强度校核概述
第4章 强度校核

第4章强度校核4.1 销轴强度校核图4-1所需校核的销轴1.外力偶矩Me的计算已知轴的传递功率P及转速n,测外力偶矩的计算式为:24.3/10/9550=59550100098nNmPM⋅⨯=⨯=式中M---外力偶矩,单位为牛顿米(N·m);P---轴的传递功率,单位为千瓦(kW);n---转速,单位为转/分(r/min)。
输入力偶矩为主动力偶矩,其转向与轴的转向相同,输出力偶矩为阻力偶矩,其转向与轴的转向相反。
2.扭矩的计算在求出作用于轴上的力偶矩后,即可以对其进行整体分析,因为整体平衡必然部分平衡。
外载荷是一个力偶,又因为力偶只能和力偶平衡,所以必然有一个力偶与平衡,此力偶用表示,又平衡方程求出N·m式中----扭矩,其单位为牛顿米(N·m),它和大小相等,转向相反。
3.销轴剪切强度轴承座所受压力其中由可得N(1)销轴截面的剪切强力式中---单个销轴的工作剪力,N;铰孔直径,mm;------销轴的剪切工作面数;---销轴材料的许用剪应力,MPa,由数据查得,。
(2)销轴的挤压强度销轴与孔壁间的挤压应力式中 ---销轴与孔壁间的最小接触长度,mm,。
可取。
---销轴材料许用挤压用力,Mpa,查表得。
4.2 螺栓组强度校核计算各螺栓受力分析假设:(1)同一螺栓组的各螺栓直径、长度、材料和预紧力F Y均相同。
(2)被联接件为刚体,即在受载前后接合面保持为平面。
(3)螺栓的应力不超过屈服极限。
1.受横向载荷的螺栓组联接螺栓组受外载荷的作用方向与螺栓的轴线垂直,为横向载荷。
又载荷通过螺栓组的行心,所以外载荷R对螺栓的作用只有横向力,无力矩作用。
普通螺栓联接中,靠摩擦力传递载荷,其工作原理是:在装配时拧紧螺栓,由螺栓的预紧力在接合面间产生压紧力,靠摩擦力传递载荷。
计算时,可以假设每个螺栓所受横向载荷是相同的,由此可得每个螺栓的工作载荷Fs为式中---螺栓组所受横向载荷;---螺栓数目。
船舶强度核算—局部强度的校核

“ Q”轮许用均布载荷和集中载荷一览表
某轮车辆许用甲板载荷
堆积负荷
船舶局部强度
三、用经验方法确定的允许负荷 1.上甲板: 允许负荷:
(kPa)
Hc—甲板设计堆高,重结构取1.5m,
轻结构取1.2m。
μ — 设计舱容系数。
三、用经验方法确定的允许负荷
2.中间甲板和底舱:
允许负荷:
实际值的计算
1)集中载荷 P ' 9.81W n
2)均布载荷
Pd
'
9.81 A
Pi
已知重量和底面积
已知高度和积载因数
Pd
'
9.81
hi SFi
四、船舶局部强度条件的校核
2.集装箱船局部强度条件的校核步骤:
1)计算实际值:Pc=∑Pi 2)查取允许值:Ps 3 ) 比较:Pc≤ Ps
四、保证满足船舶局部强度的措施
任务二: 局部强度校核
船舶局部强度
一、船舶局部强度概述 局部强度(local strength): 船体结构具有抵抗在局部外力作用下产生的局部极度变形或损坏的
能力。 重点考虑的船体局部位置:甲板、平台、舱底、舷侧、舱口、首尾
等。 船舶必须满足局部强度条件。
船舶局部强度
二、局部强度的表示方法 许用符荷的表示方法: 船体局部的允许负荷量可在船舶有关资料中查取。 1.均布载荷:kPa 2.集中载荷:kN 3.车辆甲板负荷:车轮 4.堆积负荷:集装箱
1)考虑船龄
2)货物均匀分布
3)加横跨骨材的衬垫
4)舱盖上不装重货
5)散货平舱
6)控制落底速度
7)注意局部强度的校核
(kPa)
H d — 舱高。 无设计值时,取rc=0.72 t/m3, 重结构取rc=1.2 t/m3。 rc =1/μ
螺纹牙强度校核计算机械手册

螺纹牙强度校核计算机械手册螺纹牙强度校核计算机械手册一、引言螺纹连接是机械设计中常见的连接方式,而螺纹牙的强度校核则是设计中的重要环节。
本文将深入探讨螺纹牙强度校核的相关知识,并根据机械手册对该内容进行全面评估和解析。
二、螺纹牙强度校核概述1. 螺纹牙的定义和作用螺纹牙是螺纹连接中的关键部件,它通过与螺纹环的互锁,在受力情况下承受连接件的拉伸、剪切及扭矩载荷,承担着重要的传力作用。
螺纹牙的强度校核是确保连接安全可靠的重要环节。
2. 螺纹牙强度校核的重要性螺纹连接在工程实践中应用广泛,而螺纹牙的强度不足可能导致连接失效,造成严重的安全隐患。
对螺纹牙的强度进行准确的校核,对于保证连接的可靠性和安全性至关重要。
三、螺纹牙强度校核计算方法1. 根据机械手册的指导,螺纹牙的强度校核主要包括静载强度、疲劳强度和抗松强度三个方面。
其中,静载强度主要考虑连接在正常工作状态下的受力情况,疲劳强度则考虑连接在长期振动、变载荷等条件下的耐久性,而抗松强度则确保连接在震动等情况下不会自行松动。
2. 静载强度校核静载强度校核通过计算螺纹牙在受力状态下的承载能力,采用等效应力法或有限元分析等方法,结合材料强度和载荷条件进行计算。
根据机械手册提供的公式和数据,可进行相应的计算和校核。
3. 疲劳强度校核疲劳强度校核是考虑螺纹牙在长期振动、变载荷等条件下的抗疲劳能力。
通过应力循环法、极限应力法等方法,结合疲劳曲线和载荷条件进行计算,以确保连接在长期使用中不会发生疲劳失效。
4. 抗松强度校核抗松强度校核是保证连接在振动、冲击等条件下不会自行松动。
通过计算连接的阶跃响应、松动频率等参数,结合材料和载荷条件进行校核,以确保连接的抗松性能。
四、个人观点和总结螺纹牙的强度校核是机械设计中至关重要的环节,对于保证连接的安全可靠性起着关键作用。
在实际应用中,需要根据机械手册提供的相关数据和方法进行全面的计算和校核,以确保连接的质量和可靠性。
螺纹牙强度校核是机械设计中不可或缺的一部分,而且对于设计师和工程师来说,掌握和运用好螺纹牙强度校核的方法是至关重要的。
强度校核概述

4、高温蠕变 高温下材料受力要发生蠕变,在设计阶段,从材料选用、结构形状等 方面加以考虑,运行时加以必要的监督。 5、热疲劳 由于汽机启停及负荷变动,将引起金属温度不断发生上下变动,热应 力循环变化引起热疲劳,它将决定高温材料的使用寿命。
二、强度校核的基本内容
静强度校核,动强度校核 汽轮机: 转子零件:叶片、叶轮、主轴、联轴器等 静强度、动强度校核(零件自振频率、激振力频率) 静子零件:汽缸、汽缸法兰、法兰螺栓、隔板等 静强度校核(零件静应力和挠度计算) 静应力:稳定工况下不随时间变化的应力。 动应力:周期性激振力引起的振动应力,大小方向随时间而变。
?零部件内部温度场不均匀膨胀量不一样热变形热应力若相配合的零部件之间温度场不均匀膨胀受阻热变形热应力?4高温蠕变高温下材料受力要发生蠕变在设计阶段从材料选用结构形状等方面加以考虑运行时加以必要的监督
汽轮机零件的强度校核与振动
第一节 概述
一、汽轮机强度校核的任务
汽轮机的设计过程可分为三个阶段: 1、热力计算:在选定功率初终参数、转速条件下,进行通流部分的设计, 以求得较高的汽轮机效率,同时根据经验及近似公式初步确定出主要 零件的形状和尺寸; 2、强度计算:在保证汽轮机各零件绝对安全和金属消耗量最少的条件下, 校核各零件的受力,合理修改并确定零件的形状、尺寸、材料。 3、工艺设计—使设计出的零件满足制造过程的工艺需要。 强度计算是在基本尺寸初步选定的条件下进行校核。通过强度计算 可以确定汽机安全运行的工况范围和应该控制的极限值。另外可作为 设备检修,改进设计和改变运行方式的依据,作为事故分析的依据。
强度计算长期正常工作应满足 σ <[σ ] 许用应力 2、振动条件 汽轮机零件有弹性,运行时收到外界周期性扰动的作用时,将引起强 迫振动产生动应力,当强迫振动的频率与自振频率合拍,引起共振。 (1) 进行振动条件下的应力计算 (2) 进行振动频率计算 3、热膨胀,热变形 汽轮机从冷态到热态,直至额定负荷,各个零件温度发生很大的变化。 零部件内部温度场不均匀-膨胀量不一样-热变形-热应力 若相配合的零部件之间温度场不均匀-膨胀受阻-热变形-热应力
轴的强度校核方法

轴的强度校核方法轴是指承受转矩或轴向载荷的机械零件,其强度校核是为了保证轴在工作过程中不产生变形、断裂等失效情况,从而确保机械系统的可靠运行。
轴的强度校核方法可以分为理论计算方法和实验测试方法两类。
一、理论计算方法1.强度校核理论基础:强度校核的理论基础是材料力学和工程力学,其中最基本的理论是应力和应变的关系,即胡克定律。
按照强度校核的要求,轴的应力必须小于其材料的抗拉强度,即σ<σt。
其中,σ为轴上的应力值,σt为材料的抗拉强度。
2.强度校核方法:强度校核方法根据所受力的不同可以分为两类:弯曲强度校核和扭转强度校核。
-弯曲强度校核:弯曲强度校核是指轴在承受弯曲力矩时的强度校核。
轴在工作过程中往往会受到弯曲力矩的作用,而产生弯曲应力。
弯曲强度校核需要计算轴的最大弯曲应力值σb和抗拉强度σt比较,其中σb计算公式为:σb=(M*c)/I其中,M为轴所受的弯曲力矩,c为轴上一点到中性轴的距离,I为轴的截面惯性矩。
-扭转强度校核:扭转强度校核是指轴在受扭矩作用时的强度校核。
轴在工作过程中也会受到扭矩的作用,而产生扭转应力。
扭转强度校核需要计算轴的最大扭转应力值τt和剪切强度τs比较,其中τt计算公式为:τt=(T*r)/J其中,T为轴所受的扭矩,r为轴的半径,J为轴的极限挠率。
3.动载荷和疲劳强度校核:在实际工作中,轴往往还会承受动载荷并产生疲劳应力,因此需要对轴进行动载荷和疲劳强度校核。
动载荷强度校核需要考虑轴在受动载荷作用下的应力变化情况,疲劳强度校核需要考虑轴在工作过程中的疲劳寿命。
动载荷和疲劳强度校核方法与静载荷强度校核方法类似,但需要考虑应力的变化规律。
二、实验测试方法1.材料强度测试:2.离心试验:离心试验是指将轴样品固定在离心试验机上,并施加拉力或扭矩进行加载,观察轴的变形情况,以评估轴的强度性能。
3.振动试验:振动试验是指给轴样品施加振动载荷,观察轴的疲劳寿命。
振动试验可以模拟轴在实际工作环境中的振动情况,从而评估轴的疲劳性能。
材料强度校核

材料强度校核
材料强度校核是指对工程结构中所使用的材料的强度进行评估和验证。
在进行材料强度校核时,一般需要考虑以下几个关键的因素:
1. 材料的强度参数:不同材料具有不同的强度参数,如抗拉强度、屈服强度、剪切强度等。
这些参数可通过实验测定或基于已有数据进行估计。
2. 设计载荷:需要了解结构所承受的设计载荷,包括静态荷载、动态荷载、温度荷载等。
这些载荷将直接影响材料的应力水平。
3. 应力和变形分析:通过应力和变形分析,确定材料在设计载荷下所受到的应力状态。
这包括计算各个部位的应力和应力集中情况。
4. 安全系数:在进行强度校核时,一般采用安全系数来考虑材料的不确定性和可靠性。
常见的安全系数包括静载荷安全系数、动载荷安全系数、材料强度安全系数等。
5. 校核方法:根据不同的材料和结构,选择合适的强度校核方法。
常见的校核方法包括强度理论、强度极限分析、疲劳强度校核等。
综上所述,材料强度校核需要考虑材料的强度参数、设计载荷、应力和变形分析、安全系数以及校核方法。
这样可以确保结构的安全可靠性,并满足设计要求。
轴的剪切强度校核公式_解释说明以及概述

轴的剪切强度校核公式解释说明以及概述1. 引言1.1 概述本文将详细讨论轴的剪切强度校核公式的解释、说明以及概述。
轴的剪切强度是指在受力作用下,轴材料所能承受的最大剪切应力值。
准确计算并验证轴的剪切强度对于设计和使用各种机械装置和结构都至关重要。
1.2 文章结构本文分为五个部分:引言、轴的剪切强度校核公式、轴的剪切强度校核方法、轴的剪切强度校核实例分析以及结论与总结。
下面将对每一个部分进行简要介绍。
1.3 目的本文旨在提供关于轴的剪切强度校核公式的全面理解和应用指导。
通过对相关概念、解释、计算方法以及实例分析的详尽描述,读者将能够深入了解该领域,并正确地进行轴材料剪切强度方面的工程运算与设计。
-----【注意】以上内容已经按照普通文本格式撰写完毕,请检查无误后进入下一问题。
2. 轴的剪切强度校核公式2.1 剪切强度概念在力学中,剪切强度是指材料在受到外部剪应力作用时能够抵抗破坏的能力。
对于轴的剪切强度来说,它描述了轴承受扭矩而不发生塑性变形或破裂的能力。
2.2 校核公式解释轴的剪切强度校核公式是用来计算轴所能承受的最大剪应力以及是否满足设计要求的工程公式。
通常,这个公式会基于材料特性、几何尺寸和应力分布等参数来推导得出。
这个校核公式一般包含轴直径、材料弹性模量、黏性系数等相关参数,并采用比例关系将这些参数结合起来进行运算。
通过计算得出的结果与设计要求进行比较,从而确定轴是否具备足够的剪切强度。
2.3 剪切强度计算方法在计算轴的剪切强度时,通常可以采用多种方法,其中常见的有:- 简单约束理论:基于简化假设和边界条件,通过解析方法得出轴的剪切强度计算公式。
这种方法适用于简单的几何结构和加载情况,计算结果相对精确。
- 有限元分析:利用数值计算方法,将轴的几何形状离散化为有限数量的元素,并建立相关方程进行求解。
这种方法能够考虑更加复杂的几何结构和加载情况,但计算量较大。
- 经验公式:基于实际试验数据,通过统计和分析得出与轴直径、材料特性等相关的经验公式。
第四强度理论校核

强度校核(第四强度理论)
取 最危险的截面,合成截面所受 正应力、切应力、扭矩,再合成校核强度
:屈服强度
:正应力
,故公式:
:切应力
:挤压强度(起重轨道用)
W 可查询 机械设计手册(第五版)1-113
、、、
[
:许用屈服强度
=[
=0、58 :许用剪切强度
安全系数: 1、5-2 倍(交变应力小,如门铰链) 5-6 倍 (交变应力大,如电机轴,普通材料取 6 倍,不锈钢软材料取 5 倍)
计算实例: 1Cr18Ni9 材质的实心轴,轴向力 16kN,径向力 21kN,截面积 1965mm2,无弯矩、转矩,无交变
1Cr18Ni9
,
< 圆轴刚度计算(扭转角度)
第Hale Waihona Puke 强度理论校核G:切变模量 E:弹性模量 :泊松比 :极惯性矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、高温蠕变 高温下材料受力要发生蠕变,在设计阶段,从材料选用、结构形状等 方面加以考虑,运行时加以必要的监督。
5、热疲劳 由于汽机启停及负荷变动,将引起金属温度不断发生上下变动,热应 力循环变化引起热疲劳,它将决定高温材料的使用寿命。
动应力:周期性激振力引起的振动应力,大小方向随时间而变。
强度计算的五个方面:
1ห้องสมุดไป่ตู้应力条件:汽机零件能够长期正常工作应满足 σ<[σ] 许用应力
2、振动条件 汽轮机零件有弹性,运行时收到外界周期性扰动的作用时,将引起强 迫振动产生动应力,当强迫振动的频率与自振频率合拍,引起共振。
(1) 进行振动条件下的应力计算 (2) 进行振动频率计算 3、热膨胀,热变形
强度计算是在基本尺寸初步选定的条件下进行校核。通过强度计算 可以确定汽机安全运行的工况范围和应该控制的极限值。另外可作为 设备检修,改进设计和改变运行方式的依据,作为事故分析的依据。
二、强度校核的基本内容
静强度校核,动强度校核 汽轮机: 转子零件:叶片、叶轮、主轴、联轴器等 静强度、动强度校核(零件自振频率、激振力频率) 静子零件:汽缸、汽缸法兰、法兰螺栓、隔板等 静强度校核(零件静应力和挠度计算) 静应力:稳定工况下不随时间变化的应力。
汽轮机零件的强度校核与振动
第一节 概述
一、汽轮机强度校核的任务
汽轮机的设计过程可分为三个阶段: 1、热力计算:在选定功率初终参数、转速条件下,进行通流部分的设计,
以求得较高的汽轮机效率,同时根据经验及近似公式初步确定出主要 零件的形状和尺寸; 2、强度计算:在保证汽轮机各零件绝对安全和金属消耗量最少的条件下, 校核各零件的受力,合理修改并确定零件的形状、尺寸、材料。 3、工艺设计—使设计出的零件满足制造过程的工艺需要。