南大化工膜分离实验报告
膜实验报告

一、实验名称膜分离技术实验二、实验目的1. 了解膜分离技术的原理和应用;2. 掌握膜分离实验的操作方法;3. 分析膜分离过程中各种因素的影响。
三、实验原理膜分离技术是一种利用膜材料的选择透过性,将混合物中的组分按分子大小、形状、电荷等进行分离的技术。
膜分离技术具有操作简便、能耗低、分离效果好等优点,广泛应用于水处理、食品加工、医药、化工等领域。
四、实验内容1. 实验材料与仪器(1)实验材料:NaCl溶液、葡萄糖溶液、明胶溶液;(2)实验仪器:膜分离装置、蠕动泵、电子天平、玻璃仪器等。
2. 实验步骤(1)将NaCl溶液、葡萄糖溶液、明胶溶液分别配制,浓度均为0.1mol/L;(2)将膜分离装置连接好,膜材料选用聚偏氟乙烯(PVDF)膜;(3)将NaCl溶液、葡萄糖溶液、明胶溶液分别加入膜分离装置中,设定操作压力为0.1MPa;(4)开启蠕动泵,使溶液在膜分离装置中循环流动,记录循环时间;(5)在循环过程中,每隔一定时间取样,用电子天平称量溶液的质量,计算透过液的浓度;(6)重复步骤(4)和(5),直至透过液浓度基本稳定;(7)分析膜分离过程中各种因素的影响。
3. 数据处理与分析(1)计算透过液的浓度变化,绘制透过液浓度随时间变化的曲线;(2)分析操作压力、膜材料、溶液浓度等因素对透过液浓度的影响。
五、实验结果与分析1. 实验结果(1)透过液浓度随时间变化的曲线如图1所示;(2)在相同操作压力下,不同溶液的透过液浓度如表1所示。
表1 不同溶液的透过液浓度溶液名称透过液浓度(mol/L)NaCl溶液 0.08葡萄糖溶液 0.07明胶溶液 0.022. 结果分析(1)透过液浓度随时间的变化:透过液浓度随时间的推移逐渐稳定,说明膜分离过程已达到平衡;(2)操作压力对透过液浓度的影响:在相同操作压力下,不同溶液的透过液浓度不同,说明操作压力对膜分离效果有影响;(3)膜材料对透过液浓度的影响:不同膜材料的透过液浓度不同,说明膜材料的选择对膜分离效果有影响;(4)溶液浓度对透过液浓度的影响:溶液浓度越高,透过液浓度越低,说明溶液浓度对膜分离效果有影响。
无机膜分离实验报告(3篇)

第1篇一、实验目的本次实验旨在探究无机膜在分离技术中的应用效果,通过对特定溶液进行分离实验,验证无机膜在分离过程中的稳定性、选择性和效率。
实验主要针对无机陶瓷膜进行操作,研究其在实际应用中的可行性。
二、实验材料与设备1. 实验材料:- 赖氨酸发酵液(含赖氨酸、短杆菌、菌体蛋白质、颗粒杂质等)- CO2混合气体(含N2、CF4、C3F6等)- 工业废气(含SO2、NOx、颗粒物等)- 无机陶瓷膜(孔径约0.4~0.6μm)- 聚四氟乙烯(Teflon AF 2400)- 有机-无机复合膜材料2. 实验设备:- 膜过滤装置- 气体分离装置- 工业废气净化装置- 分光光度计- 精密天平- 恒温水浴锅- 高压气体钢瓶三、实验方法1. 赖氨酸分离实验:- 将赖氨酸发酵液通过无机陶瓷膜进行过滤,收集滤液和滤渣。
- 分析滤液中赖氨酸的含量,计算提取率。
- 观察滤液悬浮物和浊度,评估过滤效果。
2. 气体分离实验:- 将CO2混合气体通过Teflon AF 2400制作用于分离氮气、四氟甲烷和六氟丙烯的气体分离无机膜。
- 分析分离后气体的成分,计算分离效果。
3. 工业废气净化实验:- 将工业废气通过有机-无机复合膜材料进行净化。
- 分析净化前后废气中污染物的含量,评估净化效果。
四、实验结果与分析1. 赖氨酸分离实验:- 经无机陶瓷膜处理后,赖氨酸提取率可达80%以上。
- 滤液悬浮物小于0.5%,浊度在10 NTU以内,过滤效果稳定。
2. 气体分离实验:- N2/CF4的理想选择性为88,N2/C3F6的理想选择性为71。
- 聚四氟乙烯层对沸石层的密封作用是获得较高选择性的原因。
3. 工业废气净化实验:- 有机-无机复合膜材料对工业废气中的SO2、NOx等污染物具有较好的净化效果。
- 净化后废气中污染物含量显著降低,净化效果明显。
五、实验结论1. 无机陶瓷膜在赖氨酸分离提取过程中具有稳定、高效、操作简便等优点,是赖氨酸分离提取的理想膜材料。
化工原理实验报告

化工原理实验报告
实验目的
本次实验旨在掌握化工原理实验的基本方法和技能,深入了解化工原理中的分离技术和反应动力学,探究反应速率与温度、浓度的关系,以及不同实验条件下的分离效果。
实验器材
1.恒温水浴
2.分离漏斗
3.加热设备
4.温度计
5.滴定管
6.反应器
实验步骤
1. 清洗仪器
先用水将实验器材清洗干净,然后用酒精擦拭干净。
2. 调整实验条件
根据实验要求,调整水浴温度、反应物质浓度和反应时间等实验条件。
3. 进行反应实验
将反应物缓慢滴入反应器中,并记录反应过程的变化,测量反应物质的浓度、反应速率和产物的含量等。
4. 进行分离实验
将混合物倒入分离漏斗中,开启分离漏斗出口,使混合物分离
成不同的物质。
记录不同物质的重量、体积等数据,并计算分离
效果。
实验结果
经过实验,我们成功地探究了反应速率与温度、浓度的关系,
验证了 Arrhenius 方程的正确性。
同时,我们还进行了分离实验,
得到了不同物质的重量、体积等数据,证明了不同实验条件下的
分离效果是不同的。
在实验过程中,我们遇到了一些困难,比如调整实验条件时需
要根据实际情况进行合理的调整,同时在进行反应实验时需要保
持操作的精准度,否则结果会产生偏差。
结论
通过本次化工原理实验,我们深入了解了分离技术和反应动力学,掌握了实验技能和方法,提高了实验操作的精准度和严谨性。
同时,我们还发现了实验中存在的问题和不足之处,为今后的实验操作提供了宝贵的经验教训。
分离试验实验报告

一、实验目的1. 理解分离试验的基本原理和操作方法。
2. 掌握常用的分离方法,如过滤、沉淀、萃取等。
3. 通过分离试验,提高实验操作技能和实验数据处理能力。
二、实验原理分离试验是利用物质在不同条件下的物理、化学性质差异,将混合物中的组分分离开来。
常用的分离方法有过滤、沉淀、萃取、蒸馏等。
1. 过滤:利用过滤介质将混合物中的固体颗粒与液体分离。
2. 沉淀:利用溶液中物质的溶解度差异,将溶液中的溶质沉淀出来。
3. 萃取:利用溶剂对混合物中不同组分的溶解度差异,将目标组分从混合物中提取出来。
4. 蒸馏:利用混合物中各组分的沸点差异,通过加热蒸发和冷凝来分离。
三、实验材料与仪器1. 实验材料:氯化钠、硫酸铜、碳酸钠、氯化钾、葡萄糖、乙醇等。
2. 仪器:烧杯、漏斗、滤纸、玻璃棒、滴定管、分液漏斗、蒸馏烧瓶、冷凝管、酒精灯等。
四、实验步骤1. 过滤试验(1)称取5g氯化钠,溶解于50mL蒸馏水中,搅拌均匀。
(2)取一张滤纸,折叠成漏斗形状,放入烧杯中。
(3)将氯化钠溶液沿漏斗边缘缓慢倒入滤纸中,待过滤完毕。
(4)收集滤液,称量固体残留物,计算过滤效率。
2. 沉淀试验(1)取50mL碳酸钠溶液,加入少量氯化钙溶液,观察沉淀现象。
(2)待沉淀完全后,过滤,收集沉淀物,称量。
(3)计算沉淀物的质量,分析沉淀效果。
3. 萃取试验(1)取50mL硫酸铜溶液,加入10mL乙醇,观察溶液分层现象。
(2)静置一段时间,待分层明显后,用滴定管取上层乙醇溶液,加入10mL蒸馏水,观察颜色变化。
(3)分析萃取效果。
4. 蒸馏试验(1)取50mL乙醇,加入50mL蒸馏水,搅拌均匀。
(2)将混合液倒入蒸馏烧瓶中,连接冷凝管,加热。
(3)收集蒸馏出的液体,观察沸点。
(4)分析蒸馏效果。
五、实验结果与分析1. 过滤试验实验结果显示,氯化钠溶液通过滤纸后,滤液质量为4.5g,过滤效率为90%。
2. 沉淀试验实验结果显示,加入氯化钙溶液后,碳酸钠溶液中产生白色沉淀,过滤后沉淀质量为0.5g,沉淀效果良好。
膜分离的实验报告

膜分离的实验报告1. 引言膜分离是一种将混合物中的组分通过膜进行分离的方法,广泛应用于化工、生物工程、环保等领域。
本实验旨在通过膜分离技术研究某种混合物中的组分分离效果,并探究影响膜分离效果的因素。
2. 实验材料与方法2.1 实验材料- 膜分离装置:包括膜分离膜、膜分离模块等。
- 混合物:包含A、B两种组分的溶液。
2.2 实验方法1. 将混合物注入膜分离装置中,并施加适当的压力。
2. 收集透过膜的溶液,并分别用适当的方法对溶液中的A、B两种组分进行定量分析。
3. 改变压力、膜材料等条件,多次进行实验,探究对膜分离效果的影响。
3. 实验结果与分析经过多次实验,得到了不同条件下的膜分离效果。
下表为部分实验结果:实验次数压力(MPa) A组分透过量(mg) B组分透过量(mg)1 1 10 202 1.5 15 183 2 18 154 1 8 255 2 16 17分析以上数据可知,压力对膜分离效果有影响,压力越大,组分透过量越大。
但压力过大也可能导致膜的破损或堵塞,影响膜的使用寿命。
另外,由于不同组分的性质不同,可能对膜具有不同的透过性,从而导致透过量的差异。
4. 结论通过实验我们得到了膜分离的实际效果,分析结果表明,在一定范围内,增加压力可以提高膜分离的效果。
但需要注意,过高的压力可能会损坏膜的结构,影响使用寿命。
此外,混合物中各组分的性质也会影响膜的透过性,因此选择合适的膜材料也是膜分离的关键因素。
5. 实验总结本次实验通过膜分离技术的应用,探究了膜分离效果和影响因素。
实验结果表明,在适当的压力下,膜分离可以有效地将混合物中的组分分离,达到预期的效果。
同时,由于膜分离涉及到膜的选择和应用条件的调整,需要综合考虑多个因素。
因此,在实际应用中,需要根据具体情况进行膜材料的选择和操作条件的优化,以达到最佳的分离效果。
通过这次实验,我们不仅对膜分离的原理和应用有了更深入的了解,也获得了一定的实验操作技能和数据分析能力。
膜分离技术 (2)

量与分离特性的不可逆变化现象。
膜污染的表现一是膜通量下降;二是通过膜的压力和 膜两侧的压差逐渐增大;三是膜对生物分子的截留性
能改变。
南京工业大学 Nanjing University of Technology
膜污染
膜污染与浓差极化在概念上不同, 浓差极化加重了污染 , 但浓差极化是可逆的,即变更操作条件可使之消除,而污
Nanjing University of Technology
南京工业大学
Nanjing University of Technology
超滤 纳滤
压力差 小分子物质分 糖/二价盐/游离酸的分 离 Donna效应 离
反渗透 致密膜、复合 压力差 膜<1nm 渗析 对称的或不对 浓度差 称的膜
电渗析 离子交换膜 渗透蒸 致密膜 发 电位差 气压差
小分子物质浓 单价盐/非游离酸的分离 缩 小分子有机物 除小分子有机物或无机 /无机离子 离子
膜污染
②吸附污染 有机物在膜表面的吸附通常是影响膜性能的主要因素。随 时间的延长,污染物在膜孔内的吸附或累积会导致孔径减 少和膜阻增大,这是难以恢复的。 与膜污染相关的有机物特征包括它们对膜的亲和性,分子 量,功能团和构型。一般来讲膜的亲水性越强有机物不宜 吸附。而疏水作用可增加其在膜上的积累,导致严重的吸 附污染。
南京工业大学
Nanjing University of Technology
膜分离过程的主要特征
过程 微滤 膜结构 驱动力 对称微孔膜 压力差 0.05~10μm 不对称微孔膜 压力差 1~50nm 复合膜< 1nm 应用对象 实 例 消毒、澄清收 培养悬浮液除菌,产品 集细胞 消毒,细胞收集 大分子物质分 蛋白质的分离/浓缩/纯 离 化/脱盐/去热源
膜分离实验报告

膜分离实验报告————————————————————————————————作者:————————————————————————————————日期:膜分离实验一.实验目的1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。
2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。
3. 了解和熟悉超滤膜分离的工艺过程。
二.基本原理膜分离技术是最近几十年迅速发展起来的一类新型分离技术。
膜分离是以对组分具有选择性透过功能的人工合成的或天然的高分子薄膜(或无机膜)为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。
其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。
膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。
微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。
四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。
微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。
2.1微滤与超滤微滤过程中,被膜所截留的通常是颗粒性杂质,可将沉积在膜表明上的颗粒层视为滤饼层,则其实质与常规过滤过程近似。
膜分离实验报告

北京化工大学学生实验报告院(部):化学与化学工程姓名: xx 学号: 200811218专业:化学工程与工艺班级:化工0808 同组人员:课程名称:专业实验实验名称:微滤分离实验实验日期: 2011.10.17 批阅日期:成绩:教师签名:一、实验目的1.了解分析微滤膜分离的主要工艺过程。
2.了解膜分离技术的特点。
3.通过微滤膜分离的实验的操作,学会微滤膜过滤设备的使用方法和操作过程,提高实验技能。
二、实验原理膜分离是近数十年发展起来的一种新型分离技术。
常规的膜分离是采用天然或人工合成的选择性透过膜作为分离介质,在浓度差、压力差或电位差等推动力的作用下,使原料中的溶质或溶剂选择性地透过膜而进行分离、分级、提纯或富集。
通常原料一侧称为膜上游,透过一侧称为膜下游。
膜分离法可以用于液-固(液体中的超细微粒)分离、液-液分离、气-气分离以及膜反应分离耦合和集成分离技术等方面。
其中液-液分离包括水溶液体系、非水溶液体系、水溶胶体系以及含有微粒的液相体系的分离。
不同的膜分离过程所使用的膜不同,而相应的推动力也不同。
目前已经工业化的膜分离过程包括微滤(MF)、反渗透(RO)、纳滤(NF)、超滤(UF)、渗析(D)、电渗析(ED)、气体分离(GS)和渗透汽化(PV)等,而膜蒸馏(MD)、膜基萃取、膜基吸收、液膜、膜反应器和无机膜的应用等则是目前膜分离技术研究的热点。
膜分离技术具有操作方便、设备紧凑、工作环境安全、节约能量和化学试剂等优点,因此在20世纪60年代,膜分离方法自出现后不久就很快在海水淡化工程中得到大规模的商业应用。
目前除海水、苦咸水的大规模淡化以及纯水、超纯水的生产外,膜分离技术还在食品工业、医药工业、生物工程、石油、化学工业、环保工程等领域得到推广应用。
表 1 各种膜分离方法的分离范围膜分离技术的原理是依靠膜的这种多孔过滤材料的拦截性能。
用压力做推动力。
微滤膜分离的的分离范围为0.1——10,主要用于颗粒物的去处、除菌、澄清、除浊、有用物质的回收等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膜分离实验报告
一、实验目的
1.了解不同膜分离工艺的原理、设备及流程。
2.掌握RO、NF的适用范围和对象。
二、实验原理
1.反渗透(RO)
反渗透膜的孔径在0.1-1nm之间。
反渗透技术是利用高压液体的高压作用,克服渗透膜的渗透压,使溶液中水分子逆方向渗透过渗透膜到达离子浓度较低的一端,从而达到去除溶液中大部分离子的目的。
为了防止被截留下来的其他离子越积越多而堵塞RO膜,往往采用动态的方法来进行反渗透,即在进行反渗透的同时,利用一股液体流连续冲刷膜表面的截留物,以保持反渗透膜表面始终具有良好的通透性。
因此,反渗透设备的出水有两股,一股为透过液(淡水),一股为截留液(浓水)。
实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示反渗透膜的处理效果。
图1 反渗透(RO)示意图
2.纳滤(NF)
纳滤膜的孔径范围介于反渗透膜和超滤膜之间。
纳滤技术是从反渗透中派生出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。
一般认为,纳滤膜存在纳米级的细孔,可以截留95%的最小分子约为1nm的物质。
纳滤膜的特点在于:较低的渗透压和较高的膜通透性,因此,可以节能;通过纳滤膜的渗透作用,可以去除多价的离子,保留部分低价的对人体有益的矿物离子。
为了防止被截留下来的其他离子越积越多而堵塞NF膜,同样采用动态的方法来进行纳滤,即在进行纳滤的同时,利用一股液体流连续冲刷膜表面的截留物,以保持纳滤膜表面始终具有良好的通透性。
因此,纳滤设备的出水也有两股,一股为透过液(淡水),一股为截留液(浓水)。
实验采用NaCl、MgSO4溶液进行实验,用在线电导仪测定进水、“淡水”和“浓水”的电导率变化,表示纳滤膜的处理效果。
同时将纳滤和反渗透对一价和二价离子的截留效果进行比较,可以知道纳滤膜出水中保留了比反渗透出水中更多的有益矿物离子。
三、实验流程与设备
整套膜分离装置的四个单元共同安装在一个支架上,由微滤单元和反渗透单元组成设备的1/2,超滤单元和纳滤单元组成设备另外的1/2。
51
21118
6
347
8
9
1012
13
1415161721
222319
2024
25
27
26
1.出水箱
2.进水箱 3、4、6、9、13、15、21.调节阀 5.增压泵 7、10、16、
22.压力表 8.粗滤柱 11.微滤膜柱 12、19、23.流量计 14.反渗透高压泵
17、20、24.在线电导仪 18.反渗透膜柱 25.微滤出水 26.反渗透淡水 27.反渗
透浓水
图2 微滤和反渗透单元工艺流程图51
21121
6
347
8
9
101213
141516
171819
2024
2526222327
28
2930
31
1.出水箱
2.进水箱 3、4、6、9、12、16、18、24.调节阀 5.增压泵 7、10、
13、19、25.压力表 8.粗滤柱 11.超滤膜柱 14、15、22、26.流量计 17.纳滤高
压泵 20、23、27.在线电导仪 21.纳滤膜柱 28.超滤浓水 29.超滤淡水 30.
纳滤浓水 31.纳滤淡水
图3 超滤和纳滤单元工艺流程图
四、实验方法
1.熟悉设备
根据上述的工艺流程图结合实际的实验设备,仔细了解设备的管路连接、流通方向、取水样的位置、各个阀门的控制功能、各个压力表所指示的位置、电气控制箱中各控制开关所控制的对象、各显示仪表所对应的检测点。
2.实验用水的准备
(1)去离子水的准备
实验盐液采用去离子水配制,去离子水由反渗透膜自制。
进行反渗透产水之前,必须将水箱中(进水箱、出水箱)的水放光,洗干净。
打开进水箱、出水箱之间的连通阀门,向水箱中放满自来水,调节膜进口压力0.7MPa左右,收集反渗透产品水。
(已准备好)
(2)反渗透实验用水的准备
500mg/L的NaCl溶液和1000mg/L的MgSO4溶液各40L,用去离子水配制。
(3)纳滤实验用水的准备
与反渗透一样,500mg/L的NaCl溶液和1000mg/L的MgSO4溶液各40L,用去离子水配制。
3.实验操作步骤
(1)反渗透实验
反渗透实验的目的是检验反渗透膜对离子的截留效果,可从在线电导仪上得到数据来了解离子的截留情况。
反渗透膜的淡水电导率远低于浓水的电导率,浓水的电导率略大于进水的电导率。
由于电导率近似正比于离子浓度,因此反渗透膜对离子的截留率计算可近似于:
-=100% 进水电导率淡水电导率离子的截留率进水电导率
由于进行反渗透实验时进水箱、出水箱之间是连通的,加之本实验设备的单位时间处理量较大,因此,实验时的进水量可以开得大一些。
具体步骤如下:
a.打开增压泵的进水阀4、出水阀6(不要全开),高压泵的进水阀13、出水阀15(不要全开)以及反渗透浓水阀21(不要全开)。
注意:这时的阀门9一定要关闭。
b.在电器箱上,首先打开反渗透增压泵的电源,等反渗透浓水有水流出并完全排完空气(从浓水流量计观察,水中无气泡)后,开启反渗透高压泵的电源。
这时,缓慢调节高压泵的出水阀15和反渗透浓水阀21,使反渗透进水压力在0.8MPa (最高不得超过1.0MPa ),浓水流量在600L/h 左右,最后通过调节增压泵出水阀6,使增压泵的出水压力在0.08MPa 左右。
因为阀门15和21的调节不易掌握、随意调动会引起总进膜流量和压力的变动,所以在上述两阀门调节好的情况下,一般不再调节,这样才能稳定反渗透膜的进水条件便于实验。
正常运行10min 后,可直接读出反渗透产水和浓水的流量、反渗透进水、产水和浓水的电导值,它们的一组数据即可评价反渗透膜的除盐性能。
(2)纳滤实验
纳滤实验的目的是检测纳滤膜对离子的截留作用,因此,可从在线电导仪上得到的数据来了解离子的截留情况。
纳滤膜的淡水电导率应远低于进水的电导
率,浓水的电导率略大小进水的电导率。
纳滤膜对离子的截留率计算与上述反渗透实验的截留率计算一样。
通过NaCl和MgSO4两种不同价态离子溶液的过滤实验,可以测定反渗透和纳滤两种膜对一价和二价离子的不同截留特性。
由于进行纳滤实验时进水箱、出水箱之间是连通的,加之本实验设备的单位时间处理量较大,因此,实验时的进水量可以开得大一些。
具体步骤如下:
a.打开增压泵的进水阀4、出水阀6(不要全开),高压泵的进水阀16、出水阀18(不要全开)以及纳滤浓水阀24(不要全开)。
注意:这时的阀门9一定要关闭。
b.在电器箱上,首先打开纳滤增压泵的电源,等纳滤浓水有水流出并完全排完空气(从浓水流量计观察,水中无气泡)后,开启纳滤高压泵的电源。
这时,缓慢调节高压泵的出水阀18和纳滤浓水阀24,使纳滤进水压力在0.8MPa(最高不得超过1.0MPa),浓水流量在600L/h左右(纳滤总流量尽量与反渗透实验总流量一致),最后通过调节增压泵出水阀6,使增压泵的出水压力在0.08MPa 左右。
因为阀门18和24的调节不易掌握、随意调动会引起总进膜流量和压力的变动,所以在上述两阀门调节好的情况下,一般不再调节,这样才能稳定纳滤膜的进水条件便于实验。
正常运行10min后,可直接读出纳滤产水和浓水的流量、纳滤进水、产水和浓水的电导值,它们的一组数据即可评价纳滤膜的除盐性能。
(3)膜清洗
实验结束后,应对反渗透膜和纳滤膜进行清洗。
反渗透膜的清洗方法为:先排空盐液,向水箱中不断加入自来水,同时将浓水移出水箱,产水另外收集,循环清洗一段时间至原水电导下降至200μs.cm -1以下时,停止加入自来水,并加入已收集的去离子水,同样操作循环清洗至原水电导至10μs.cm -1左右,清洗过程遵循低压大流量的原则。
若一段时间不使用反渗透膜,应做好水封以防止其发霉长菌。
纳滤膜的清洗方法为:先排空盐液,向水箱中不断加入去离子水,同时将浓水移出水箱,循环清洗至原水电导至10μs.cm -1左右,清洗过程遵循低压大流量的原则。
若一段时间不使用纳滤膜,应做好水封以防止其发霉长菌。
五、数据处理
纳滤:离子截留率==⨯%100723
38-72394.74% 反渗透:离子截留率=
=⨯%1007238-72398.89% 实验比较得出反渗透反渗透膜的截留效果比纳滤膜截留效果好
六、注意事项
1.因为这一系列可做微滤和反渗透两种实验,要明确你要做哪种实验,然后开启相对应支路上的阀门,关闭另一支路上的阀门,两只阀门只能有一只处于开启状态。
2.反渗透膜和纳滤膜的进水浊度有着严格的要求,所以用作实验材料的浊度严格控制在<1º。
并且每次使用前,必须将水箱清洗干净。
3.启动泵前一定要灌泵。
七、思考题
1.温度变化对膜分离实验有什么影响?
答:温度影响主要有两个方面:1、温度越高,膜通量越高;2、在一定温度范围内,温度升高,液体的粘度下降。
所以在一定温度范围内,温度高一点比较好。
2.进出水压力表读数有差别的原因?
答:通过膜的过程中有阻力,产生压降。
3.实验中如果压力过大或者流量过小会有什么后果?
答:压力会增大浓差极化程度,故压力不能过大;流量越小,液体流动就越接近层流,边界层就越厚,显然也要增加浓差极化程度。
这将使过滤速率大大降低。