可以产生许多细胞因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档