苏科版数学七年级上学习笔记(有理数)(整章思维导图)
苏科版七上有理数章节思维导图

有理数概念具有相反意义的量如盈利与亏损,收⼊与⽀出,上升和下降等数轴原点正⽅向单位⻓度有理数⽐较⼤⼩:①在数轴上,两个不同的数,右边的数⼤于左边的数②⼤于零的数(正数),在原点的右侧③⼩于零的数(负数)在原点的左侧相反数只有符号不同的两个数,互为相反数如果a+b=0,则a和b互为相反数如果两个数商为-1,则这两数互为相反数绝对值正数的绝对值等于它本⾝,零的绝对值是零,负数的绝对值等于它的相反数绝对值具有⾮负性,去绝对值符号化简是⼀类重要题型⽐较⼤⼩:两个数同为负数,则绝对值⼤的反⽽⼩有理数的分类按定义分按正负性分整数分数正整数零负整数正分数负分数注意:有限⼩数,⽆限循环⼩数百分数都可以转化为分数正有理数零负有理数有理数的运算有理数的加法加法法则运算律同号两数相加,取相同的符号,并把绝对值相加异号两数相加,绝对值相等时和为零,绝对值不相等时,取绝对值较⼤的加数的符号,并把较⼤的绝对值减去,较⼩的绝对值。
0加上任何数都等于它本⾝交换律a+b=b+a结合律(a+b)+c=a+(b+c)有理数的减法法则:减去⼀个数,等于加上这个数的相反数有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘零与任何数相乘都得零运算律交换律:ab=ba结合律:(a×b)×c=a×(b×c)分配律:(a⼗b)×c=ac+bc有理数除法法则除以⼀个不等于零的数,等于乘以这个数的倒数两个不等于零的数相除,同号得正、异号得负,并把绝对值相除零除以任何⼀个不等于零的数,都得零有理数的乘⽅混合运算的顺序正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数科学计数法的应⽤:a×10的n次⽅(1≤⼁a⼁<10,n为整数)先乘⽅,再乘除,后加减,有⼩括号的先算⼩括号⾥,同级运算,按照从左⾄右顺序三要素⾃然数。
七年级数学上册思维导图

⎪思维导图 ⎪⎪ ⎩分数 ⎪按性质符号分⎪⎨0 ⎪负有理数 ⎪ ⎪ ⎩ ⎧相反数 — —只有符号不同的两个数,叫做互为相反数 ⎪ ⎪绝对值 — — 叫做数a 的绝对值 ⎪ ⎪ 有理数⎨相关概念⎨ ⎪ ⎪ 把一个数表示乘a ⨯ 10 n 的形式(其中1 ≤ a < 10, ⎪⎩ n 是正整数),这种记数方法叫做科学记数法 ⎧ ⎪⎪有理数的减法法则 ⎪ ⎪ ⎪有理数的除法法则 ⎪ ⎪ ⎪ ⎪⎩乘方的运算符号法则 ⎪运算⎨ ⎧ ⎧加法交换律 ⎪交换律⎨ ⎪ ⎩乘法交换律⎪ ⎪运算律⎪结合律⎧加法结合律 ⎪ ⎪ ⎪ ⎩乘法结合律⎪ ⎪分配律 ⎪ ⎪ ⎪ ⎪⎧第一章 有理数⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ⎧整数 ⎪ ⎪按定义分⎨ ⎪ ⎪分类⎨ ⎧正有理数 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 一般地,数轴上表示数a 的点与原点的距离, ⎪ ⎪ ⎪ ⎪ ⎪倒数 — —乘积是1的两个数互为倒数 ⎪ ⎪ 求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂 ⎪ ⎪乘方 — — ⎪ ⎪ 相同的因数叫做底数,相同因数的个数叫做指数 ⎪ ⎪ ⎪ ⎪科学记数法 — — ⎪ ⎪ ⎪ ⎧有理数的加法法则 ⎪ ⎪ ⎪ ⎪ ⎪法则⎨有理数的乘法法则 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎩ ⎩⎧ ⎪定义 — —由数或字母的积组成的式子 ⎪ ⎪单项式⎨ ⎪ ⎪ ⎧定义 — —几个单项式的和 ⎪ ⎪项 — —组成多项式的每个单项式 多项式⎨ 整 ⎪ 加 ⎪ 作为合并后项的系数 整式的加减⎨ ⎪ ⎪去括号⎨ ⎪括号外因数为负 — — ⎪ ⎪ ⎧去括号 ⎪ ⎪ ⎪步骤⎪ ⎪ ⎪⎩合并同类项⎩ ⎨ ⎩ ⎩ 第二章 整式的加减思维导图⎧用字母表示数 ⎪ ⎪ ⎪ ⎪ 系数 — —单项式中的数字因数 ⎪ ⎪ ⎪ ⎩次数 — —单项式中所有字母的指数的和 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪常数项 — —不含字母的项 式 ⎪ ⎪ 的 ⎪ ⎪次数 — —多项式中次数最高项的次数 ⎪ ⎧同类项 — —所含字母相同并且相同字母的指数也相同 减 ⎪ ⎪⎪ ⎪ 把同类项的系数相加,所得的结果 ⎪ ⎪合并同类项 — — ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧括号外因数为正 — — ⎪ ⎪ ⎪去括号后原括号内各项的符号与原来的符号相同 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪去括号后原括号内各项的符号与原来的符号相反 ⎪ ⎪ ⎪ ⎩⎪ ⎪方程的解:使方程中等号左右两边相等的未知数的值 ⎧⎪性质1:等式两边加(或减)同一个数(或式子),结果仍相等 ⎪等式的性质⎨ 一 ⎪ ⎪去括号 一 ⎪ ⎨ 程 ⎪ ⎪系数化为1 ⎪一次方程 ⎪⎨列:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少 ⎪ ⎪ ⎩ ⎩ ⎨ ⎩ ⎩第三章第四章 一元一次方程思维导图⎧ ⎧方程:含有未知数的等式 ⎪ ⎪ ⎪ ⎪一元一次方程:只含有一个未知数(元),未知数的次数都是1, ⎪ ⎪⎪等号两边都是整式 ⎪一元一次方程⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪解方程:求方程的解的过程 ⎪ ⎪ ⎪ ⎪ ⎪性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等 ⎪⎧去分母 元 ⎪ ⎪ ⎪ ⎪ 次 ⎪解一元一次方程的步骤⎪移项 方 ⎪ ⎪⎪ ⎪合并同类项 ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎧审:弄清题意,分清已知量和未知量,明确各数量间的关系 ⎪ ⎪ ⎪ ⎪设:设未知数,并且用含未知数的代数式表示与所列方程有关的数量 ⎪ ⎪ ⎪列一元 ⎪ ⎪解应用题 ⎪一个数字列方程 ⎪ ⎪ ⎪解:解所列的方程,求出未知数的值以及题目中所要求的相关数量的值 ⎪ ⎪ ⎪验:检验所求的解是否符合题意,是否符合实际意义第五章第六章几何图形初步思维导图⎧从正面看 ⎪立体图形⎨从不同的方向看立体图形⎨从左面看 ⎪ ⎪ ⎪从上面看 ⎩ ⎪ ⎪ ⎪立体图形的平面展示图⎪ ⎧ ⎧ ⎪ ⎪ 直线⎪ ⎪ ⎨特点 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪线⎨ ⎧表示方法 射线⎨ ⎪⎪ ⎪ ⎪ ⎪ 特点⎩ ⎪ 线段 段最短⎨基本事实:两点之间线 ⎪平面图形⎨ ⎪ ⎪线段的中点⎪ ⎪ ⎪ ⎪ ⎧定义 ⎪ ⎪ ⎪ ⎪表示方法 ⎪ ⎪ ⎪角⎪⎨ ⎧互余⎪ ⎪两角的特殊关系 ⎨ ⎪⎩ ⎩角的度量 ⎪ ⎧表示方法 ⎪ ⎪ ⎪基本事实:两点确定一⎪ 条直线 ⎪ ⎪ ⎪特点 ⎪ ⎪ ⎪比较方法⎪ ⎪ ⎪ ⎪ ⎩线段的和、差与画法 ⎪ ⎪ ⎧ ⎧ ⎪ ⎪常见的立体图形 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 几何图形初步⎨ ⎧表示方法 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪⎪ ⎪两点之间的距离 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪比较大小的方法 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩互补 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩。
七年级数学第一章有理数思维导图

1.1正数和负数概念正数:比0大的数,如3,4,5.......负数:比0小的数,如-3,-4,-5.......0:既不是正数也不是负数用字母表示数若a为正数,-a为负数若a为负数,-a为正数;如-2为负数,-(-2)=2为正数若a为0,-a也为0具有相反意义的量,如零上8℃:+8℃零下8℃:-8℃往东走20米:+20米往西走80米:-80米0表示的意义表示没有。
如教室里有0人,即教室里没有人是正数和负数的分界线1.2有理数1.2.1有理数按意义分整数正整数负整数分数正分数负分数按性质符号分正有理数正整数正分数负有理数负整数负分数1.2.2数轴有原点、正方向、单位长度的一条直线任何有理数都能找到一个点与之对应,右边的数大于左边的数两点间距离:右边点对应的数减左边点对应的数1.2.3相反数只有符号不相同的两个数字互为相反数,a的相反数记为-a0的相反数是0,正数的相反数为负,负数的相反数为正一个数和它的相反数关于原点对称互为相反数的两个数相加等于01.2.4绝对值数轴上表示数a的点与原点的距离叫做数a 的绝对值,写为|a|互为相反数的两个数:绝对值相等两个负数,绝对值大的反而小,绝对值小的反而大若a>0,则|a|=a;若a<0,则|a|=-a;|0|=01.3有理数的加减法1.3.1加法同号两数相加:取相同的符号,绝对值相加;如-3+(-4)=-7异号两数相加:谁绝对值大,就取谁的符号;再用大绝对值减小绝对值;如-5+3=-2互为相反数的两数相加得0,任何数加0等于它本身1.3.2减法减去一个数,等于加上这个数的相反数;即a-b=a+(-b)如:5-(-3)=5+3=8加减混合相反数结合法:互为相反数的两个数相加等于0同分母结合法:把含相同分母的数或可通分的数结合在一起有带分数时先拆分为整数和分数,再结合分数和小数混合时统一为分数或统一为小数同号结合法:把符号相同的加数相结合(-23)-(-18)+(-15)-(+1)+(+23)原式=-23+(+18)+(-15)+(-1)+(+23)=(-23-25-1)+(18+23)=-7凑整法:把和为整数的加数相结合(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)=(6.6-2.6)+(-5.2-4.8)+3.8=-2.2分组结合法2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0先拆项后结合(-2-4-6-8...-100)+(1+3+5+7 (99)原式=(-2+1)+(-4+3)+......+(-100+99)=-501.4有理数的乘除法1.4.1乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数乘0得0多个有理数相乘1.4.2除法除以一个数等于乘以这个数的倒数两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个非0数,等于0;0不能作除数只要一个因数为0则积为0如果因数都不是0,则结果符号根据负数的个数来定:奇负偶正1.5.1有理数的乘方求n个相同因数的积的运算,叫做乘方在aⁿ中,a 叫做底数,n 叫做指数。
初中数学七年级上册思维导图

初中数学七年级上册思维导图一、数的认识1. 整数自然数:0, 1, 2, 3,正整数:1, 2, 3,负整数:1, 2, 3,整数:自然数和负整数的统称2. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘以或除以同一个非零整数,分数的值不变3. 小数小数的表示方法:整数部分和小数部分小数的性质:小数点向右移动一位,相当于乘以10;小数点向左移动一位,相当于除以10二、数的运算1. 整数的运算加法:将两个整数相加减法:将一个整数从另一个整数中减去乘法:将两个整数相乘除法:将一个整数除以另一个非零整数2. 分数的运算加法:将两个分数的分子相加,分母保持不变减法:将一个分数的分子从另一个分数的分子中减去,分母保持不变乘法:将两个分数的分子相乘,分母相乘除法:将一个分数的分子乘以另一个分数的分母,分母乘以另一个分数的分子3. 小数的运算加法:将两个小数的小数部分相加,整数部分相加减法:将一个小数的小数部分从另一个小数的小数部分中减去,整数部分相减乘法:将两个小数相乘除法:将一个小数除以另一个非零小数三、方程与不等式1. 方程一元一次方程:ax + b = 0(a, b为常数,x为未知数)方程的解:使方程成立的未知数的值2. 不等式一元一次不等式:ax + b > 0 或 ax + b < 0(a, b为常数,x 为未知数)不等式的解集:满足不等式的未知数的值的集合四、函数与图形1. 函数定义:函数是一种特殊的关系,每个输入值对应唯一的输出值表示方法:函数关系可以用函数表达式、函数图像、函数表格等方式表示2. 图形直线:一次函数的图像抛物线:二次函数的图像双曲线:反比例函数的图像五、统计与概率1. 统计数据的收集与整理:收集数据、整理数据、制作统计图表数据的分析与解释:分析数据、得出结论、解释结论2. 概率概率的定义:某个事件发生的可能性概率的计算:根据事件发生的次数和总次数计算概率初中数学七年级上册思维导图六、几何图形的认识1. 点、线、面点:没有长度、宽度和高度的几何元素线:只有长度没有宽度和高度的几何元素面:具有长度和宽度的几何元素2. 平面图形三角形:由三条线段组成的闭合图形四边形:由四条线段组成的闭合图形圆:由一个点到平面上所有点的距离相等的点的集合3. 空间图形立方体:由六个正方形面组成的立体图形圆柱:由两个平行圆面和一个侧面组成的立体图形圆锥:由一个圆面和一个侧面组成的立体图形七、几何图形的性质1. 三角形的性质内角和定理:三角形的内角和等于180度等腰三角形的性质:底角相等,底边上的高、中线、角平分线互相重合直角三角形的性质:直角边上的高、中线、角平分线互相重合2. 四边形的性质平行四边形的性质:对边平行且相等,对角相等,对角线互相平分矩形的性质:四个角都是直角,对边平行且相等,对角线互相平分且相等菱形的性质:四个角都是直角,对边平行且相等,对角线互相垂直平分3. 圆的性质圆的周长公式:C = 2πr(r为圆的半径)圆的面积公式:A = πr²圆的性质:圆心到圆上任意一点的距离都相等八、几何图形的计算1. 三角形的计算三角形的周长:三条边的长度之和三角形的面积:底乘以高除以22. 四边形的计算四边形的周长:四条边的长度之和四边形的面积:根据不同类型的四边形使用相应的公式计算3. 圆的计算圆的周长:2πr圆的面积:πr²九、综合应用1. 解决实际问题利用数学知识解决生活中的实际问题,如计算面积、周长、体积等运用几何知识解决空间布局问题,如设计家具布局、建筑平面图等2. 数学建模将实际问题抽象为数学模型,如建立函数模型、方程模型等利用数学模型解决问题,如预测趋势、优化资源配置等初中数学七年级上册思维导图十、数学思维与方法1. 逻辑推理演绎推理:从一般到特殊的推理过程归纳推理:从特殊到一般的推理过程类比推理:通过比较不同事物之间的相似性进行推理2. 数学建模实际问题抽象:将实际问题转化为数学问题建立模型:选择合适的数学模型来描述问题模型求解:利用数学方法求解模型,得到问题的解答3. 解决问题的策略分析问题:明确问题的目标和已知条件寻找规律:通过观察、实验、推理等方式寻找解决问题的规律制定计划:根据规律制定解决问题的步骤和方法执行计划:按照计划逐步解决问题检验结果:验证解答的正确性,对结果进行评估和反思十一、数学实验与探究1. 数学实验通过实际操作和观察,验证数学结论的正确性培养学生的动手能力和观察能力培养学生的探究精神和创新意识2. 数学探究提出问题:发现问题并提出有意义的数学问题收集信息:查阅资料、进行调查、进行实验等,获取解决问题的信息分析信息:对收集到的信息进行分析和整理提出假设:根据分析结果提出可能的解答或解决方案实验验证:通过实验或推理验证假设的正确性得出结论:根据实验结果或推理结果得出结论十二、数学交流与合作1. 数学交流表达观点:清晰地表达自己的数学观点和思考倾听他人:耐心倾听他人的数学观点和思考互相讨论:与他人进行数学问题的讨论和交流共享资源:分享自己的数学知识和经验,互相学习2. 数学合作分工合作:在解决问题或完成数学任务时,进行合理的分工和合作互相支持:在合作过程中互相支持和帮助共同解决问题:共同面对问题,共同寻找解决方案分享成果:分享合作成果,互相学习和借鉴初中数学七年级上册思维导图一、数与代数1. 实数(1)有理数:包括整数和分数,整数又分为正整数、0和负整数,分数分为正分数和负分数。
七年级上册第三章数学思维导图

七年级数学上册知识点思维导图1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7. 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17. 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18. 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
21. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数。
22.根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23.做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号.中括号.大括号依次进行。
七年级数学全部知识点导图

七年级数学全部知识点导图
本文旨在为七年级学生提供一张数学全部知识点导图,帮助学
生理清知识框架,便于复习和巩固。
导图分为数学综合、代数、
几何、统计四个部分。
一、数学综合
数学综合部分主要包括数的性质、分数、小数、百分数、倍数、因数、公因数、最大公因数等知识点。
导图中箭头指向的是各知
识点的关联性,如分数和小数可以互相转换,而最大公因数是最
大的公共因数,常用于约分等。
二、代数
代数部分主要包括式子的认识、一元一次方程式、整式的加减、一元一次方程式的应用等内容。
导图中代数部分的知识点有一定
的递进关系,比如式子的认识是初学代数的基础,一元一次方程
式的应用则需要对已学知识进行综合应用。
三、几何
几何部分主要包括角、线段、中线、中垂线、角平分线、垂线
等知识点。
导图中也包括了一些几何基本定理,如“直角三角形斜
边平方等于两直角边平方和”,以及相关应用。
四、统计
统计部分主要包括数据的收集、整理、描述和分析等内容。
导
图中涵盖了一些统计中常用的图表,如折线图、柱状图、饼图等,以及如何根据数据进行分析和判断等知识点。
总结
通过这份数学全部知识点导图,学生可以清晰地掌握数学知识
的逻辑框架。
在复习和巩固过程中,可以更加高效的利用时间,
查漏补缺,及时发现问题,从而提升数学学习成绩。
同时,也可
以为学习后续高中数学打下坚实的基础。
七年级数学上册思维导图

第一章有理数思维导图整数按定义分分数分类正有理数按性质符号分0负有理数相反数——只有符号不同的两个数,叫做互为相反数绝对值——一般地,数轴上表示数a的点与原点的距离,叫做数 a的绝对值倒数——乘积是 1的两个数互为倒数有理数相关概念求 n个相同因数的积的运算叫做乘方,乘方的结果叫做幂乘方——相同的因数叫做底数,相同因数的个数叫做指数n的形式(其中 1 a 10,n是正科学记数法——把一个数表示乘a 10整数),这种记数方法叫做科学记数法有理数的加法法则有理数的减法法则法则有理数的乘法法则有理数的除法法则乘方的运算符号法则运算加法交换律交换律乘法交换律加法结合律运算律结合律乘法结合律分配律第二章整式的加减思维导图用字母表示数定义——由数或字母的积组成的式子单项式系数——单项式中的数字因数次数——单项式中所有字母的指数的和定义——几个单项式的和项——组成多项式的每个单项式整多项式常数项——不含字母的项式的次数——多项式中次数最高项的次数加同类项——所含字母相同并且相同字母的指数也相同减把同类项的系数相加,所得的结果合并同类项——作为合并后项的系数括号外因数为正——整式的加减去括号后原括号内各项的符号与原来的符号相同去括号括号外因数为负——去括号后原括号内各项的符号与原来的符号相反去括号步骤合并同类项思维导图一元一次方程第三章一元一次方程方程:含有未知数的等式一元一次方程:只含有一个未知数 (元 ),未知数的次数都是 1,等号两边都是整式方程的解:使方程中等号左右两边相等的未知数的值解方程:求方程的解的过程性质 1:等式两边加 (或减 )同一个数 (或式子 ),结果仍相等等式的性质性质 2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等一元去分母一去括号次解一元一次方程的步骤移项方程合并同类项系数化为 1审:弄清题意,分清已知量和未知量,明确各数量间的关系设:设未知数,并且用含未知数的代数式表示与所列方程有关的数量列一元列:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少一次方程一个数字列方程解应用题解:解所列的方程,求出未知数的值以及题目中所要求的相关数量的值验:检验所求的解是否符合题意,是否符合实际意义第四章几何图形初步思维导图常见的立体图形从正面看立体图形从不同的方向看立体图形从左面看从上面看立体图形的平面展示图表示方法直线特点基本事实:两点确定一条直线线表示方法射线特点几何图形初步表示方法特点比较方法线段基本事实:两点之间线段最短平面图形两点之间的距离线段的中点线段的和、差与画法定义表示方法比较大小的方法角互余两角的特殊关系互补角的度量七是对工作细节重视不够。
苏科版数学七年级上册第二章有理数总结思维导图脑图

有理数分类按定义实数有理数整数正整数负整数分数正分数负分数无理数无限不循环小数有理数正有理数正整数正分数负有理数负整数负分数2.8有理数的混合运算顺序先乘方,后乘除,再加减,如果有括号,先进行括号内的运算有理数的加减法混合运算可以使用省略加号的形式2.1正数与负数正数和负数像8848.86、100、357、78这样的数是正数像-154、-38.87、-117.3、-1这样的数是负数0既不是正数,也不是负数整数与分数整数正整数、负整数、零统称为整数分数正分数,负分数统称为分数2.2有理数与无理数意义有理数我们把能够写成分数形式m/n(m、m是整数,n≠0)的数叫做有理数无理数无限不循坏小数叫做无理数2.3数轴怎么画1.画一条水平直线,并在这条直线上取一点表示0,我们把这个点称为原点2.规定直线上从原点向右为正方向(画箭头表示),向左为负方向3.取适当长度(如1cm)为单位长度,在直线上,从原点向右每隔一个单位长度取一点,依次表示1,2,3······从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3······三要素原点,正方向,单位长度示例比大小在数轴上表示的两个数,右边的数总比左边的数大正数都大于0,负数都小于0,正数大于负数2.4绝对值与相反数绝对值意义数轴上表示一个数的点与原点的距离叫做这个数的绝对值比大小两个正数,绝对值大的正数大两个负数,绝对值大的负数小相反数意义符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数易错点0的相反数是0一个数的绝对值与这个数本身或它的相反数有什么关系正数的绝对值是它本身负数的绝对值是它的相反数0的绝对值是0倒数乘积为1的两数互为倒数1的倒数是10没有倒数2.5有理数的加法与减法有理数的加法同号两数相加,取相同的符号,并把绝对值相加异号两数相加绝对值相等时,和为0绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值一个数与0相加,仍得这个数运算律交换律 a+b=b+a结合律 (a+b)+c=a+(b+c))有理数的减法减去一个数,等于加上这个数的相反数 a-b=a+(-b))2.6有理数的乘法与除法有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘,0与任何数相乘都得0运算律交换律 axb=bxa结合律 (axb)xc=ax(bxc)分配律 (a+b)xc=axc+bxc有理数的除法法则除以一个不等于0的数,等于乘这个数的倒数两个不等于0的数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0注意0不能做除数2.7有理数的乘方乘方概念求相同因数的积的运算叫做乘方,相同因数叫做底数,相同因数的个数叫做指数,乘方运算的结果叫幂法则正数的任何次幂都是正数负数的奇数次幂是负数,负数的偶数次幂是正数科学记数法概念一般的,一个大于10的数可以表示成a×的形式10n注意1≤a<10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版数学七年级上学习笔记(有理数)
泗洪县龙集中学尹寒整理提供
思维导图
有理数:
绝对值性质
1.有关概念
倒数:
定义:
乘方性质
按定义分类:
2. 分类
按正、负分类
3. 大小比较利用数轴比较大小:在数轴上表示的两个数,右边的数总比
左边的数大
利用绝对值比较大:两个负数绝对值大的反而小。
加法:同号两数相加;异号两数相加;互为相反数的两数相加;与0相加
减法:减去一个数,等于加上这个数的相反数
乘法:两数相乘,同号得正,异号得负,并把绝对值相乘
法则除法:除以一个不为0的数,等于乘这个数的倒数
先乘方,再乘除,最后加减
混合运算同级运算按从左到右的顺序进行
如果有括号,先进行括号内的运算
4.运算
交换律加法交换律:a+b=b+a
乘法交换律:ab=ba
运算律结合律:加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(ab)c=a(bc)
分配律: a(b+c)=ac+bc
数学知识:
毕达哥拉斯学派眼中的数:“l”是数的第一原则,万物之母,也是智慧;“2”是对立和否定的原则,是意见;“3’’毒万物的形体和形式;“4’’是正义,是宇宙创造者的象征;“5”是雄性与雌性的结合,也是婚姻;“6”是神的生命,是灵魂;“7”是机会;“8”是和谐,也是爱情和友谊;“9”是理性和强大:“10”包容了一切数目.是圆满和美好.。