薄板的屈曲
薄板的屈曲

115第六章 薄板的屈曲钢结构大型梁、柱等构件,通常都由板件组合而成,为了节省材料,板件通常宽而薄,薄板在面内压力作用下就可能失稳,并由此导致整个构件的承载力下降;另外,在构件连接的节点也存在板件失稳的可能性。
因此,对板件失稳和失稳后性态的研究也是钢结构稳定的重要问题。
板根据其厚度分为厚板、薄板和薄膜三种。
设板的最小宽度为b ,厚度为t 。
当t /b >1/5~1/8时称为厚板,这时横向剪力引起的剪切变形与弯曲变形大小同阶,分析时不能忽略剪切变形的影响。
当1/80~1/100<t /b <1/5~1/8时称为薄板,此时横向剪力引起的剪切变形与弯曲变形相比可以忽略不计。
当板极薄,t /b <1/80~1/100时,称为薄膜,薄膜没有抗弯刚度,靠薄膜拉力与横向荷载平衡。
平分板的厚度且与板的两个面平行的平面称为中面。
本章只介绍等厚度薄板中面内受力的板的弹性失稳。
与前面所介绍过的失稳问题比较,板的失稳有如下几个特点: ⑴作用于板中面的外力,不论是一个方向作用有外力还是在两个方向同时作用有外力,屈曲时板产生的都是出平面的凸曲现象,产生双向弯曲变形,因此在板的任何一点的弯矩x M 、y M 和扭矩xy M 以及板的挠度w 都与此点的坐标(x ,y )有关。
⑵板的平衡方程属于二维偏微分方程,除了均匀受压的四边简支的理想矩形板可以直接求解其分岔屈曲荷载外,对于其他受力条件和边界条件的板,用平衡法很难求解。
可以用能量法(如瑞利—里兹法,伽辽金法)或者数值法(如差分法、有限元法等)求解屈曲荷载,在弹塑性阶段,用数值法可以得到精度很高的板屈曲荷载。
⑶理想薄板失稳属于稳定分岔失稳。
对于有刚强侧边支承的板,凸屈后板的中面会产生薄膜应变,从而产生薄膜应力。
如果在板的一个方向有外力作用而凸曲时,在另一个方向的薄膜拉力会对它产生支持作用,增强板的抗弯刚度进而提高板的强度,这种凸屈后的强度提高称为屈曲后强度。
第五章 薄板的弯曲

第五章 薄板的弯曲薄板的概念:厚度t<<Min(B,L)()L B Min t 81~51<中厚板 ()L B Min t 81~51> 厚板()()L B Min t L B Min 81~511001~801<< 薄板()L B Min t 1001~801< 薄膜作用在其上的载荷分解为平行于板面和垂直于板面,当仅有平行于板面的力时,就是我们前面讲到的平面应力问题。
现在我们要解决的就是当有垂直于板面的载荷时(板受弯曲作用时),应该如何计算。
两者都有时,又应该如何考虑。
§5.1 薄板弯曲的基本方程一,基本概念1,中面:变形前平分板厚的平面。
2,挠度:中面上各点在垂直于中面上的位移w 。
3小挠度:通常w/t<1/5。
二,基本假定1,变形前垂直于中面上的直线,变形后仍为直线,且仍垂直于弯曲的中面。
该假定类似与材料力学中梁的平面假定。
它确保与中面平行的的各面之间不存在剪应变。
0==zy zx γγ 2,变形前后,板的厚度不变,即0=z ε。
板内各点的挠度值仅为x 、y 的函数,而与z 轴无关。
()y x w w ,=。
3,薄板中面内的各点没有平行于板面的位移()00==z u 、()00==z v ,只有z 方向的位移。
4,平行于中面的各层之间互不挤压。
0=z σ三,基本方程利用空间的三大方程和以上4个假定,我们可以推求出适用薄板的基本方程。
1,几何方程由假定○1,0=∂∂+∂∂=x w z u zx γ,0=∂∂+∂∂=ywz v zy γ,就有: x w z u ∂∂-=∂∂,ywz v ∂∂-=∂∂,积分可得: ()y x f xwzu ,1+∂∂-= ()y x f ywzv ,2+∂∂-=再由假定○3,()00==z u 、()00==z v ,就是中面上各点没有板面的位移,代入上式,可得()()0,,21==y x f y x f 所以x w zu ∂∂-=,ywz v ∂∂-=。
薄板的屈曲

件的板,用平衡法很难求解;需用能量法或数值法求解。
✓理想薄板失稳属于稳定的分叉失稳。对于有刚强侧边支撑的板,会 产生薄膜应力,提高钢板屈曲后的强度(屈曲后强度)。
✓按照小挠度理论分析只能得到板的分叉屈曲荷载,根据大挠度理论 分析才能得到板的屈曲后强度和板的挠度。
第6章 薄板的屈曲
➢ 小挠度理论板的弹性曲面微分方程
D 2
A2
m2
a2
2
m2 2b2
6a2
1
ab
px 12
A2
m2 2
a2
ab3
由势能驻值原理,有:A
Dm2
a
2b
m2 2b2
a2
1
px
m2 2b3
a
0
第6章 薄板的屈曲
➢ 能量法计算板的弹性失稳荷载
✓瑞利-里兹法
A0
px
m2 2b2
a2
6
1
D b2
2D
b2
1
2
m2 2b2
a2
61
令 m 1,可得px的最小值:
2D px,cr k b2
k
2b2
a2
6 1
/
2
若取 0.3,则:
k
0.425
b2 a2
均匀受压三边简支一边自由
第6章 薄板的屈曲
➢ 能量法计算板的弹性失稳荷载
✓迦辽金法
要求假定的挠曲面函数符合板的几何和自然边界条件。
假定挠曲面函数为:
a
0
a
0
L
w
sin
x a
sin
y a
dxdy
0
a
0
a
0
第五章薄板弯曲

e
T
p( x, y)dxdy
其中[N]为板弯曲的形状函数矩阵,由式(5.11) 决定。
当横向分布载荷为常值p时(均布载荷), 对图5-5所示的矩形板单元,M yk
Zl
M xl 1 b 4 12
M yl a 12
Zm 1 4
M xm b 12 a 12
其中V为板的体积域。
将式(5.2)及(5.3)代入上式,并沿厚度方向积 分,可得
1 2 1 1 U D p z dV 2 V
T
1 1 1 D dS 2 S
T
(5.6)
其中S为板中面的面积域,[D]为薄板弯曲的弹性 系数矩阵。 •由上式可见,薄板弯曲变形时,单位面积中面的 弹性应变能为其曲率的二次型。 •板弯曲的曲率是其挠度w的二阶导数,因而薄板弯 曲的弹性应变能为包括w二阶导数的二次泛函数。
N ( x, y) N k
Nl
Nm
Nn
(5.11)
对于图5-4所示的矩形单元,其 任一节点i的形状函数矩阵[Ni}是 一个1X3的行阵,表达如 (5.12)(p80)
单元刚阵
将式(5.10)代入式(5.1),可得单元的曲率为
2 2 x2 1 e e N [ B] 2 y 2 2 xy
例如:在单元ij边界y=b (常数) 上 有
w( x, b) A0 A1 x A2 x A3 x
2
3
其中四个常数Ak,k=0,1,2,3 可以由四 个条件wi,wj,
yi
w
及 x
i
yj
w
四边简支薄板纯剪切作用下板的屈曲形式

四边简支薄板纯剪切作用下板的屈曲形式在四边简支薄板纯剪切作用下,板的屈曲形式表现为中央出现有规则的剪切带,且随着剪切应力的增加,剪切带逐渐向周围扩展。
剪切带将板分为两个区域,一个区域为与剪切方向相反的拉伸区,另一个区域为与剪切方向相同的压缩区。
随着剪切应力的增加,剪切带会逐渐扩展并最终导致板的屈曲。
如需获取更多关于四边简支薄板纯剪切作用下板的屈曲形式的信息,建议咨询土木工程专家或查阅相关领域资料。
薄板弯曲问题

略不计。取 εz =0
,因而有:
• 因此,板内各点的挠度w 与z 坐标无关,只是x、y 的函数。
• 2. 直线假设
• 在薄板弯曲变形前垂直于板中面的直线,在簿板弯曲变形后仍为直线, 且垂直于弯曲后的中面。这说明在平行于中面的面上没有剪应变,即:
上一页 下一页 返回
7.1 薄板的弯曲变形
• 3. 正应力假设 • 中面上的正应力远小于其他应力分量的假设:平行于中面的各层相互
上一页 下一页 返回
7.2 矩形薄板单元分析
• 最后两项的选取是使单元在边界上有三次式的形式。按照式(7.20) 可以算出转角,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 将矩形单元的4 个节点坐标(ξ i , η i ) 分别代入式(7.20),就可以得 到用12 个参数来表示的节点位移分量的联立方程组,求解这12 个方 程,从中解出a1~a12,再代入式(7.21),经归纳并整理后就可以改 写成如下的形式:
• 或者写成标准形式,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 其中 • 如果把形函数写成通式,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 于是有:
• 其中,
上一页 下一页 返回
第八章 班级气氛的经营与管理
• 知道最好的一切,且将之发挥至极致,才 是成功的生活。
• 未来我们会创造一个更经济、更有效率的 世界,但是让人担心的是,人们却没有现 在过得幸福。
• 为学生营造良好的班级气氛,提供给学生优质的 学习和生活环境,让学生快乐、健康地在班级中 成长是班级管理者的义务和责任。
2022/8/29
24
一、班级气氛的涵义与作用
路用薄板结构屈曲、弯曲及振动问题的解析与数值分析

介绍数值模拟的基本原理、数值模型的建立及求 解方法。
数值模拟过程
详细描述模拟操作流程、参数设置及模拟结果。
数值模拟结果分析
根据模拟结果,对薄板结构的优化设计进行深入 分析,得出相关结论。
06
结论与展望
研究成果与结论
发现了路用薄板结构在屈曲、弯曲及振动问题中 的一些重要特性。 提出了针对这些问题的解析与数值分析方法。
薄板结构的基本定义与分类
01
根据材料和制造工艺对薄板结构进行定义和分类,包括金属薄
板、复合材料薄板等。
薄板结构弯曲的基本原理
02
介绍薄板结构弯曲的基本原理,包括弯曲变形、弯曲应力、弯
曲刚度等。
经典薄板弯曲理论
03
介绍经典薄板弯曲理论,如Mindlin板理论、Kirchhoff板理论
等。
薄板结构弯曲实验研究
3
薄板结构振动的稳定性
研究薄板结构在受到外部激励时的稳定性,以 及分岔和混沌现象。
薄板结构振动实验研究
实验设备和方法
介绍实验所用的测试设备和实验方法,包括激励方式、测量仪器、数据采集和处 理等。
实验结果和分析
通过实验测量薄板结构的振动响应,并对实验结果进行分析,验证理论模型的正 确性。
薄板结构振动数值模拟
研究内容与方法
研究内容
对路用薄板结构的屈曲、弯曲及振动问题进行深入研究,包括基本理论、解 析解和数值分析方法等。
研究方法
采用理论推导、数值模拟和实验验证相结合的方法,对路用薄板结构的屈曲 、弯曲及振动问题进行全面分析。
02
路用薄板结构屈曲分析
薄板结构屈曲基本理论
薄板结构屈曲定义
1.板件的稳定和屈曲后强度的利用

5、配置加劲肋的腹板稳定计算 (1)仅用横向加劲肋的腹板
h0
a
a
式中: σ—计算区格,平均弯矩作用下,腹板计算高度边缘的弯曲压应力; τ--计算区格,平均剪力作用下,腹板截面剪应力; V σc—腹板计算高度边缘的局部压应力,计算时取ψ=1.0。 hw t w
c cr c ,cr
a 短向加劲肋的间距a1 为0.75h1。
hc为腹板受压区高度
h2
h0 235 ( 3) 任何情况下, 250 ; tw fy
(4) 梁的支座处和上翼缘受有较大固定集中荷载
处,宜设置支承加劲肋。
以上公式中h0为腹板的计算高度,tw为腹板厚度;
4、加劲肋的构造要求
(1)宜成对布置,对于静力荷载下的梁可单侧布置。支 承加劲肋和重级工作制的吊车梁不应单侧布置。
规范规定对长细比在100以上的压弯构件以及当构件强度和稳定计算中取时翼缘外伸宽厚比的容许值的限值规范规定如果构件的截面尺寸由平面内的稳定控制且长细比小于100应力又用得较足2351523513464板件屈曲后的强度利用四边有支承的薄板发生屈曲时其强度并不降低仍能继续承载也就是说具有屈曲后强度
4.6 板件的稳定和屈曲后强度的利用
2
(4 39
我们将板件的非弹性屈曲应力值控制在什么范围 内才认为板件是稳定的?
一种是不允许板件的屈曲先于构件的整体屈曲, 《钢结构设计规范》(GB 50017)对轴心压杆 就是这样规定的。 另一种是允许板件先屈曲。虽然板件屈曲会降低 构件的承载能力,但由于构件的截面较宽,整 体刚度好,从节省钢材来说反而合算,《冷弯 薄壁型钢结构技术规范》(GB 50018)就有这 方面的条款。轻型门式刚架结构的刚架梁腹板 就是这样考虑的。有时对于一般钢结构的部分 板件,如大尺寸的焊接工字形截面的腹板,也 允许其先有局部屈曲。