用三线摆法测定物体的转动惯量
用三线扭摆法测定物体的转动惯量

实验4-3 用三线扭摆法测定物体的转动惯量转动惯量是刚体转动惯性大小的量度,它与刚体的质量、转轴位置及质量相对转轴的分布情况有关。
对于形状简单规则的刚体,测出其尺寸和质量,可用数学方法计算出转动惯量,而对形状复杂的刚体用数学方法求转动惯量非常困难,一般要通过实验方法来测定。
三线扭摆法测转动惯量是一种简单易行的方法。
【实验目的】1.学会使用三线扭摆法测定圆盘和圆环绕其对称轴的转动惯量。
2.学习使用MUJ-5B 计时计数测速仪测量周期。
3.研究转动惯量的叠加原理及应用。
【实验器材】三线扭摆、钢直尺、游标卡尺、水准仪、钢圆环、铝圆环、MUJ-5B 计时计数测速仪。
【实验原理】三线扭摆装置如图4-3-1a 所示。
上、下两个圆盘均处于水平,圆盘A 的中心悬挂在支架的横梁上,圆盘B 由三根等长的弦线悬挂在A 盘上。
三条弦线的上端和下端分别在A 圆盘和B 圆盘上各自构成等边三角形,且两个等边三角形的中心与两个圆盘的圆心重合。
A 盘可绕自身对称轴12O O 转动,若将A 盘转动一个不大的角度,通过弦线作用将使B 盘摆动,B 盘一方面绕轴12O O 转动,同时又在铅直方向上做升降平动,其摆动周期与B 盘的转动惯量大小有关。
设B 盘的质量是0m ,当它从平衡位置开始向某一方向转动角度θ时,上升高度为h (如图4-3-1b 所示),那么B 盘增加的势能为=p E 0m gh (4-3-1)这时B 圆盘的角速度为d dtθ,B 盘的动能为 201()2K d E J dtθ= (4-3-2) 式中0J 是B 盘绕自身中心轴的转动惯量。
如果略去摩擦力,则圆盘系统的机械能守恒,即2001()2d J m gh dtθ+= 常量 (4-3-3) 设悬线长为l ,上圆盘悬线到盘心的距离为r ,下圆盘悬线到盘心的距离为R 。
当下圆盘B 转一小角度θ(05<)时,圆盘上升高度h ,从上盘a 点向下作垂线,与升高前、后的下盘分别交于c 、1c ,悬线端点b 移到位置1b ,因而下盘B 上升高度为1h ac ac =-1212)()(ac ac ac ac +-= (4-3-4)因为 22222()()()()ac ab bc l R r =-=--2221111()()()ac ab b c =-222(2cos )l R r Rr θ=-+- 所以21122sin ()2(1cos )2Rr Rr h ac ac ac ac θθ⨯-==++ (4-3-5)在悬线l 较长而B 盘的扭转角θ很小时,有12ac ac H +≈, sin()22θθ≈其中H 为两圆盘之间的距离。
用三线摆法测定物体的转动惯量 -2015.5.

实验步骤: 1、调:水平、三线等长 水平——使转轴与圆盘垂直
公式推导时要求两盘平行——三线等长
支架水平:调底座3螺丝——使上盘 水平仪的气泡在中间 技巧:根据气泡所在方位(高),确 定要调的螺丝,及方向。 注意:气泡移动迟缓,当气泡正在 移动时,暂停调节。
气泡
2、 三线等长: 调三线长度,使下 盘水平仪的气泡在中间
转动惯量是刚体转动惯性的量度 (类似:质量是物体惯性的量度)
物体对某轴的转动惯量越大,则绕该轴转动状态 就越难改变。
转动惯量与刚体的质量、形状及转轴的位置有关.
同一个刚体对不同转轴的转动惯量是不同的
o o´ 1 ml I = 12
2
o
o´ 1 2 m l I = 3
m 2 2 I 环 (R1 R2 ) 2
用三线摆法测定物体的转动惯量
三线摆:是将半径不同的二圆盘,用三条等长 的线联结而成。
下盘可绕中心线扭转,其扭 转周期和下盘的质量和质量分布 有关。
改变下盘的转动惯量(质量、质 量分布)时,扭转周期发生变化。 三线摆就是通过测量它的扭 转周期,求出任一质量已知物体 的转动惯量。
三线摆法是通过扭转运动测量转动惯量的一种方法。 在外力作用下,形状和大小都不 发生变化的物体.是理想模型
6、游标卡尺分别测 量出待测圆环的内、 外直径。(在环的不 同处测量) 7、用米尺测出H ( H为上下圆盘间的距 离,即:悬线对应的 垂直高度。) 。
a
r
b
R
3 r a 3
3 R b 3
8、记录下圆盘和待测圆环的质量m0、 m
项目
次数
上盘悬 下Leabharlann 悬孔 待测圆环 孔间距 间距b 外直径D1 内直径D2 a(cm) (cm) (cm) (cm) 用游标卡 尺测3次
《用三线摆法测定物体的转动惯量》的示范报告

《用三线摆法测定物体的转动惯量》的示范报告
一、实验目的
本次实验的目的是使用三线摆法来测量物体的转动惯量。
二、实验原理
三线摆定律是一种使用频率敏感网络来测定物体转动惯量的力学原理。
它规定,一个物体如果经过特定角度的摆动旋转,其转动惯量和角速度的乘积是恒定的,这是物体的允许转动能量的最大值。
由此可以用来测量物体的转动惯量。
三、实验步骤
1.准备实验设备:普通支架、振子、底座、重量探头、小型马达等实验设备。
2.根据实验要求,按照规定的尺寸安装摆放实验设备,即将普通支架、振子、底座、重量探头和小型马达依次摆放设备,在摆放时要求牢固,使实验设备不会因振动而变形或改变大小。
3.根据三线摆定律,把小型马达的电源开关打开,比如设置110V的电源,使小型马达向相应方向运转起来。
4.不断调整实验设备的恒定摆放角度,观察马达的转速,然后写下每次实验参数。
5.根据实验参数,以及三线摆定律,用计算机计算物体的转动惯量,将结果写入文件中。
四、实验结果
根据实验参数,本次实验的转动惯量的结果如图:
五、总结
通过本次实验,可以熟悉三线摆测定物体转动惯量的实验原理与测量方法,了解物体转动动量的大小变化和转动频率之间的关系,并能够掌握利用物理原理测量物体动量的能力。
《用三线摆法测定物体的转动惯量》简明实验报告

《用三线摆法测定物体的转动惯量》简明实验报告实验目的:通过使用三线摆法,测定不同物体的转动惯量,并探究物体质量、几何形状及质心位置对转动惯量的影响。
实验原理:转动惯量是描述物体转动惯性的物理量,表示了物体对转动所表现出的惯性大小。
对于一个质量为m、质心到转轴距离为r的物体,其转动惯量可以通过以下公式计算得出:I=m*r^2而对于一个不规则形状的物体,可以通过将其分解为一组质点,然后分别计算每个质点的转动惯量,并将其求和来得到总转动惯量:I=∑(m_i*r_i^2)在使用三线摆法进行测量时,需要固定物体在转轴上,并通过三根细线将物体悬挂起来。
当物体开始转动时,通过测量物体的摆动周期T和细线长度L,可以利用以下公式计算出转动惯量:I=(T^2*m*g*L)/(4π^2)实验装置:1.一个三线摆装置2.不同形状、不同质量的物体(如圆环、长方体、球体等)3.量角器4.绳子5.计时器6.秤实验步骤:1.将三线摆装置固定在桌面上,并调整好其水平度。
2.选择一个物体,将其通过一根细线绑在摆装置上,并调整好细线的长度,使得物体可以自由摆动。
3.将量角器放在与物体摆动平面垂直的位置,用来测量摆动的振幅角。
4.将绳子固定在物体上,并通过一张纸卡片保持绳子长度不变。
这样可以控制绳子长度的一致性。
5.用计时器测量物体的摆动周期T,反复测量多次以取得平均值。
6.用秤测量物体的质量m,并记录下来。
7.将摆装置往一侧推动,观察物体的摆动情况。
如果摆动不稳定,要重新调整摆装置和细线的位置。
8.重复步骤2-7,测量其他不同形状、不同质量的物体。
实验结果:根据测量得到的摆动周期T、细线长度L、质量m以及重力加速度g,可以计算出物体的转动惯量I。
将测量结果整理成表格,并绘制转动惯量与物体质量、几何形状及质心位置的关系图。
实验讨论:通过实验结果可以看出,质量、几何形状及质心位置都对物体的转动惯量有影响。
质量越大的物体,其转动惯量也越大;几何形状越复杂的物体,其转动惯量也越大;质心离转轴越远的物体,其转动惯量也越大。
三线摆法测定物体的转动惯量

三线摆法测试物体的转动惯量【一】实验目的1. 学会用三线摆测定物体的转动惯量。
2. 学会用累积放大法测量周期运动的周期。
3. 验证转动惯量的平行轴定理。
【二】实验仪器及使用方法三线摆、水准仪、停表、米尺、游标卡尺、物理天平以及待测物体等。
1. DH 4601转动惯量测试仪 1台 2. 实验机架 1套 3. 圆环 1块 4. 圆柱体 2个仪器操作打开电源, 程序预置周期为T=30(数显), 即: 小球来回经过光电门的次数为T=2n+1次。
据具体要求, 若要设置50次, 先按“置数”开锁, 再按上调(或下调)改变周期T, 再按“置数”锁定, 此时, 即可按执行键开始计时, 信号灯不停闪烁, 即为计时状态, 当物体经过光电门的周期次数达到设定值, 数显将显示具体时间, 单位“秒”。
须再执行“50”周期时, 无须重设置, 只要按“返回”即可回到上次刚执行的周期数“50”, 再按“执行”键, 便可以第二次计时。
(当断电再开机时, 程序从头预置30次周期, 须重复上述步骤)【三】实验原理图1是三线摆实验装置的示意图。
上、下圆盘均处于水平, 悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定, 下圆盘可绕中心轴作扭摆运动。
当下盘转动角度很小, 且略去空气阻力时, 扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴的转动惯量(推导过程见本实验附录)。
2002004T H gRr m I π=(4-1) 式中各物理量的意义如下: 为下盘的质量;、分别为上下悬点离各自圆盘中心的距离;为平衡时上下盘间的垂直距离;为下盘作简谐运动的周期, 为重力加速度(在杭州地区)。
将质量为的待测物体放在下盘上, 并使待测刚体的转轴与轴重合。
测出此时摆运动周期和上下圆盘间的垂直距离。
同理可求得待测刚体和下圆盘对中心转轴轴的总转动惯量为: 212014)(T HgRr m m I π+=(4-2) 如不计因重量变化而引起悬线伸长, 则有。
大学物理实验-用三线摆法测定物体的转动惯量

大学物理实验-用三线摆法测定物体的转动惯量用三线摆法测定物体的转动惯量转动惯量是刚体在转动中惯性大小的量度,它与刚体的总质量、形状大小、密度分布和转轴的位置有关。
对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。
但是,对于形状较复杂的刚体,用数学方法计算它的转动惯量非常困难,大都用实验方法测定。
例如:机械零部件、电机转子及枪炮弹丸等。
因此学会刚体转动惯量的测定方法,具有重要的实际意义。
测量转动惯量,一般是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
常用的测量方法有三线扭摆法、单线扭摆法、塔轮法等。
本实验采用三线扭摆法,由摆动周期及其他参数的测定计算出物体的转动惯量。
为了便于和理论值进行比较,实验中的被测物体一般采用形状规则的物体。
【实验目的】1、掌握三线扭摆法测量物体转动惯量的原理和方法;2、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系;3、学会正确测量长度、质量和时间的方法。
【实验仪器】FB210型三线摆转动惯量测定仪、游标卡尺、钢卷尺、数字毫秒计、物理天平、待测物体等。
【实验原理】图1是三线摆实验装置的示意图。
上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。
当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。
202004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州地区g =9.793m/s 2)。
图1三线摆实验装置图将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。
用三线摆法测定物体的转动惯量剖析

用三线摆法测定物体的转动惯量剖析引言转动惯量是物体围绕某个轴的旋转惯性,是物体自身的性质。
在物体的旋转运动中,转动惯量起着至关重要的作用。
因此,精确测定物体的转动惯量是非常必要的。
一种常用的测定转动惯量的方法是采用三线摆法。
本文将对三线摆法的实验原理、实验步骤和实验结果进行详细剖析。
实验原理为了精确测定物体的转动惯量,我们需要知道一些基本原理。
下面是需要了解的实验原理:1. 三线摆法的原理三线摆法是利用物体转动的运动学原理来测定物体转动惯量的方法。
在三线摆法中,物体被挂在三个不同的固定点上,使得物体能够以不同的转动轴进行旋转。
通过测定物体绕三个不同的轴旋转所需的时间,可以确定物体的转动惯量。
2. 物体转动惯量的计算公式一般来说,物体转动惯量可以通过物体的质量、尺寸和形状来计算。
以下是物体转动惯量的计算公式:对于直线对称的物体,如圆环和圆盘,其转动惯量可以使用以下公式计算:I=mR²其中,I是转动惯量,m是物体的质量,R是物体的半径。
此外,对于形状不规则的物体,可以使用三维积分公式来计算转动惯量。
3. 质心的作用质心是物体的平衡点,是物体重心位置的体现。
在旋转运动中,物体转动轴应该在质心处。
这是因为物体围绕质心旋转时具有最小的转动惯量。
实验步骤1. 实验器材的准备在开始实验之前,请准备以下器材:(1)三条细线,长度应该相等,可以通过测量来确认。
(2)一块直线对称的圆盘(也可以使用其他形状的物体)。
(3)一台计时器。
(4)一把直尺。
2. 实验过程(1)用一条细线将圆盘挂在一个固定点上。
固定点可以是桌角、悬挂在屋顶上的吊钩或者其他固定点。
(2)利用另外两条细线将圆盘挂在其他两个点上,注意每个点应该在不同的位置,以便进行不同的旋转。
(3)调整圆盘的位置,使得每条细线都恰好与圆盘表面接触,然后仔细调整圆盘的位置使得它与水平面垂直。
(4)将圆盘在三个不同的点上挂起来,预备进行实验。
(5)选定一个固定点为旋转轴,将圆盘拉到一边,然后松开,记录下圆盘绕选定轴旋转一周所需的时间t1。
三线摆测物体转动惯量

三线摆测物体转动惯量【实验原理】转动惯量是刚体在转动过程中惯性大小的量度。
1.对于质量分布均匀,几何形状简单的刚体,可直接用公式计算其转动惯量。
即dV r J ⎰=ρ2 (1)2.对于质量分布不均匀和形状复杂的刚体,实际科研和生产中则采用实验方法测定。
本实验利用三线摆测量任意形状的物体相对于某一个转轴的转动惯量。
图1为三线摆,将待测物体置于底盘上,将顶盘绕垂直于其表面并通过其竖直中心轴线转过一个角度是,由于受重力和线的张力作用,将牵动底盘作往复扭转,同时底盘的质心沿转轴升降。
扭转的周期和与底盘(和盘上物体)的转动惯量有关,其测量公式为01J J J -= (2)其中, 整体转动惯量 ()21214T HgRr m m J π'+=, (3)底盘对竖直中心轴的转动惯量21204T HmgRr J π= (4)上述公式中,m 为底盘质量,h 为转动时上升的高度,H 为顶盘与底盘之间的垂直距离,r 为顶盘的悬点到盘中心的距离,R 为底盘悬点到盘中心的距离。
0T 为地盘的转动周期,1T 为待测物体和底盘共同的转动周期。
【实验仪器】三线摆、秒表、钢卷尺、游标卡尺、水平仪、待测圆环。
【实验步骤】1. 用游标卡尺测量顶盘悬孔之间距离b 和底盘孔之间距离d ,用米尺测量底盘几何直径,各三次。
2. 用游标卡尺测量圆环的内、外直径各一次。
3. 分别查出底盘和圆环的质量m 和m ′4. 用水平仪调节底盘水平,然后用钢卷尺测量两盘之间的垂直距离。
5. 在静止的状态下,轻微转动顶盘约5º随即倒退回原处,底盘做小角度扭转,稳定后,在底盘经过平衡位置时按下秒表记作0周期,当底盘再一次以同方向经过平衡位置时为完成第一次全振动。
测出完成50次全振动所需要的时间,共测三次,填入数据表。
求出底盘转动周期0T 。
6. 将待测圆环置于底盘上,使其质心通过圆盘中心,重复步骤4、5,测出周期1T 。
【数据记录及处理】1.数据记录2.计算计算底盘加环的转动惯量J 1 计算换的转动惯量J换的转动惯量理论值()()22228121外内外内理D D m R R m J +'=+'=测量值与理论之比较,百分差E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验内容
当研究物体整体运动时,可以 用来代表整个物体运动的点
用三线摆测量圆环绕通过圆心(质心),且垂直 于圆平面的轴(OO’轴)的转动惯量。
理论值:Βιβλιοθήκη I环 m2(R12 R22 )
O
R2
R1
O´
请大家看指导书P5,结合仪器(先不动手),思考: 1、实验前要调什么?为什么? 2、如何调节? 3、计时仪如何使用? 4、测量时要注意什么?
4、游标卡尺分别测 量出待测圆环的直 径5次
ar
bR
5、用米尺测出H,
测3次。
r
3 a
3
3 R b
3
6、记录下圆盘和待测圆环的质量m0、 m
项目 上盘悬 孔间距
次数 a(cm)
1 2 3 4 5 平均
下盘悬孔 间距b
(cm)
上下两圆盘之
待测圆环
间的垂直距离
H0 (cm)
外直径2R1 (cm)
内直径2R2 (cm)
角速度——单位时间转过的角度(类似速度)
转动惯量与刚体的质量、形状及转轴的位置有关.
同一个刚体对不同转轴的转动惯量是不同的
o
o
o´
I
=
1 12
ml
2
o
I
=
1 4
m
r
2
o´
o´
I
=
1 m l2 3
o
I
=
1 2
m
r
2
o´
三线摆:是将半径不同的二圆盘,用三条等长 的线联结而成。
上盘吊起,二圆盘面均被调节 成水平,二圆心在同一垂直线上。
3.米尺、游标卡尺
圆盘水平仪
仪器水平仪 转动手柄
吊线固定螺丝 吊线调节螺丝
吊线
光电门
仪器水平 调整螺丝
下圆盘 底座
实验原理
三线摆法是通过扭转运动测量转动惯量的一种方法。 在外力作用下,形状和大小都不 发生变化的物体.是理想模型
转动惯量是刚体转动惯性的量度 (类似:质量是物体惯性的量度)
物体对某轴的转动惯量越大,则绕该轴转动时, 角速度就越难改变。
R
I0
m0 gRr 4π2 H
T02
I0
m0 gRr 4π2 H
T02
加待测物体m后:
I1= I0 +I I= I1 -I0
I1
(m0 m)gRr 4π2 H
T12
I
(m0 m)gRr 4π2 H
T12
m0 gRr 4π2 H
T12
I
gRr 4π2 H
[(m
m0 )T12
m0T02 ]
m
广州:g=9.788 m/s2
三线等长:调三线长度,使下盘水平仪 的气泡在中间
三线长度的调节:先放松相应的固定螺 丝,改变线长,至下盘气泡到中间为止
调节探头,使下盘侧面的指针可 在探头缺口中自由横扫。
3、计时仪如何使用?
4、测量时要注意什么? 转动角度很小 ,小于5℃. 利用转动手柄,转动力度适中
圆盘上钢针转动的平衡位置应在传感器处 待测圆环的中心轴与盘的 中心轴 重合
实验步骤:
1.调整三线摆装置: 使之水平、三线等长
2、测量周期T0 、T1,各测5次20个周期 T0 :下盘(不加物体)的周期
T1 :加了圆环的周期
摆动20次 下盘不加物体 20T0 所需时间
(秒)
1
下盘加圆环 20T1
1
2
2
3
3
平均
平均
周期
T0=
s
T1 =
s
3、用游标卡尺分别测量出上下圆盘中每个悬点间的 距离a、b,各3次。算出平均值,由此求出上、下圆 盘悬点到转轴的距离半径。
在下盘上,下盘的转动惯量变为I1
I1= I0 +I
I 是所加一物体的转动惯量
转动惯量时,扭转周期也随之变化
m
机械振动:物体围绕一固定
位置往复运动.
r
当下盘转动角度很小,略去
空气阻力时,扭摆的运动可近似
看作简谐运动(简谐振动)
简谐振动:最简单最基本的振动
H
由理论推导可得下圆盘的转 动惯量和转动周期间的关系:
以上有不当之处,请大家给与批评指正, 谢谢大家!
20
1、实验前要调什么?为什么? 调:水平、三线等长 水平——使转轴与圆盘垂直 公式推导时要求两盘平行——三线等长
2、如何调节?
支架水平:调底座3螺丝——使上盘水 平仪的气泡在中间 技巧:根据气泡所在方位(高),确 定要调的螺丝,及方向。
注意:气泡移动迟缓,当气泡正在 移动时,暂停调节。
2、如何调节?
下盘质量 m0 =
g ,待测圆环质量 m =
g
数据处理 广州:g=9.788 m/s2
1、算出待测圆环的测量结果
统一国际单位制
I
gRr 4π2 H
[(m
m0 )T12
m0T02 ]
与理论值计算值比较,求相对误差
已知理想圆环绕中心轴转动惯量的计算公式为
I理
m [( 8
D1 )2 (D22 )]
相对误差
用三线摆法测定物体的转动惯量
实验目的
1.学会用三线摆法测定转动惯量 2.学会用累积放大法测量周期运动的周期
三线摆类似单摆:是摆的一种。(扭摆、复摆)
累积放大法:通过测多个周期求一个周期
实验仪器
上圆盘
1 . FB210 型 ( 单 支 架 ) 三 线 摆 转 动 立柱 惯量实验仪。
2.FB213A型数显计 时计数毫秒仪。
下盘可绕中心线扭转,其扭 转周期和下盘的质量和质量分布 有关。
改变下盘的转动惯量(质量、质 量分布)时,扭转周期发生变化。
三线摆就是通过测量它的扭 转周期,求出任一质量已知物体 的转动惯量。
转动惯量可以叠加 (和质量一样)
例如,设下盘对O1O2轴原来的转 动惯量是I0,
现改变下盘的质量,如加一物体
E0
I I理 I理
100%
思考讨论
1.用三线摆测刚体转动惯量时,为什么必须保持下 盘水平?
2.测量圆环的转动惯量时,若圆环的转轴与下盘转 轴不重合,对实验结果有影响吗?
3.如何利用三线摆测定任意形状的物体绕某轴的转 动惯量?
4、你能否考虑一测量方案,测量一个具有轴对称的 不规则形状的物体,对对称轴的转动惯量?