第六章_线性空间同步复习1
线性代数第六章第一节——线性空间的定义与性质

解 (1)不构成子空间. 因为对
1
A B
0
2
有 A B
0
0 0
W1
0 0
0 0
W1 ,
0 0
线性代数
即 W1对矩阵加法不封闭,不构成子空间.
0 0 0
W2 , 即W2非 空.
( 2) 因
0 0 0
对任意
a1 b1 0
定义1 设 V是一个非空集合,R为实数域.如果
对于任意两个元素 , V,总有唯一的一个元
素 V 与之对应,称为 与 的和,记作
若对于任一数 R 与任一元素 V ,总有唯
一的一个元素 V 与之对应,称为 与 的积,记作
( 3) 在V中存在零元素0, 对任何 V , 都有有零元素
0 ;
(4)对任何 V , 都有的负元素 V , 使 有负元素
0;
(5) 1 ;
(6) ; 对数乘运算的结合律和分配律
(7) ;
数 乘 : k (a , b) (lg a , bk ), k R
V是不是向量空间
? 为 什 么?
线性代数
解
V不是向量空间
.
显 然,V对 加 法 封 闭,因 为 两 个 正 实 数 的 和 与
积
还 是 正 实 数.
但V对乘法不封闭
.
比如V中的元素(1, b), 对任意实数k ,
k (1, b) (lg 1, bk ) (0, bk ) V .
1 ; 0 0.
4.如果 0 ,则 0 或 0 .
第六章 线性空间

首页
上页
下页
返回
结束
19
例5 设1 , 2 , A是n s矩阵, (1 , 2 , 证明 : L( 1 , 2 ,
, n 是n维线性空间V 的一组基, , s ) (1 , 2 , , n ) A
, s )的维数等于A的秩.
证 设秩( A) r , 则存在可逆矩阵P , Q , 使得 Er A P O
(4) 基变换
其中1 , 2 ,
, n 和1 , 2 ,
首页
, n 都是V的
上页 下页 返回 结束
基, A为过渡矩阵, 可逆.
3
性质:设1 , 2 , 则 1 , 2 ,
, n为V 的基, , n ) ( 1 , 2 , , n ) A, , n 也为V 的基 A可逆.
首页 上页 下页 返回 结束
若 V2 , 则因 V2 , 有 ( ) V2 , 与 V2矛盾. 故在V中存在向量x , x V1且x V2 .
注: 此例说明,若V1 ,V2是V的两个非平凡子空 间, 则在V中存在向量x, 使x V1 V2 ,即V V1 V2 .
证 取P n的一组基 1 , 2 , 个 i , 使得A
m 1
i 0.
, n, 令
B ( 1 , 2 , , n )
事实上,若Am1 j 0, j 1,2,
则B可逆, 且有Am1 B O. 于是Am1 O. 与题设矛盾.
令 i , 则Am1 0, Am 0.
k1 l1 k2 l2 则有坐标变换公式 : A kn ln
线性代数课件_第六章_线性空间和线性变换——1

量空间 . 通常的多项式加法、数乘多项式的乘法两种运
算满足线性运算规律.
( a n x n a 1 x a 0 ) ( b n x n b 1 x b 0 )
( a n b n ) x n ( a 1 b 1 ) x ( a 0 b 0 ) P[x]n
(a n x n a 1 x a 0 )
对于通常的有序数组的加法及如下定义的乘法
(x 1 , ,x n )T 0 , ,0
不构成线性空间. Sn对运算封.闭
但 1xo, 不满足第五条运算规律.
由于所定义线 的性 运,运 所 算算 以 S不 n不是 是 线性.空间
2020/5/18
课件
17
二、线性空间的性质
1.零元素是唯一的.
证明 假设 01,02 是线性空间V中的两个零元
则有 0
0 .
向量 的负元素记为 .
2020/5/18
课件
19
3 . 0 0 ; 1 ;0 0 .
证明 0 1 0 1 0 1 ,
0 0.
1 1 1 1 1 0 0 ,
1 . 0 1 0
素,则对任何 V,有
0 1 , 0 2 .
由于 01,02V, 所以 0 2 0 1 0 2 ,0 1 0 2 0 1 .
0 1 0 1 0 2 0 2 0 1 0 2 .
2020/5/18
课件
18
2.负元素是唯一的.
证明 假设 有两个负元素 与 ,那么
0 , 0 .
设 ,, V ;, R
(1 ) ;
( 2 ) ;
(3)在 V 中存在 0,对 零 任 元 V 何 ,都 素有 0;
2020/5/18
课件
(完整版)第六章线性空间练习题参考答案

第六章 线性空间练习题参考答案一、填空题1.已知0000,,00V a bc a b c R c b ⎧⎫⎛⎫⎪⎪ ⎪=+∈⎨⎬ ⎪⎪⎪ ⎪+⎝⎭⎩⎭是33R ⨯的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,,}n i W a x x x P i n =∈=是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++.5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123,,εεε到基231,,εεε的过渡矩阵T =001100010⎛⎫⎪⎪ ⎪⎝⎭,而α在基321,,εεε下的坐标是321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110⎛⎫⎪⎪ ⎪⎝⎭.6.数域P 上n 级对称矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上(1)2n n -维线性空间,数域P 上n 级上三角矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.二、判断题1.设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .3.设,n n A B P ⨯∈,V 是0A X B ⎛⎫= ⎪⎝⎭的解空间,V 1是AX =0的解空间,V 2是(A +B)X =0的解空间,则12V V V =.正确. 12V V 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足BX =0,即满足0A X B ⎛⎫= ⎪⎝⎭,即为V 中的向量.反之,V 中的向量既在1V 中,又在2V 中,即为12V V 中的向量.因此12V V V =.4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s ααα线性表出,则维(W)=s.正确.根据定理1.5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ∉∉且则必有.W αβ+∉错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈ 6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间.正确. 基为(1,0,0),(0,1,0),维数为2. 7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题1.求所有与A 可交换的矩阵组成的nn P ⨯的子空间()C A 的维数与一组基,其中100020003A ⎛⎫⎪= ⎪ ⎪⎝⎭.解:设矩阵33()ij B b ⨯=与A 可交换,即有AB BA =.即111213111213212223212223313233313233100100020020003003b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.111213111213212223212223313233313233232222333323b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此11223300()0000b C A b b ⎧⎫⎛⎫⎪⎪⎪=⎨⎬ ⎪⎪⎪ ⎪⎝⎭⎩⎭ 维数为3,基为112233,,E E E .2.在线性空间P 4中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有10111432131401238761001232210001T --⎛⎫⎛⎫⎪⎪- ⎪ ⎪=⎪ ⎪- ⎪⎪-⎝⎭⎝⎭因此1143210112379801231314633100128761232100132213221T ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪==⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 令1234114324012320012301x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭112341432114113611010123401274210012200122400013000133x x x x -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题1.V 为定义在实数域上的函数构成的线性空间,令12{()(),()()},{()(),()()}W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.()()()()(),()22f x f x f x f x f x V f x +---∀∈=+. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =所以12.V W W =⊕2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a 来说,或者120n a a a ====,或者每一个i α都不等于零,证明:维(W)=1.证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设1212(,,,),(,,,)n n a a a b b b αβ==是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量11112112121211(,,,)(,,,)(0,,,)n n n n b a b a a a a b b b b a a b b a a b W αβ-=-=--∈.由题设条件有1212110n n b a a b b a a b -==-=,即有1212n na a ab b b ===.即W 中的任二个非零向量均成比例,因此维(W)=1.。
(完整版)第六章线性空间练习题参考答案

第六章线性空间练习题参考答案一、填空题0 0 01.已知V a b c 0 a,b,c R 是R1 2的一个子空间,则维(V)3 30 c b 00 0 0 0 0 0 0 0 03V 的一组基是1 0 0 , 1 0 0 , 0 1 0 .0 0 0 0 1 0 0 1 0在P4中,若 1 (1, 2,0,1),1,1), 4 (0,1, k,1)线性无2 (1,1,1, 1),3 (1, k,关,则k的取值范围是k 3(以1, 2, 3, 4为行或者列构成的行列式不为零)3•已知a是数域P中的一个固定的数,而W {(a,x1,L ,x n) x i P,i 1,2,L ,n}是P n+1的一个子空间,贝U a = 0 ,而维(W)=巴4. 维数公式为dimV i dimV2 dim(V i V2) dim(V i I V2).5•设1, 2, 3是线性空间V的一组基,X i 1 X2 2 X3 3,则由基1, 2, 30 0 1到基2, 3, 1的过渡矩阵T = 1 0 0,而在基3, 2, 1下的坐标是0 1 00 1 1 (X3,X2,X1)由基1, 2, 3到基2 3, 3 1, 1 2的过渡矩阵为T二10 1. 阵全体构成数域P上凹卫维线性空间,数域P上n级对交矩阵全体构成数域1 1 06 •数域P上n级对称矩阵全体构成数域P上如B维线性空间,数域P上2n级反对称矩阵全体构成数域P上晋维线性空间,数域P上n级上三角矩2P上n维线性空间,数域P上n级数量矩阵全体构成数域P上_1_维线性空间.二、判断题1•设V P n n,则W {A A P nn,A 0}是V的子空间.错•行列式为零的两个方阵的和的行列式未必为零,因此W中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2. 已知V {(a bi,c di) a, b, c, d R}为R上的线性空间,且维(V)= 2.错.是子空间,但是是4维的,其基为(1,0),( i,0),(0,1),(0, i).A3. 设A,B P n n,V是X 0的解空间,V1是AX = 0的解空间,V2是B(A + B)X = 0 的解空间,则V V1 I V2 .正确• Vj V2中的向量既满足AX = 0,又满足(A + B)X = 0,因此也满足ABX = 0,即满足X 0,即为V中的向量.反之,V中的向量既在V中,又B在V2中,即为yi V2中的向量.因此V V1 I V2 .4. 设线性空间V的子空间W中每个向量可由W中的线性无关的向量组1, 2丄,s线性表出,则维(W) = S.正确.根据定理1.5. 设W是线性空间V的子空间,如果, V,但W且W,则必有W.错误.可能W.如取,为一对互为负向量,则0 W.6. W {(x1,x2,x3) R3|X3 0}是R3的子空间.正确. 基为( 1,0,0),(0,1,0),维数为 2.7. W {( x1,x2, x3) R3 | x21} 是R3的子空间.错误.不包含零向量8. W {( x1,x2,x3)R3 |x1x2X3}是R3的子空间正确.基为(1,1,1),维数为 1.9. W {( x1,x2,x3)R3 |x1 x2X3}是R3的子空间正确. 基为( 1 , 1 ,0),( 1 ,0 ,-1),维数为 2.、计算题1.求所有与A可交换的矩阵组成的P n n的子空间C(A)的维数与一组基,其中100A 0 2 0 .003解:设矩阵B (b j )3 3与A可交换,即有AB BA.即1 0 0 b11 b12 b13 b11 b12 b13 1 0 00 2 0 b21 b22 b23 b21 b22 b23 0 20 0 3 b31b32 b33 b31 b32b33 0 0 3b11 b12 b13 b11 2b12 3b132b21 2b222b23 b212b223b23 .3b31 3b32 3b33b312b32 3b33所以有ib ij b ij j ,(i j)b ij 0,i, j 1,2,3. 当i j时,b ij 0 ,因此b11 0 0C(A) 0b22 00 0 b33 维数为3,基为E11 , E22 ,E33 .2•在线性空间P4中,求由基1, 2, 3, 4到基1, 2, 3, 4的过渡矩阵,并求(1,4,2,3)在基1, 2, 3, 4下的坐标,其中1 (1,0,0,0),2 (4,1,0,0),3 ( 3,2,1,0),4 (2, 3,2,1)1 (1,1,8, 3),2 (0, 3,7, 2),3 (1,1,6, 2),4 (1,4, 1, 1)解:令过渡矩阵为T ,则有1 0 1 1 1 4 3 21 3 1 4 0 12 3T8 7 6 1 0 0 1 23 2 2 1 0 0 0 1因此1 4 32 1 1 0 1 1 23 7 9 80 1 2 3 1 3 1 4 6 3 3 1T0 0 1 2 8 7 6 1 2 3 2 10 0 0 1 3 2 2 1 3 2 2 1令1 1 4 32 X14 0 1 2 3 X22 0 0 1 2 X33 0 0 0 1 X4X1 1 4 3 2 1 1 1 4 11 36 1 101X2 0 1 2 3 4 0 1 2 7 4 21X3 0 0 1 2 2 0 0 1 2 2 4X4 0 0 0 1 3 0 0 0 1 3 3(1, 4,2,3) 在基1,2 ! , 3 ,4下的勺坐标为(- 101,2 1,-4四、证明题1.V为定义在实数域上的函数构成的线性空间,令W { f(x) f (x) V, f(x) f( x)},W { f(x) f (x) V, f(x) f( x)}证明:W i 、W 2皆为V 的子空间,且V W 1 W 2.证明:W i 、W 2分别为偶函数全体及奇函数全体构成的集合,显然 W i 、W 2均为非空的.由奇偶函数的性质可得 W i 、W 2皆为V 的子空间.以 V W 1 W 2.2.设W 是P n 的一个非零子空间,若对于 W 的每一个向量(a i ,a 2丄,a n )来 说,或者a i a 2 L a n 0,或者每一个i 都不等于零,证明:维(W) = 1.证明:由W 是P n 的一个非零子空间,可得 W 中含有非零向量设(a i ,a 2,L ,a n ),(^也丄,g)是W 中的任二个非零向量,由题意可得每一个 a i ,b i 都不等于零.考虑向量由题设条件有b i a 2 a i b 2 L b i a n a i b n 0 ,即有色 更 L 空.即W 中的b i b 2 b n 任二个非零向量均成比例,因此维(W)二i.f(x) V,f(x)f(x) f( x) 2 f(x) f( X)2而 f (x)f( x) W 1 f(x) f(x)2 ' 2W 2,因此VW 1 W 2.又 W 1 I W 2{0}.所b |a ib i (a i ,a 2丄,a n )印⑴庄丄,b n ) (0,呃 a4,L ,b i a na ib n ) W。
第六章 线性空间 习题答案

第六章 线性空间3.检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n (1n ≥)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设A 是一个n n ⨯实矩阵,A 的实系数多项式()f A 的全体,对于矩阵的加法和数量乘法; 3)全体n 级实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算:1122121212(,)(,)(,)a b a b a a b b a a ⊕=+++,211111(1)(,)(,)2k k k a b ka kb a -=+; 6)平面上全体向量,对于通常的加法和如下定义的数量乘法:k =0α;7)集合与加法同6),数量乘法定义为:k =αα;8)全体正实数+R ,加法与数量乘法定义为:a b ab ⊕=,k k a a =.解 1)不能构成实数域上的线性空间.因为两个n 次多项式相加不一定是n 次多项式,所以对加法不封闭. 2)能构成实数域上的线性空间.事实上,{()|()[]}V f f x x =∈R A 即为题目中的集合,显然,对任意的(),()f g V ∈A A ,及k ∈R ,有()()()f g h V +=∈A A A ,()()()kf kf V =∈A A ,其中()()()h x f x g x =+.这就说明V 对于矩阵的加法和数量乘法封闭.容易验证,这两种运算满足线性空间定义的1~8条,故V 构成实数域上的线性空间.3)能构成实数域上的线性空间.由于矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,故只需证明对称(反对称,上三角)矩阵对加法与数量乘法是否封闭即可.而两个对称(反对称,上三角)矩阵的和仍为对称(反对称,上三角)矩阵,一个数k 乘对称(反对称,上三角)矩阵也仍为对称(反对称,上三角)矩阵.于是,n 级实对称(反对称,上三角)矩阵的全体,按照矩阵的加法和数量乘法,都构成实数域上的线性空间.4)不能构成实数域上的线性空间.因为,两个不平行与某一向量α的两个向量的和可能平行于α,例如:以α为对角线的任意两个向量的和都平行于α,从而不属于题目中的集合.5)能构成实数域上的线性空间.事实上,{(,)|,}V a b a b =∈R 即为题目中的集合.显然,按照题目中给出的加法和数量乘法都封闭.容易验证,对于任意的(,)a b ,(,)i i a b V ∈,1,2,3i =;,k l ∈R ,有①由于两个向量的分量在加法中的位置是对称的,故加法交换律成立; ②直接验证,可知加法的结合律也成立;③由于(,)(0,0)(0,00)(,)a b a b a b ⊕=+++=,故(0,0)是V 中加法的零元素;④如果11111(,)(,)(,)(0,0)a b a b a a b b aa ⊕=+++=,则有211(,)(,)a b a a b =--,即2(,)aa b --为(,)a b 的负元素;⑤21(11)1(,)(1,1)(,)2a b a b a a b -=+=; ⑥222(1)(1)(1)((,))(,)(,[]())222l l l l k k k l a b k la lb a kla k lb a la ---=+=++ 2(1)(,)()(,)2kl kl kla klb a kl a b -=+=; ⑦22(1)(1)(,)(,)(,)(,)22k k l l k a b l a b ka kb a la lb a --⊕=+⊕+ 222(1)(1)(,)22k k l l ka la kb a lb a kla --=+++++2(1)(1)[(),()]2k k l k l a k l b a ++-=+++()(,)k l a b =+;⑧1122121212[(,)(,)](,)k a b a b k a a b b a a ⊕=+++212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++, 而221122111222(1)(1)(,)(,)(,)(,)22k k k k k a b k a b ka kb a ka kb a --⊕=+⊕+ 22212112212(1)(1)(,)22k k k k ka ka kb a kb a k a a --=+++++212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++, 即11221122[(,)(,)](,)(,)k a b a b k a b k a b ⊕=⊕.于是,这两种运算满足线性空间定义的1~8条,所以V 构成实数域上的一个线性空间.6)不能构成实数域上的线性空间.因为1=≠0αα,故不满足定义的第5条规律. 7)不能构成实数域上的线性空间.因为()2k l k l αα+=≠=+=+ααααα,故不满足定义的第7条规律. 8)能构成实数域上的线性空间.由于两个正实数相乘还是正实数,正实数的指数还是正实数,故+R 对定义的加法和数量乘法都是封闭的.容易验证,对于任意的,a b +∈R ,,k l ∈R ,有①a b ab ba b a ⊕===⊕;②()()()()a b c ab c abc a bc a b c ⊕⊕=⊕==⊕=⊕⊕; ③11a a a ⊕==,即1是定义的加法⊕的零元素; ④111a a a a ⊕==,即1a是a 的负元素; ⑤11a a a ==;⑥()()()()ll klkklk l a k a a a a kl a =====; ⑦()()()k lk l k l a aa a k a l a ++===⊕⑧()()()()()kk kk a b k ab ab a b k a k b ⊕====⊕.于是,这两种运算满足线性空间定义的1~8条,所以+R 构成实数域上的一个线性空间. 『方法技巧』直接根据定义逐条验证即可,但是也要注意验证所给的加法和数量乘法是封闭的. 4.在线性空间中,证明:1)k =00;2)()k k k -=-αβαβ.『解题提示』利用线性空间定义的运算所满足的规律和性质.证明 1)证法1 由于对任意的向量α,存在负向量-α,使得()+-=0αα,故(())()(1)(())0k k k k k k k k =+-=+-=+-=+-==00αααααααα;证法2 对于任意的向量α,有()k k k k +=+=00ααα,左右两边再加上k α的负向量k -α,即可得k =00;2)利用数量乘法对加法的分配律,得到()()k k k k -+=-+=αββαββα,等式两边再加上k β的负向量k -β,即可得()k k k -=-αβαβ. 5.证明:在实函数空间中,21,cos ,cos2t t 是线性相关的.『解题提示』只需要说明其中一个向量可以由其他向量线性表出即可.证明 由于在实函数空间中,有1cos 22cos 2-=t t ,即cos 2t 可由另外两个向量线性表出,故21,cos ,cos 2t t 是线性相关的.7.在4P 中,求向量ξ在基1234,,,εεεε下的坐标,设2)1234(1,1,0,1),(2,1,3,1),(1,1,0,0),(0,1,1,1),(0,0,0,1)====--=εεεεξ. 解法1 设ξ在基1234,,,εεεε下的坐标为1234(,,,)k k k k ',则有11223344k k k k =+++ξεεεε.2)将向量等式按分量写出,得12312342412420,0,30,1.k k k k k k k k k k k k ++=⎧⎪+++=⎪⎨-=⎪⎪+-=⎩ 解方程组,得12341,0,1,0k k k k ===-=,即为ξ在基1234,,,εεεε下的坐标.解法2 将1234,,,εεεε和ξ作为矩阵的列构成一个矩阵()1234,,,,=εεεεξA ,对A 进行初等行变换,将其化成最简阶梯形矩阵,从而确定ξ与1234,,,εεεε的线性关系.2)对A 进行初等行变换,得到1210010001111100100003010001011101100010⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭A ,于是13=-ξεε.『方法技巧』解法1,利用了待定坐标法,将线性关系转化成线性方程组,解线性方程组即可;解法2,利用了初等行变换不改变列向量之间的线性关系,将向量组构成的矩阵化成最简阶梯形矩阵,从而观察出向量的坐标.8.求下列线性空间的维数与一组基: 1)数域P 上的空间n nP ⨯;2)n nP⨯中全体对称(反对称,上三角)矩阵作成的数域P 上的空间;『解题提示』根据各个线性空间的特点,构造出这些线性空间的一组基,同时也可以给出它们的维数. 解 1)n nP⨯是数域P 上全体n 级矩阵的全体,按照矩阵的加法和数量乘法,构成的线性空间.对于任意的1,i j n ≤≤,令ij E 表示第i 行第j 列的元素为1,其余元素均为0的n 级矩阵.根据矩阵的线性运算以及矩阵相等的定义,容易验证ij E ,,1,2,,i j n =是线性无关的,且任意n 级矩阵A 均可由它们线性表出,从而为n nP⨯的一组基.于是n nP⨯的维数为2n .2)仍然使用1)中的符号,并记{|}n n S P ⨯'=∈=A A A ,{|}n n T P ⨯'=∈=-A A A ,{()|0,}n n ij ij N a P a i j ⨯==∈=>A .则,按照矩阵的加法和数量乘法,,,S T N 分别表示n nP ⨯中全体对称、反对称、上三角矩阵全体构成的线性空间.容易验证①ii E ,1,2,,i n =;ij ji +E E ,1i j n ≤<≤,构成线性空间S 的一组基,其维数为(1)122n n n ++++=. ②ij ji -E E ,1i j n ≤<≤,构成线性空间T 的一组基,其维数为(1)12(1)2n n n -+++-=. ③ii E ,1,2,,i n =;ij E ,1i j n ≤<≤,构成线性空间N 的一组基,其维数为(1)122n n n ++++=. 『方法技巧』求已知线性空间的基和维数,构造出它的一组基尤为关键,这需要注意观察线性空间元素的特征,利用线性空间中元素之间的关系进行分析.9.在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下的坐标.设1)1234(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),=⎧⎪=⎪⎨=⎪⎪=⎩εεεε1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3),=-⎧⎪=⎪⎨=⎪⎪=⎩ηηηη 1234(,,,)x x x x =ξ在1234,,,ηηηη下的坐标; 2)1234(1,2,1,0),(1,1,1,1),(1,2,1,1),(1,1,0,1),=-⎧⎪=-⎪⎨=-⎪⎪=--⎩εεεε1234(2,1,0,1),(0,1,2,2),(2,1,1,2),(1,3,1,2),=⎧⎪=⎪⎨=-⎪⎪=⎩ηηηη (1,0,0,0)=ξ在1234,,,εεεε下的坐标; 『解题提示』由于题目是在4维向量空间4P 中讨论,这里可以采用定义法或借助第三组基求过渡矩阵;对于求ξ在指定基下的坐标可以采用待定系数法,也可以采用坐标变换法.解 1)由于1234,,,εεεε为4维单位向量,故i η,1,2,3,4i =在基1234,,,εεεε下的坐标向量即为iη本身,故123420561336(,,,)11211013⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭ηηηηA 即为由基1234,,,εεεε到1234,,,ηηηη的过渡矩阵.又由于1234(,,,)x x x x =ξ在基1234,,,εεεε下的坐标向量即为ξ本身,根据坐标变换公式,可知ξ在1234,,,ηηηη下的坐标为111222133344412927331129231900182773926y x x y x x y x x y x x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A , 即1123421234314412344111,93914123,27932712,3371126.279327y x x x x y x x x x y x x y x x x x ⎧=+--⎪⎪⎪=+--⎪⎨⎪=-⎪⎪⎪=--++⎩2)由于这一题目是在4维向量空间4P 中讨论,故根据本章教材内容全解的基变换一节求过渡矩阵方法(3)可知,由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵为112341234(,,,)(,,,)-=A εεεεηηηη111112021212111131110021101111222----⎛⎫⎛⎫⎪ ⎪--⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 令12341234(,,,),(,,,)==B C εεεεηηηη,则根据初等矩阵与初等变换的对应,可以构造2n n ⨯矩阵=()P B C ,对矩阵P 实施初等行变换,当把B 化成单位矩阵E 时,矩阵C 就化成了1-B C :1111202121211113=1110021101111222---⎛⎫ ⎪-- ⎪ ⎪- ⎪⎝⎭P 10001001010011010010011101010⎛⎫ ⎪ ⎪→→ ⎪ ⎪⎝⎭1()-=E B C 于是,由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵为11001110101110010-⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭A B C . 另外,设1234,,,e e e e 为4P 的单位向量组成的自然基,那么12341234(,,,)(,,,)=e e e e B εεεε.于是1123412341100(1,0,0,0)(,,,)(,,,)0000-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭e e e e B ξεεεε, 因此,ξ在1234,,,εεεε下的坐标为112134111111021210011100001110y y y y ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭B . 类似地,构造矩阵=()'P Bξ,并对其进行初等行变换,将B 化成单位矩阵E 时,矩阵'ξ就化成了1-'B ξ: 11111110003/132121001005/13=()1110000102/130111000013/13---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪'→→= ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭P EB ξ,所以,(1,0,0,0)=ξ在1234,,,εεεε下的坐标为12343512133y y y y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭. 『方法技巧』利用n 维向量空间中的向量构成矩阵,将求过渡矩阵问题转化成求一个矩阵的逆与另一个矩阵(或向量)的乘积问题,注意在计算这样的矩阵乘法时,利用初等变换与初等矩阵的对应,构造一个新的矩阵,利用初等行变换就可求得.10.继第9题1),求一非零向量ξ,它在基1234,,,εεεε与1234,,,ηηηη下有相同的坐标. 解 根据上一题的讨论可知,由1234,,,εεεε到1234,,,ηηηη的过渡矩阵为123420561336(,,,)11211013⎛⎫ ⎪ ⎪== ⎪- ⎪⎝⎭ηηηηA . 设所求向量为1234(,,,)x x x x '=ξ,由于1234,,,εεεε为4维单位向量,故ξ在基1234,,,εεεε下的坐标向量即为ξ本身,故根据坐标变换公式,可知ξ在1234,,,ηηηη下的坐标为1-A ξ.因此,如果ξ在两组基下的坐标相同,那么1-=A ξξ.左右两边乘以A ,可得=A ξξ,即()-=0A E ξ,也就是说ξ是齐次线性方程组()-=0A E X 的解.利用消元法求得方程组的解为12341111x x k x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 其中k 是任意常数.于是(,,,)k k k k '=ξ,k 是非零常数,即为所求向量.『特别提醒』利用坐标变换公式,将求向量问题转化成了求解线性方程组问题.12.设12,V V 都是线性空间V 的子空间,且12V V ⊂,证明:如果1V 的维数与2V 的维数相等,那么12V V =.证明 设12dim dim V V r ==.那么①如果0r =,则1V 与2V 都是零空间,从而,12V V =. ②如果0r >,任取1V 的一组基12,,,r ααα,由于21V V ⊂,且12,V V 的维数相等,故,根据基的定义,12,,,r ααα也是2V 的一组基,于是1122(,,,)r V L V ==ααα.『方法技巧』这个题目的结论,在证明两个线性空间相等时经常使用. 14.设100010312⎛⎫⎪= ⎪ ⎪⎝⎭A ,求33P⨯中全体与A 可交换的矩阵所成子空间的维数和一组基.『解题提示』可以待定所求矩阵的元素,利用交换关系、矩阵的相等以及解线性方程组,即可求得.解 设111213212223313233x x x x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭X 是与A 交换的任意一个矩阵.首先将矩阵A 分解成100000010000001311⎛⎫⎛⎫ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A EB .由于单位矩阵E 与任何矩阵都可交换,故X 与A 可交换当且仅当X 与B 可交换.事实上,由()=+=+=+AX E B X EX BX X BX ,()=+=+=+XA X E B XE XB X XB可知=AX XA 当且仅当=BX XB .将=BX XB 按元素写出,即为131313232323333333112131122232132333300030003333x x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭, 从而132311213133122232330,33,3,x x x x x x x x x x ==⎧⎪++=⎨⎪++=⎩ 即132331331121323312220,33,3.x x x x x x x x x x ==⎧⎪=--⎨⎪=--⎩ 这是一个含有9个未知数的线性方程组,取1112212233,,,,x x x x x 为自由未知量,依次取值为5维单位向量,得线性方程组的一个基础解系为1100000300⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,2010000030⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,3000100100⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,4000010010⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,5000000311⎛⎫⎪= ⎪ ⎪⎝⎭X .于是12345,,,,X X X X X 即为所求空间的一组基,且这个空间的维数为5.『方法技巧』本题中,利用单位矩阵的良好性质,将求与A 交换的矩阵的形式转化成一个与相对简单的矩阵B 可交换的形式,这能够给计算带来简便.19.设1V 与2V 分别是齐次方程组120n x x x +++=与121n n x x x x -====的解空间,证明12n P V V =⊕.证法1 由于齐次方程组120n x x x +++=的一组基础解系为111111100,,,010001n ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα,即为其解空间的一组基,从而1121(,,,)n V L -=ααα.另外,齐次方程组12n x x x ===的一组基础解系为(1,1,,1)'=β,即为其解空间的一组基,从而2()V L =β.又由于向量组121,,,,n -αααβ组成的n 级矩阵的行列式111111001(1)001011011n n +---=-≠, 故121,,,,n -αααβ线性无关,从而121dim (,,,,)n L n -=αααβ,而121(,,,,)n n L P -⊂αααβ,所以,根据习题12可知,121(,,,,)n n P L -=αααβ.于是,12121121(,,,)()(,,,,)n n n V V L L L P --+=+==αααβαααβ,且12dim dim dim n P V V =+,故12n P V V =⊕.证法2 由于齐次方程组120n x x x +++=的一组基础解系为111111100,,,010001n ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα,即为其解空间的一组基,从而1121(,,,)n V L -=ααα.另外,齐次方程组12n x x x ===的一组基础解系为(1,1,,1)'=β,即为其解空间的一组基,从而2()V L =β.对于任意的12V V ∈ξ,不妨设112211n n k k k l --=+++=ξαααβ,则112211n n k k k l --+++-=0αααβ,按分量写开,即为1211210,0,0,0.n n k k k l k l k l k l -------=⎧⎪-=⎪⎪-=⎨⎪⎪-=⎪⎩ 直接解得1210n k k k l -=====,从而=0ξ.因此12{}V V =0.所以1212dim()dim dim V V V V n +=+=,而显然12n V V P +⊂,根据习题12可知,12n V V P +=,结合12{}V V =0,有12n P V V =⊕.证法3 设1212(,,,)n a a a V V =∈ξ,即1V ∈ξ且2V ∈ξ,那么12120,.n n a a a a a a +++=⎧⎨===⎩ 直接解得120n a a a ====,即=0ξ.因此12{}V V =0.另外,对于任意的12(,,,)n n x x x P =∈η,显然有1212(,,,)(,,,)(,,,)n n x x x x x x x x x x x x ==---+η,其中121()n x x x x n=+++,且121(,,,)n x x x x x x V ---∈,2(,,,)x x x V ∈.所以12n P V V =+.结合12{}V V =0,有12n P V V =⊕.『方法技巧』证法3的证明更为直接和简便.20.证明:如果12V V V =⊕,11112V V V =⊕,那么21211V V V V ⊕⊕=.证法1 由题设知,11122V V V V =++.由于12V V V =⊕,故12dim dim dim V V V =+.又因为11112V V V =⊕,所以11112dim dim dim V V V =+.于是11122dim dim dim dim V V V V =++.因此21211V V V V ⊕⊕=.证法2 由题设知,11122V V V V =++.设11122=++0ααα,其中11112223,,V V V ∈∈∈ααα,那么,由11122()=++0ααα及12V V V =⊕,可得11122,+==00ααα.再由11112V V V =⊕可得1112==0αα,于是,零向量的表示法唯一,从而21211V V V V ⊕⊕=.。
高等代数考研复习[线性空间]
1.2 常用线性空间
n P (1)n维向量空间: {(a1, a2,
, an ) | ai , P}
Pn 空间的基 1, 2 , , n 其中 i (0
n dim P n. 空间维数 P
1
i
0)
n
nm P (2)矩阵空间: Anm | A (aij ), aij P.
3 1 1 3 3 0 1 1 F1 , F2 , F3 , F4 . 1 1 1 1 2 1 0 2
(1)求由 F1, F2 , F3 , F4到 E11, E12 , E21, E22 的过渡矩阵.
1 线性空间概念、基维数与坐标
1.1
线性空间的定义: 设V是一个非空集合,P是一个数域.在V的元 素之间定义了两种运算:加法与数乘,并且 两种运算满足8条性质.则称集合V是数域P上 的线性空间. 简单地说:带有线性运算的集合,同时运算 满足8条性质的集合称为线性空间. 线性空间中的元素称为向量,线性空间也称 为向量空间.
y1 y 2 A . yn
(1 , 2 ,
y1 y , n ) 2 , yn
那么,
x1 x 2 xn
题型分析:1)确定空间的基与维数
nn V { A | A A , A P }, 求V的基与维数. 例1 设
过渡矩阵都是可逆的!并且由 1, 2 , , n 到
1 坐标变换:设 1, 2 , , n 与 1, 2 , , n 都是
n维空间V的基,对V中任一向量,有
x1 x , n ) 2 ( 1 , 2 , xn
高等代数第6章线性空间
第6章 §1 §2 §3 §4 §5 §6 §7 §8
线性空 间
集合· 映射 线性空间的定义与简单性质 维数· 基与坐标 基变换与坐标变换 线性子空间 子空间的交与和 子空间的直和 线性空间的同构
§1
集合· 映射
一、集合
集合的定义:作为整体看的一堆东西。通
常用大写英文字母A,B,C,…表示。 组成集合的东西叫元素,用小写英文字 母a,b,c,…表示
Rn: 为n维实向量空间 R3: 是3维实向量空间,即通常的几何空间.
例3 Pmn: 数域P上m×n矩阵全体组成的集合 对于矩阵的加法和数与矩阵的乘法构成P上 线性空间. 例4 C0(a, b): 闭区间 [a, b] 上所有连续函数全 体组成的集合对于函数的加法和数与函数的 乘法,即 (f + g)(x) = f(x) + g(x) (kf)(x) = kf(x) 构成实数域R上的线性空间.
例2
P[x]是无限维线性空间.
例3
线性空间Pn[x]中,1, x, x2, …, xn-1 是一组基,且dim Pn[x] = n. f(x)= a0+a1x ++an-1 xn-1 在这组基下的坐标是(a0, a1,, an-1) 可以证明1, (x-a), (x-a)2,…, (x-a)n-1也是 一组基。 用Taylor公式展开
注
(1)零空间0没有基, 规定其维数为0,
线性代数课件_第六章_线性空间和线性变换——习题课
课件
7
2 线性空间的性质
(1)零元素是唯一; 的
(2)任一元素的负元素一是的唯 ,的负元素记 作;
(3)0 0;(1) ;00; (4)如果0,则 0或 0.
2019/9/24
课件
8
3 子空间
定义 设 V是一个线性空间,L是 V的一个非空子 集,如果 L对于V中所定义的加法和乘数两种运算 也构成一个线性空间,则称 L为 V的子空间.
2019/9/24
课件
24
记 T ( 1 , 2 , , n) (T ( 1), T ( 2), ,T ( n)), 上
式可表示为
T ( 1 , 2 , , n) ( 1 , 2 , , n) A,
其中
a 11 a 12 a 1n
A
a 21
线性空间的结构完全被它的维数所决定. 任何 n维线性空间都与 R n同构,即维数相等 的线性空间都同构.
2019/9/24
课件
12
5 基变换
设 1 ,, n 及 1 ,, n是线性空间V n中的两
个基,
1 p11 1 p21 2 pn1 n ,
(7)( ) ;
(8)( ) ,
那么,V就称为(实数域 R上的)向量空间( 或线性空间),V中的元素不论其本来的性质如 何,统称为(实)向量.
简言之,凡满足八条规律的加法及乘数运算, 就称为线性运算;凡定义了线性运算的集合,就 称为向量空间.
2019/9/24
(1,2,,n)(1,2,,n)P.
2019/9/24
课件
16
7 线性变换的定义
设有两个非空集 A, B合,如果对于 A中的任一
高教线性代数第六章 线性空间课后习题答案
第六章 线性空间1.设,N M ⊂证明:,M N M M N N ==I U 。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M I ∈α即证M N M ∈I 。
又因,M N M ⊂I 故M N M =I 。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N Y ⊂所以M N N =U 。
2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。
证 ),(L N M x Y I ∈∀则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。
反之,若)()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ⊂于是)()()(L M N M L N M I Y I Y I =。
若x M N L M N L ∈∈∈UI I (),则x ,x 。
在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L )。
,,N L x M N X M L M N M M N M N ∈∈∈∈∈⊂U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 线性空间一、内容提要§6.1 线性空间与简单性质1. 定义设V 是一个非空集合,K 是一个数域。
在V 上定义了一种加法运算“+”,即对V 中任意的两个元素α与β,总存在V 中唯一的元素γ与之对应,记为βαγ+=;在数域K 和V 的元素之间定义了一种运算,称为数乘,即对K 中的任意数k 与V 中任意一个元素α,在V 中存在唯一的一个元素δ与它们对应,记为αδk =。
如果上述加法和数乘满足下列运算规则,则称V 是数域K 上的一个线性空间。
(1) 加法交换律:αββα+=+;(2) 加法结合律:()()γβαγβα+=+++;(3) 在V 中存在一个元素0,对于V 中的任一元素α,都有αα=+0; (4) 对于V 中的任一元素α,存在元素β,使0=+βα; (5) α⋅1=α;(6) βαβαk k k +=+)(,∈k K ; (7) ()∈+l k l k l k ,,βαα+=K ;(8) ()()ααkl l k =, 其中γβα,,是V 中的任意元素,l k ,是数域K 中任意数。
V 中适合(3)的元素0称为零元素;适合(4)的元素β称为α的负元素,记为α-。
2. 简单性质。
性质1 零向量是唯一的。
性质2 负向量是唯一的。
性质3 对V 中任意向量γβα,,,有(1) 加法消去律:从γαβα+=+可推出γβ=;(2) 0=⋅α0,这里左边的0表示数零,右边的0表示零向量; (3) 00=⋅k ; (4) αα-=-)1(;(5) 如果0=αk ,则有0=k 或0=α。
§6.2 基与维数1.定义(1)基与维数设V 是数域K 上的一个线性空间,如果V 中的n 个向量n εεε,,,21 满足 (1)n εεε,,,21 线性无关;(2)V 中的任意向量都可由n εεε,,,21 线性表示,则称n εεε,,,21 为线性空间V 的一组基,n 称为V 的维数,记为n V =dim ,并称V 为数域K 上的n 维线性空间。
(2)坐标设n εεε,,,21 是n 维线性空间V 的一组基,则对V 中的任意向量α,存在唯一数组n x x x ,,,21 ,使得n n x x x εεεα+++= 2211,我们称n x x x ,,,21 为向量α在基n εεε,,,21 下的坐标,记作()Tn x x x ,,,21 。
(3)同构设U V ,都是数域K 上的线性空间,如果存在一个从V 到U 的一一对应σ:U V →,使得对任意的向量V ∈βα,以及数K ∈k ,均有()()()()()ασασβσασβασk k =+=+,,则称线性空间V 与U 同构,记为U V ≅。
2.推论(1)n 维线性空间中的任意1+n 个向量必线性相关。
(2)n 维线性空间V 中的任意n 个线性无关的向量组成V 的一组基。
3.定理(1)数域K 上任一n 维线性空间都与nK 同构。
(2)数域K 上两个有限维线性空间同构的充分必要条件是它们有相同的维数。
§6.3 基变换和坐标变换1.过渡矩阵设n εεε,,,21 和n ηηη,,,21 是数域K 上n 维线性空间V 的两组基,它们之间的关系为nnn n n n nn n n a a a a a a a a a εεηηεεεηεεεη+++=+++=+++=22112222112212211111,我们称表示矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 为由基n εεε,,,21 到基n ηηη,,,21 的过渡矩阵。
2.坐标变换公式设V ∈α在基n εεε,,,21 和n ηηη,,,21 下的坐标分别为()T n x x x ,,,21 ()T n y y y ,,,21 ,则有⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21=⎪⎪⎪⎪⎪⎭⎫⎝⎛n y y y P 21。
§6.4 线性子空间1.定义(1)子空间设V 是数域K 上的线性空间,W 是V 的一个非空子集。
如果对于V 上的加法和数乘运算,W 也构成数域K 上的线性空间,则称W 为V 的一个线性子空间(简称子空间)。
(2)生成的子空间设S 是线性空间V 的子集,记()S L 为这组向量所有可能的线性组合构成的子集,不难看出这个子集关于向量的加法和数乘运算封闭,因此它是V 的一个子空间,称之为由S 生成的子空间。
2.子空间封闭性如果线性空间V 的非空子集W 关于V 的两种运算封闭,则W 就成为V 的一个子空间。
3.有关生成子空间的性质(1) 设1S 和2S 是线性空间V 的两组向量组,则()⊆1S L ()2S L 当且仅当1S 可由2S 线性表示.(2)()=1S L ()2S L 当且仅当向量组1S 和2S 等价。
(3)设S 是线性空间V 的子集,()S L 为由S 生成的子空间,则a )()S L 是V 中包含S 的最小子空间,即若W 是包含子集S 的子空间,则()W S L ⊆。
b )S 的极大无关组是子空间()S L 的一组基,()S r S L =)(dim 。
4.子空间的交与和(1) s 个子空间的交:si i s V V V V 121==⋂⋂⋂也是V 的子空间。
(2)s 个子空间的和:},,2,1,|{2121s i V V V V i i s s =∈+++=+++αααα也是V 的子空间。
5.直和的定义设s V V V ,,,21 是线性空间V 的子空间,如果和s V V V +++ 21中的每个分解式),,2,1(,21s i V i i s =∈+++=ααααα是唯一的,这个和就称为直和,记为s V V V ⊕⊕⊕ 21。
6.直和的判定定理设s V V V ,,,21 是线性空间V 的子空间,则下列命题等价: (1)s V V V +++ 21是直和;(2)零向量的表示唯一;(3)()}{1110=+++++⋂+-s i i i V V V V V ;(4)s s V V V V V V dim dim dim )dim(2121+++=+++ 。
7.维数公式设21V V V +=,则()2121dim dim dim dim V V V V V ⋂-+=。
二、训练题一、选择题1. 设321,,ααα是向量空间V 的一组基,且1β=1α+2α,2β=2α+3α,3β=1α+3α,2. (a)V ⊆L(321,,βββ); (b)V ⊇L(321,,βββ);3. (c)V=L(321,,βββ); (d)V=L(21,ββ). 二、填空题1. 设1α,2α,3α,4α是向量空间V 中的线性无关向量组,且1β=21α-2α+4α,2β=1α-4α,3β=2α+23α-24α,4β=31α+23α则L(1β,2β,3β,4β)的维数=_____________. 三、计算、证明题1. 设}0)2(,][)(|)({4=∈=f x R x f x f W(1) 证明:W 是4][x R 的子空间; (2) 求W 的维数与一组基。
2. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1102111122151113A , }0,][|{4=∈=αααA x R W 。
证明: a) W 是 4R 的一个子空间。
b) 求W 的维数与一组基。
3. 设 V 1, V 2, V 3 ⊂V 是有限维子空间,证明: dimV 1 + dimV 2 + dimV 3 = dim (V 1 + V 2 + V 3)+ dim (V3 (V 1 + V 2)) + dim (V 1 + V 2)。
4. 设n x K ][是数域K 上次数小于n 的多项式全体构成的线性空间,),2,1(n i a i =是 数域K 上n 个互不相同的数,记)())(()(21n a x a x a x x f ---= ,)/()()(i i a x x f x f -=,证明:),,2,1)((n i x f i =是n x K ][的一组基。
5. 线性空间22⨯M 的两组基分别为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,00014321αααα;⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0111,1011,1101,11104321ββββ; 求由基4321,,,αααα到基4321,,,ββββ的过渡矩阵,并求一个非零矩阵A ,使A 在这两组基下的坐标相同。
6. 在次数小于n 的多项式全体构成的线性空间n x K ][中,求从基121,,,1-===n n x x ααα 到基()121,,,1--=-==n n a x a x βββ 的过渡矩阵。
7. 设n ααα,,,21 是n 维实线性空间V 的一组基,P 是s n ⨯阶实矩阵,向量组s βββ,,,21 由()=s βββ,,,21 ()P n ααα,,,21所定义。
证明:子空间()s L βββ,,,21 的维数等于矩阵P 的秩。
8. 设m V V V ,,,21 是线性空间V 的m 个非平凡子空间,证明:在V 中必存在一个向量不属于任何一个i V 。
9. 在全体n 阶方阵组成的线性空间)(K n M 上,考虑}|)({1A A K M A V Tn =∈=,},|)({2A A K M A V T n -=∈= 证明:)(K n M =21V V ⊕。