电网可靠性分析

合集下载

电力系统的稳定性与可靠性分析

电力系统的稳定性与可靠性分析

电力系统的稳定性与可靠性分析电力系统稳定性与可靠性是电力工程中两个重要的概念。

稳定性是指电力系统在各种外界扰动下,能够维持稳定的运行状态。

可靠性则是指电力系统的设备和组件能够在设计寿命范围内保持正常工作,不发生故障。

了解电力系统的稳定性和可靠性对于保障电力供应的稳定和安全具有关键意义。

一、电力系统的稳定性分析电力系统的稳定性是指系统在发生扰动后,能够恢复到稳态工作状态的能力。

稳定性问题主要分为静态稳定和动态稳定两个方面。

1.静态稳定性静态稳定性指电力系统在平衡态时,对外界扰动的抵抗能力。

主要包括电压稳定性和转子稳定性。

(1)电压稳定性:电压稳定性是指系统运行时各节点电压保持在合理范围内的能力。

当电压波动超过一定范围时,电力系统中的设备可能会受到损坏,甚至引发系统崩溃。

因此,对于电力系统来说,维持合理的电压水平至关重要。

(2)转子稳定性:转子稳定性是指电力系统在发生扰动时,转子角速度能够恢复到稳定的状态。

转子稳定性问题是由于大功率负荷变化或大幅方波的投入引起的。

转子稳定性直接影响系统的可靠性和稳定性。

2. 动态稳定性动态稳定性是指电力系统在外界扰动下,能够恢复到平衡态的时间和稳定性。

主要包括小扰动动态稳定和大扰动动态稳定两个方面。

(1)小扰动动态稳定性:小扰动动态稳定性主要以系统阻尼为基础,衡量系统对小幅度扰动的抑制能力。

一般利用系统的传递函数或者状态空间模型来分析和评估。

(2)大扰动动态稳定性:大扰动动态稳定性主要指系统在大幅度外界扰动(如故障、短路等)下的稳定性。

主要通过计算机仿真和实验研究来评估。

二、电力系统的可靠性分析电力系统的可靠性是指系统在设计寿命范围内保持正常工作的能力。

可靠性问题主要包括设备可靠性和电网可靠性两个方面。

1. 设备可靠性设备可靠性是指电力系统中设备的寿命、故障率和可修复性等方面的评估。

主要包括静态设备可靠性和动态设备可靠性。

(1)静态设备可靠性:静态设备可靠性主要指静止设备(如变压器、发电机等)在工作期间内不发生故障的概率。

电力工程设计规划中的供电可靠性分析

电力工程设计规划中的供电可靠性分析

电力工程设计规划中的供电可靠性分析供电可靠性在电力工程设计规划中具有重要的地位和作用。

供电可靠性的好坏直接关系到电网系统的稳定性、安全性和可持续发展能力。

本文将从供电可靠性的概念、影响因素以及分析方法等方面进行阐述。

一、供电可靠性的概念供电可靠性指的是电力系统在一定时间内保持全天候、全方位供电的能力。

它是一个综合指标,既包括电源的可靠性,又包括输配电设备的可靠性。

二、影响供电可靠性因素1. 供电设备的故障率:电力系统中各类设备的故障率直接影响到供电可靠性。

通常来说,故障率低的设备其可靠性较高。

2. 设备维护保养水平:定期的设备维护保养能够有效地减少设备的故障率,提高供电可靠性。

3. 电网接地方式:合理的电网接地方式可以有效地避免各类故障及事故的发生,提高供电可靠性。

4. 电力负荷:负荷过重会导致电力设备过载,从而降低供电可靠性。

5. 路径的数量和建设规模:一条可靠性较低的路径可能导致供电中断,增加路径的数量和建设规模可以提高供电可靠性。

三、供电可靠性分析方法供电可靠性的分析方法较多,常用的有故障树分析法、可靠性模型、斯蒂薇法等。

1. 故障树分析法(Fault Tree Analysis, FTA)故障树分析法通过将供电系统故障的发生看作是一个树状结构,从而查明故障发生的原因。

该方法可用于定量分析供电系统的可靠性,并确定改进措施和维护计划。

2. 可靠性模型(Reliability Block Diagram, RBD)可靠性模型是一种图形化、符号化的描述方法,将供电系统各个部分以及它们之间的相互关系和作用表示为一个框图。

通过分析框图,有助于了解供电系统的可靠性。

3. 斯蒂薇法(Steedy State Equivalents Method, SSE)斯蒂薇法将全年电力系统的供电可靠性分析转化为稳定状态下的容量干扰计算问题,通过计算供电系统的干扰程度,从而评估其可靠性。

四、提高供电可靠性的对策1. 选择可靠的供电设备和材料,提高设备的质量和可靠性。

国内外输电网可靠性性能管理对比分析

国内外输电网可靠性性能管理对比分析

引言输电网是电力系统的重要组成部分,其主要任务是完成电力的输送,同时要满足安全、可靠性的要求。

因此,衡量输电系统性能的重要标志就是在考虑设备随机故障的条件下系统完成输电功能的能力。

该能力不仅体现了系统设计、运行和维护水平,还与设备本身质量有密切关系。

对于中国这样一个需要大量能源远距离传输的电网,其输电网性能评价显得尤为重要。

世界范围内输电网性能评价都是起步于输变电设施可靠性管理。

北美可靠性组织(NERC)把输电网可靠性性能分为:输变电设施可靠性性能和输电网系统可靠性性能两部分,输电网系统可靠性性能进一步分解为输送能力和输电服务能力。

我国对输电网可靠性性能管理还处于设施可靠性管理阶段,2010年国家电网公司把输电能力指标整合到国家电网的管理中,并改进了相应的数据采集和评价系统。

随着国内新能源发电的快速发展以及电力改革步伐的加快,对输电网可靠性提出了更高的要求,监管部门和电力企业对可靠性的关注和需求都将发生变化,如何在新的形势下开展输电网可靠性性能管理成为一个重要的课题。

国内学者借鉴国外的研究成果开展了相关研究,参考北美的输电能力评价指标,结合国内电网特征,改进性地提出了国家电网公司基于回路的输电系统可靠性评价指标体系和计算方法。

参考北美输电系统输电服务能力评价体系,提出了适应于中国发展现状的连接点评价指标。

介绍了北美以及英国所使用的输电系统可靠性性能评价指标,并通过对比得到我国与英国、北美评价指标方面的差异。

上述研究都是在北美评价体系基础上建立的国内评价系统,虽稍有改进但未跳出总体框架,而且对国内现有管理体系的问题和需求分析不足。

本文在对国内外输电网可靠性性能管理全面调研和分析的基础上,对比了国内外管理体系的差异,提出了国内目前存在的问题,分析了电力改革形势下国内对输电网可靠性性能管理的需求,并论证了未来管理中所需的关键技术。

国内外输电网可靠性性能管理现状及对比1.1 国内输电网可靠性性能管理现状及成效分析1.1.1 管理现状中国对输电网可靠性性能管理还处于设施可靠性管理阶段。

配电网可靠性评估及分析 

配电网可靠性评估及分析 

配电网可靠性评估及分析冯金帅 刘 杰(国网山东省电力公司临沂供电公司)摘 要:电力相关企业正在逐渐把建设重点放到建设配电网方面,而配电网规划对于电网安全、可靠、经济运行有着不可忽视的作用。

因此需要对配电网的可靠性开展深入研究和分析,作为评估程序的重要构成部分,建立一个相对完善并且可行性较高的评估指标系统,配电网规划成效分析则可以为其提供依据。

并且,它的真实性与数据有效性对配电系统评估也具有重大意义。

关键词:配电网;指标体系;评估分析;可靠性0 引言配电网络规划也就是在完善的规划下对于目标区域组织负荷预测和当前阶段网络架构的研究,在符合负荷标准和安全稳定性的基础上,对于目标区域电力网络在目前架构前提下进行合理布局规划,进而使其满足可靠性、稳定性、经济性要求。

完善的电网规划可以有效降低公司的运营成本,满足公司竞争需求,同样有助于减少财政基建投资压力,为保障经济发展提供坚实的基础保障[1]。

配电网的设计方案的成功与否和落实程度都会对日后配电服务网络体系的负荷程度、经济发展度发挥关键性影响,配电网络的超前或滞后建设都会在一定程度上对电网整体的发展产生负面影响[2]。

对于配电网络规划方案而言,首要评估其是否满足发展需求,是否满足可靠性要求,这对于配电网络的长远发展是十分关键的[3]。

1 配电网的规划可靠性分析(1)可靠性分析方法配电网络的主要功能是销售、分配电力能源给目标客户,和目标用户的日常生活工作有十分紧密的联系,电力网络的波动会对终端客户的经济利益产生重要影响。

因而精确的分析配电网络体系的稳定性对于保障民生质量、促进经济稳定健康发展有十分关键的作用,此外配电网络体系的稳定性评估是电网建设和持续发展的重要基础保障条件。

当前阶段,配电网络体系的稳定性评估重点使用的研究方法主要有蒙特卡洛抽样法和解析法两类[4-5]。

(2)配电网评价方法1)鱼骨图分析法也叫作因果研究法,这一研究法的主要原理是寻求问题自身的特征和相关作用要素,此后利用专项的逻辑研究来建立层级明确、调理明细的程序图。

电网安全可靠性分析与评估

电网安全可靠性分析与评估

电网安全可靠性分析与评估随着现代社会的高速发展,电力供应也成为了社会经济运转和生活必需品。

然而,在万物皆备受技术炮制的今天,电网安全问题时有发生,给经济和人民生活造成诸多不便。

因此,电网安全可靠性分析与评估显得尤为重要。

一、电网安全可靠性的概念电网安全可靠性实际上是在一系列破损的情况下,电力系统能否仍能够保持运转的程度。

也就是说,电网安全可靠性是指电力系统在正常运转和极端情况下能否确保对供电的稳定和可靠。

因此,电网安全可靠性是对电力系统稳定性的一个客观测量。

二、电网安全可靠性分析的方法1.故障统计法故障统计法是指在电力系统正常运转过程中,对发生故障的设备进行分类,然后对不同分类的故障进行综合分析。

这种方法的优点在于可以对电力系统的设备造成故障的原因进行分析,以找到系统故障的具体原因。

但是,这种方法所分析的故障是以历史数据为主要依据,因此缺乏预测性能。

2.状态分析法状态分析法是指对电力系统的各个部分的状态进行分析,以了解其在运转中的具体情况、所处环境和影响因素。

这种方法的优点在于可以全面了解电力系统各部分的运转状态,为进一步分析提供了依据。

但是,它也存在一定的问题,例如因为数据信息量过大,可能导致分析的对象过于复杂。

3.模拟计算法模拟计算法是指对电力系统进行建模,并利用相关的软件进行计算和模拟。

这种方法的优点在于可以针对不同的工况和故障情况,对电力系统的稳定性进行分析和预测,并提出改进建议。

但是,由于它的计算依据和预测结果可能受到限制和限制因素的影响,存在一定的局限性。

三、电网安全可靠性评估的标准电网安全可靠性评估标准是对电网安全可靠性实际运行情况的客观评估。

常用的电网安全可靠性评估指标包括:1.停电次数停电次数是指电力系统在一定时间内发生完全停电的次数。

它是评估电网安全可靠性的重要指标之一,可以反映电力系统的故障程度和本质。

2.停电持续时间停电持续时间是指电力系统在一定时间内发生完全停电的持续时间。

电网的可靠性分析与优化决策方法与应用案例解析与总结

电网的可靠性分析与优化决策方法与应用案例解析与总结

电网的可靠性分析与优化决策方法与应用案例解析与总结随着社会发展和经济进步,电网在现代社会中起着至关重要的作用。

然而,电网的可靠性问题一直是电力行业面临的挑战之一。

电网的可靠性分析以及相应的优化决策方法是解决这一问题的关键要素。

本文将对电网的可靠性分析与优化决策方法进行探讨,并通过实际案例解析与总结,提供深入的理解和应用指导。

一、可靠性分析方法1.1 可靠性评估指标电网的可靠性评估指标是衡量电网可靠性的重要标准。

常见的评估指标包括:(1)平均故障间隔时间(MAIFI):表示单位时间内平均发生故障的次数。

(2)平均故障持续时间(MADT):表示故障修复所需的平均时间。

(3)平均不可用时间(MAUI):表示电网无法正常运行的平均时间。

(4)系统可用性指标(SAIDI、SAIFI、CAIDI):反映电网对用户的可靠性水平。

1.2 可靠性分析方法(1)可靠性指标计算方法:通过统计电网的故障数据,计算出各项可靠性评估指标。

(2)可靠性分析模型:建立数学模型,综合考虑电网各个运行因素,通过模拟和计算得出电网可靠性指标。

(3)风险评估方法:从风险的角度分析电网的可靠性,识别可能的风险点,并采取相应的措施进行改进。

二、优化决策方法2.1 优化目标电网的可靠性优化决策旨在降低故障发生频率、缩短修复时间,提高系统的可用性和可靠性水平。

2.2 优化决策方法及工具(1)装备可靠性优化:通过识别电网中易发生故障的设备,采取相应的预防性维护措施,提高设备的可靠性。

(2)电网结构优化:通过改变电网的布局结构,提高电网的容错能力和鲁棒性,降低故障对系统的影响。

(3)容灾与备份优化:通过建立容灾备份机制,保障系统在故障发生时的可快速恢复能力。

(4)调度与控制优化:采用先进的调度与控制技术,实现对电网运行的有效监控和控制,提高电网的可靠性。

三、应用案例解析3.1 案例一:装备可靠性优化某电网系统的变电站设备频繁故障,导致供电中断的情况频发。

电力行业的电能质量与电网可靠性分析

电力行业的电能质量与电网可靠性分析

电力行业的电能质量与电网可靠性分析电能质量和电网可靠性是电力行业关注的重要问题,对于提高供电质量、保障工业生产和居民生活具有重要意义。

本文将着重分析电能质量和电网可靠性在电力行业中的关系,并提出相应的解决方案。

1. 电能质量的定义和重要性电能质量是指电力系统供电中各种电气参数(如电压、电流、频率等)的稳定性和纹波特性,以及对供电设备和用电设备的影响程度。

良好的电能质量可以确保电气设备正常运行,提高生产效率,减少能源损耗。

但是,随着电力系统规模的扩大和用电负荷的增加,电能质量问题也越来越突出。

2. 电能质量问题的表现在电力行业中,常见的电能质量问题包括电压波动、电压骤降、电压闪变、谐波畸变等。

这些问题会导致设备故障、能源浪费、生产效率低下等严重后果,对电力系统的正常运行和用电设备的安全稳定造成威胁。

3. 电网可靠性的定义和重要性电网可靠性是指电力系统提供稳定和连续供电的能力。

对于电力行业来说,电网可靠性是实现电能质量保障的基础。

高可靠性的电网可以保障电力系统各环节供电的稳定性,提供高质量、可靠的电力供应。

4. 影响电能质量和电网可靠性的因素影响电能质量和电网可靠性的因素较多,主要包括电力系统的结构、输电线路的电气参数、变电站的运行质量、终端用户的用电行为等。

这些因素之间相互关联,彼此影响,需要综合考虑。

5. 解决电能质量和电网可靠性问题的策略(1)加强电力系统规划和设计:合理规划电力系统的结构和布局,考虑用电负荷的合理分布,提高电力系统的供电能力和可靠性。

(2)提高输电线路和变电站的运行质量:加强输电线路、变电站的检修和维护,保证设备的正常运行,减少电能质量问题的发生。

(3)完善电能质量监测系统:建立电能质量监测系统,对电力系统各个环节的电气参数进行实时监测,及时发现和解决问题,提高电能质量和电网可靠性。

(4)推动智能电网技术的应用:智能电网技术可以实现电力系统的自动化、信息化和智能化,提高电网可靠性和电能质量。

配电电网管理中供电可靠性分析

配电电网管理中供电可靠性分析
3.3提高设备质量,缩短检修时间
首先考虑配电线路自动化,当发生故障后能自动隔离故障区段,自动恢复对非故障区段的供电,然后考虑自动抄录电表。配电导线在开发区内采用电缆,其它市区部分有条件的也改用电缆并逐步推广采用绝缘导线,近郊及远郊仍可以架空导线为主。同时要推广使用故障指示器,缩短故障寻找时间及减小配变容量,缩小供电半径,推广采用40kVA箱式变,按一只箱式变可供二幢楼左右来设计。(推广采用免维护的地埋式变压器)配变的高压跌落式熔丝逐步推广采用绝缘导线,近郊及远郊仍可以架空导线为主。同时要推广使用故障指示器,缩短故障寻找时间及减小配变容量,缩小供电半径,推广采用40kVA箱式变,按一只箱式变可供二幢楼左右来设计。(推广采用免维护的地埋式变压器)配变的高压跌落式熔丝逐步要换成带消弧杆的跌落式熔丝,减少配变检修对用户的影响.
配电电网管理中供电可靠性分析
摘要:随着社会的发展,用电量也越来越大,因此,配电系统的可靠性显得尤为重要。对配电系统的可靠性进行分析,进而提出提升可靠性的有效措施,不仅给用户带来便利,也减少了社会资源的浪费。
关键词:配电;电网管理;供电可靠性;分析
1配网供电可靠性的表现形式
配网供电可靠性就是在电力系统供电出现故障时,能够将故障带来的损失降到最小,并且系统还能保持正常运行,这种减小故障、保持运行的能力就是配电的供电可靠性,衡量配电网的可靠性一般从以下四个方面考虑:
3.4积极改进工作措施
设备是基础,管理是关键,因此领导重视,措施得力是提高供电可靠性管理工作的关键。(1)加强对计划停电的管理。定期召开会议,对近段时间的相关停电工作做好统筹安排,统一组织进行,减少重复停电,尽量缩短停电时间。严格执行计划停电审批手续保证停电计划的严肃性。(2)利用城、农网工程,对输配电线路制定出详细的改造项目和计划,按轻重缓急,科学合理的组织施工计划和进度。(3)加强变电值班人员的业务技能培训和思想教育培训,经常开展反事故预想和反事故演习,提高故障检修人员的综合素质和业务技能水平,做到应修必修,修必修好。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电网可靠性分析
随着社会经济的发展, 科学技术的进步及人民生活水平的不断提高, 人们对电力的需求和依赖性越来越大, 对安全稳定供电的要求越来越强。

然而, 受到电力系统自身原因和外部干扰的影响, 电网事故时有发生, 这不但使电力经营企业的经济效益受到损失,而且对电力用户和整个社会都将造成严重的影响。

一、影响电力安全的因素
⑴内部因素
内部因素主要可归纳为:
①电力系统主要元件故障:发电机、变压器、电线故障;
②控制和保护系统故障:保护继电器的隐性故障、断路器误动作、控制故障或误操作等;
③计算机软、硬件系统故障;
④信息、通信系统故障:与EMS系统失去通信、不能进行自动控制和保护、信息系统故障或拥塞、外部侵入信息通信系统;
⑤电力市场竞争环境的因素:电力市场中各参与者间的竞争与不协调、在更换旧的控制和保护系统或发电装置上缺少主动性;
⑥电力系统不稳定:静态、暂态、电压、振荡、频率不稳定等。

⑵人为因素
不少大事故都与继电保护有关, 而这些保护的选型、整定和检查都与设计人员和运行人员的知识水平、敬业精神息息相关。

常见的人为因素可概括为操作人员误操作, 控制和保护系统设置错误、蓄意破坏(包括战争或恐怖活动)等。

⑶自然灾害
影响供电运行的自然灾害主要包括雨淞和雾淞、冻雨造成电线积冰, 或大雪积压在电线上, 厚度过大时会压断电线;大于7 ~ 8级的风会吹倒电杆, 龙卷风和风暴会刮倒线路杆塔;雷击危害高压线路和变压器,击破磁瓶, 造成跳闸,一有大风,有可能产生震动、跳跃和碰线引起速断保护跳闸;雾、毛毛雨、空气污染等造成“污闪”现象, 导致绝缘子绝缘水平降低, 出现短路事故;暴雨造成铁塔、电杆倾倒或浸泡电器, 引起停电事故;直径大于等于10毫米的冰雹能砸坏电器电线。

二、相应的技术措施
⑴精心规划电网设计, 做好技术创新工作
一是主干电网规划与地区电网规划要协调好, 匹配好。

主干电网与地区电网都要坚强, 一旦主干电网受损失效, 地区电网要能够独立运行, 这样可以避免大面积停电。

二是集中式大电源与分布式电源之间关系要协调好。

集中大电源具有节能、环保、高效的优势, 但是一旦因故失效, 分布式电源要能满足所在地区最基本的经济活动和人民生活的需要。

坚持做好电力系统的计算分析和仿真试验工作。

通过事故预想分析, 找出系统中存在的薄弱环节, 对可能发生的事故作好预案, 这对于防止大面积停电事故的发生是十分重要的。

⑵强化管理,完善各项制度预案,提高运行人员素质
建立科学、高效的国家应急机制的目的并非防止任何特大自然灾害的发生, 而是要对这些特大灾害事先做好准备, 一旦灾害发生, 将其破坏程度降到最低水平。

为应对各种突发公共事件, 美国、加拿大和意大利等国都建立了比较完备的应急机制, 这些国家的应急管理模式在国际社会都处于领先地位, 许多方面值得学习和借鉴。

通过建立必须遵从并强制执行的各种可靠性标准, 建立在线路路径内维护电气间距的强制标准, 加强对运行人员的培训工作, 提高对调度员、可靠性协调员及其调度支持人员的资格要求, 明确规定和定义正常、预警和紧急运行状况的系统条件, 为调度员和可靠性协调员的评估工作提供优良的各种实时手段等。

⑶针对自然条件, 提高设计水平和标准
第一, 在线路规划方面, 应考虑尽可能降低线路的平均海拔, 避开重冰区;根据电网的负荷分布和环境因素, 规划建设加强型线路, 这样在其他线路灾害失效时能够保证电网的基本运行。

第二, 在线路设计方面, 修改设计标准, 采取差异化设计;杆塔设计中加大纵向不平衡张力取值;增加铁塔抗串倒的能力;增强地线抗冰荷载能力;提高大档距、大高差区段的抗冰设计标准。

第三, 在线路建设方面, 严格按照设计要求和施工标准进行, 保障线路在重覆冰情况下不因施工缺陷而首先发生失效破坏并引起连锁反应。

第四, 在系统调度和生产运行方面, 要加强与气象部门的合作及灾害预警, 形成电力行业自己的灾害气象数据解读能力。

第五, 在科研方面要多措并举, 在防冰、除冰、融冰、抗冰等多方面, 开展基础性研究, 特别是要开展人工干预气象技术的研究与应用和人工干预输电线路破坏顺序技术和输电线路快速修复技术方面的研究。

第六, 在试验能力方面要在恶劣气候环境模拟、力学仿真计算、结构部件的真型实验能力等方面创造必要的试验研究条件等。

相关文档
最新文档