变频器采用矢量控制的注意事项

合集下载

VC2000矢量控制变频器使用说明书

VC2000矢量控制变频器使用说明书

VC2000矢量控制变频器使用说明书VC2000矢量控制变频器使用说明书1.引言本文档为VC2000矢量控制变频器的使用说明书,旨在向用户介绍该设备的功能、安装、操作、维护以及故障排除等方面的内容。

2.设备概述2.1 设备说明介绍VC2000矢量控制变频器的外观、尺寸、重量等基本信息,以及其内部结构和主要部件的功能。

2.2 技术规格详细列出VC2000矢量控制变频器的技术参数,包括输入/输出电压、额定功率、额定电流、控制方式、额定频率范围等。

3.安装与接线3.1 安装要求描述VC2000矢量控制变频器的安装环境要求,包括温度、湿度、防护等级等。

3.2 机械安装给出VC2000矢量控制变频器的机械安装步骤,包括固定设备、连接电源线和接地线等。

3.3 电气接线提供VC2000矢量控制变频器的电气接线示意图和详细连接步骤,包括输入/输出端子、编码器接口、外部控制信号等。

4.参数设置与调试4.1 参数列表列出VC2000矢量控制变频器的参数列表,包括运行参数、控制参数和保护参数等。

4.2 参数设置介绍如何使用VC2000矢量控制变频器的参数设置功能,包括参数编辑、保存与加载等操作步骤。

4.3 调试流程提供VC2000矢量控制变频器调试的流程指导,包括初始调试、速度闭环调试、矢量控制调试等。

5.操作与维护5.1 开机与关机说明VC2000矢量控制变频器的开机与关机方法,包括通过面板按键、外部信号和网络命令等方式。

5.2 基本操作介绍VC2000矢量控制变频器的基本操作方法,包括参数查看、速度设定、运行控制等。

5.3 维护与保养提供VC2000矢量控制变频器的维护与保养指南,包括清洁、检查电路板和散热器等。

6.故障排除6.1 常见故障现象VC2000矢量控制变频器可能出现的常见故障现象,并给出故障分类。

6.2 故障排除方法提供VC2000矢量控制变频器故障排除的步骤和方法,以及可能出现的解决方案。

7.附件本文档涉及的附件包括变频器连接图、参数列表以及其他相关文档。

正确使用变频器应注意的事项

正确使用变频器应注意的事项

正确使用变频器应注意的事项一、正确使用变频器应注意事项1、环境温度对变频器的使用寿命有很大的影响。

环境温度每升10℃,则变频器寿命减半,所以周围环境温度及变频器散热的问题一定要解决好。

2、正确的接线及参数设置。

在安装变频器之前一定要熟读其手册,掌握其用法、注意事项和接线;安装好后,再根据使用正确设置参数。

3、注意转速与扬程的关系。

电机的选择及其最佳工作段是比较重要的问题。

如果变频器长时间运行在5HZ以下,则电机发热成了突出问题。

4、V/f控制属于恒转矩调整。

而矢量控制使电机的输出转矩和电压的平方成正比的增加,从而改善电机在低速时的输出转矩。

5、若系统采用工频/变频切换方式运行,工频输出与变频输出的互锁要可靠。

而且开停泵、工频/变频切换都要停变频器,再操作接触器。

由于触点粘连及大容量接触器电弧的熄灭需要一定时间,上述切换的顺序、时间要考虑周全。

6、外部控制信号失效的问题。

一般是几种情况:信号模式不正确、端子接线错误、参数设置不正确或外部信号自身有问题。

7、过电流跳闸和过载跳闸的区别。

过电流主要用于保护变频器,而过载主要用于保护电动机。

因为变频器的容量有时需要比电动机的容量加大一挡或两挡,这种情况下,电动机过载时,变频器不一定过电流。

过载保护由变频器内部的电子热保护功能进行,在预置电子热保护时,应该准确地预置“电流取用比”即电动机额定电流和变频器额定电流之比的百分数。

8、干扰问题。

⑴良好的接地。

电机等强电控制系统的接地线必须通过接汇流排可靠接地。

控制系统最好独立接地,接地电阻小于1Ω。

传感器、I/O接口屏蔽层与控制系统的控制地相连。

⑵给仪表等输入电源加装EMI滤波器、共模电感、高频磁环等。

⑶给变频器输入加装EMI滤波器,可以有效抑制变频器对电网的传导干扰,加装输入交流和直流电抗器,可以提高功率因数,减少谐波污染,综合效果好。

某些电机与变频器之间距离超过100m的场合,需要在变频器侧添加交流输出电抗器,解决因为输出导线对地分布参数造成的漏电流保护的减少对外部的辐射干扰。

变频器对矢量控制的给定及要求

变频器对矢量控制的给定及要求

1.矢量控制的给定现在大部分的新型通用变频器都有了矢量控制功能,如何选择使用这种功能,多用下面两种方法:1)在矢量控制功能中,选择“用”或“不用”。

2)在选择矢量控制后,还需要输入电动机的容量、极数、额定电流、额定电压、额定功率等。

由于矢量控制是以电动机的基本运行数据为依据,因此电动机的运行数据就显得很重要,如果使用的电动机符合变频器的要求,且变频器容量和电动机容量相吻合,变频器就会自动搜寻电动机的参数,否则就需重新测定。

很多类型的变频器为了方便测量电动机的参数都设计安排了电动机参数自动测定功能。

通过该功能可准确测定电动机的参数,且提供给变频器的记忆单元,以便在矢量控制中使用。

2.矢量控制的要求若选择矢量控制模式,对变频器和电动机有如下要求:1)一台变频器只能带一台电动机。

2)电动机的极数要按说明书的要求,一般以4极电动机为最佳。

3)电动机容量与变频器的容量相当,最多差一个等级。

例如,根据变频器的容量应选配11kW的电动机,使用矢量控制时,电动机的容量可是11kW或7.5kW,再小就不行了。

4)变频器与电动机间的连接线不能过长,一般应在30m以内。

如果超过30m,需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。

3.使用矢量控制的注意事项在使用矢量控制时,一些需要注意的问题如下:1)使用矢量控制时,可以选择是否需要速度反馈。

对于无反馈的矢量控制,尽管存在对电动机的转速估算精度稍差,其动态响应较慢的弱点,但其静态特性已很完美,如果对拖动系统的动态特性无特殊要求,一般可以不选用速度反馈。

2)频率显示以给定频率为好。

矢量控制在改善电动机机械特性时,最终是通过改变变频器的输出频率来完成,在矢量控制的过程中,其输出频率会经常跳动,因此实际使用时以显示“给定频率”为好。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

变频器矢量控制

变频器矢量控制

变频器矢量控制在工业自动化领域,变频器是一种重要的设备,广泛应用于电机控制和能源节约等方面。

其中,矢量控制是变频器的一种重要控制方式,它通过精确的电机控制实现了更高效、更稳定的运行。

一、矢量控制的原理和特点矢量控制是一种基于电流的控制方式,它通过分析电机电流的大小和方向来实现对电机的控制。

与传统的频率控制相比,矢量控制具有以下几个特点:1.高精度的转矩控制:矢量控制能够精确地控制电机的转矩输出,无论在低速或高速运行时都能提供较为准确的转矩响应。

这对于需要精确控制转矩的应用场景非常重要。

2.宽速度范围的控制:矢量控制可以实现宽速度范围的无级调速。

无论是低速运行还是高速运行,都可以得到较为稳定的输出。

这对于大部分工业应用来说都是非常关键的。

3.良好的动态性能:矢量控制具有快速的动态响应特点,能够在瞬态变化时快速调整电机输出。

这使得在工业生产中的速度要求较高的应用中,矢量控制展现出了很好的优势。

4.较高的效率和能耗节约:矢量控制通过对电机的精确控制,可以使电机运行在最佳工作点上,从而提高电机的效率,降低能耗。

在能耗节约方面,矢量控制也具有很大的潜力。

二、矢量控制的实现方法矢量控制的实现首先需要获取电机的转速和转矩反馈,以及电机的电流反馈。

然后,将这些反馈信号输入到控制器中,通过控制器对电机的电流大小和方向进行调节。

具体的实现方法有以下几种:1.直接转矩控制(DTC):直接转矩控制是一种基于电机转矩和电流的控制方法,它通过直接控制电机的转矩和磁场实现对电机的控制。

这种方法具有快速动态响应和精确控制的特点,但在低速和零速运行时存在一定的困难。

2.间接转矩控制(FOC):间接转矩控制是一种基于电机磁链和电流的控制方法,它通过控制电机的磁链大小和方向来实现对电机的转矩控制。

这种方法相对于直接转矩控制在低速和零速运行时更为稳定,但对控制器的要求更高。

3.空间矢量调制(SVM):空间矢量调制是一种通过改变电压波形的方式来控制电机的方法。

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用矢量控制原理--应用采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。

由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。

鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。

异步电动机矢量控制变频调速系统的开发,使异步电动机的调速可获得和直流电动机相媲美的高精度和快速响应性能。

异步电动机的机械结构又比直流电动机简单、坚固,且转子无碳刷滑环等电气接触点,故应用前景十分广阔。

现将其优点和应用范围综述如下:1、矢量控制系统的优点:动态的速响应直流电动机受整流的限制,过高的di/dt是不容许的。

异步电动机只受逆变器容量的限制,强迫电流的倍数可取得很高,故速度响应快,一般可达到毫秒级,在快速性方面已超过直流电动机。

低频转矩增大一般通用变频器(VVVF控制)在低频时转矩常低于额定转矩,在5Hz以下不能带满负载工作。

而矢鱿控制变频器由于能保持磁通恒定,转矩与it呈线性关系,故在极低频时也能使电动机的转矩高于额定转矩。

控制的灵活性直流电动机常根据不同的负载对象,选用他励、串励、复励等形式。

它们各有不同的控制特点和机械特性。

而在异步电动机矢量控制系统中,可使同一台电动机输出不同的特性。

在系统内用不同的函数发生器作为磁通调节器,即可获得他励或串励直流电动机的机械特性。

使用矢量控制,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。

对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。

矢量控制变频器调试方法

矢量控制变频器调试方法

矢量控制变频器调试方法主要包括以下几个步骤:
1. 基本设置:
- 开机后,根据变频器的使用说明书进行基本设置,包括输入电压、频率、波特率等。

- 确保变频器与电动机正确接线,包括电源线、控制线和反馈线等。

2. 参数设置:
- 根据电动机的实际参数(如功率、电压、电流、转速等)设置变频器的相关参数。

- 设置矢量控制模式,通常有速度控制模式(V/F控制)和力矩控制模式等。

3. 调试运行:
- 启动变频器,观察电动机的启动运行情况,检查电流、电压等参数是否正常。

- 逐步调整变频器的设置参数,如转速设定、力矩设定等,观察电动机响应是否符合预期。

4. 矢量控制调试:
- 进行矢量控制调试时,需要使用专门的调试工具或软件,这些工具可以实时显示电动机的转速、力矩、位置等参数。

- 调整矢量控制参数,如转矩增益、速度增益、电流限制等,以达到理想的控制效果。

5. 功能测试:
- 测试变频器的各种功能,如启动、停止、加速、减速、紧急停止等,确保各项功能正常。

- 进行负载测试,模拟实际工作条件,观察电动机在各种负载下的表现。

6. 优化调整:
- 根据测试结果,对变频器的参数进行优化调整,以提高电动机的运行效率和稳定性。

- 可能需要多次调试和测试,直到达到最佳性能。

7. 长时间运行测试:
- 让电动机在满负荷或极端条件下长时间运行,观察是否存在异常情况,确保长期运行的可靠性。

8. 撰写调试报告:
- 完成调试后,撰写调试报告,记录调试过程中遇到的问题及解决方案,为今后的维护提供参考。

调试矢量控制变频器需要专业的知识和经验,确保在调试过程中安全和效率。

正确使用变频器应注意事项

正确使用变频器应注意事项

正确使用变频器应注意事项一、正确使用变频器应注意事项1、环境温度对变频器的使用寿命有很大的影响。

环境温度每升10℃,则变频器寿命减半,所以周围环境温度及变频器散热的问题一定要解决好。

2、正确的接线及参数设置。

在安装变频器之前一定要熟读其手册,掌握其用法、注意事项和接线;安装好后,再根据使用正确设置参数。

3、注意转速与扬程的关系。

电机的选择及其较佳工作段是比较重要的问题。

如果变频器长时间运行在5HZ以下,则电机发热成了突出问题。

4、V/f控制属于恒转矩调整。

而矢量控制使电机的输出转矩和电压的平方成正比的增加,从而改善电机在低速时的输出转矩。

5、若系统采用工频/变频切换方式运行,工频输出与变频输出的互锁要可靠。

而且开停泵、工频/变频切换都要停变频器,再操作接触器。

由于触点粘连及大容量接触器电弧的熄灭需要一定时间,上述切换的顺序、时间要考虑周全。

6、外部控制信号失效的问题。

一般是几种情况:信号模式不正确、端子接线错误、参数设置不正确或外部信号自身有问题。

7、过电流跳闸和过载跳闸的区别。

过电流主要用于保护变频器,而过载主要用于保护电动机。

因为变频器的容量有时需要比电动机的容量加大一挡或两挡,这种情况下,电动机过载时,变频器不一定过电流。

过载保护由变频器内部的电子热保护功能进行,在预置电子热保护时,应该准确地预置“电流取用比”即电动机额定电流和变频器额定电流之比的百分数。

8、干扰问题。

⑴良好的接地。

电机等强电控制系统的接地线必须通过接汇流排可靠接地。

控制系统较好独立接地,接地电阻小于1Ω。

传感器、I/O接口屏蔽层与控制系统的控制地相连。

⑵给仪表等输入电源加装EMI滤波器、共模电感、高频磁环等。

⑶给变频器输入加装EMI滤波器,可以有效抑制变频器对电网的传导干扰,加装输入交流和直流电抗器,可以提高功率因数,减少谐波污染,综合效果好。

某些电机与变频器之间距离超过100m的场合,需要在变频器侧添加交流输出电抗器,解决因为输出导线对地分布参数造成的漏电流保护的减少对外部的辐射干扰。

矢量变频器怎么调试?变频器矢量控制方式分析

矢量变频器怎么调试?变频器矢量控制方式分析

矢量变频器怎么调试?变频器矢量控制方式分析有些物理量,既要有数值大小(包括有关的单位),又要有方向才能完全确定。

这些量之间的运算并不遵循一般的代数法则,而遵循特殊的(空间向量)运算法则。

这样的量叫做物理矢量。

有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。

这些量之间的运算遵循一般的代数法则。

这样的量叫做物理标量。

什么是矢量变频器?矢量与向量就是数学上矢量(向量)分析的一种方法或是一种概念,两者是同一概念,只是叫法不同,简单的定义是指既具有大小又具有方向的量。

矢量是我们(大陆)的说法,向量的说法一般是港台地区的文献是用的。

矢量控制主要是一种电机模型解耦的概念。

矢量变频器的技术是基于DQ轴的理论而产生的,它的基本思路是把电机的电流分解为D 轴电流和Q轴电流,其中D轴电流是励磁电流,Q轴电流是力矩电流,这样就可以把交流电机的励磁电流和力矩电流分开控制,使得交流电机具有和直流电机相似的控制特性,是为交流电机设计的一种理想的控制理论,大大提高了交流电机的控制特性。

不过目前这种控制理论已经不仅仅应用在交流异步电动机上了,直流变频电动机(BLDC,也就是永磁同步电动机)也大量使用该控制理论。

矢量是我们的说法,向量的说法一般是港台地区的文献使用的。

意义和“布什”和“布希”的意思大致一样。

所谓的矢量控制主要就是一种电机模型解耦的概念。

在电气领域主要用于分析交流电量,如电机分析等,在变频器中的应用即基于电机分析的理论进行变频控制的,称为矢量控制型变频器,实现的方法不是唯一的,但数学模型基本一致。

矢量变频器技术是基于DQ轴理论而产生的,它基本的思路就是把电机的电流分解为D轴的电流和Q轴电流,其中D轴的电流是励磁电流,Q轴电流是力矩电流,这样就可以把交流电机的励磁电流和力矩电流分开控制,使得交流电机具有和直流电机相似的控制特性,是为交流电机设计的一种理想的控制理论,大大提高了交流电机的控制特性。

不过目前这种控制理论已经不仅仅应用在交流异步电动机上了,直流变频电动机(BLDC,也就。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为使驱动系统获得良好的动态特性和静态特性,高性能变频器一般都采用矢量控制模式。

变频器采用矢量控制模式时必须遵循以下原则:
1)一台变频器只允许驱动一台电动机。

2)变频器的额定电流必须不小于其所驱动电动机的额定电流。

3)电动机额定电流最小应为其所驱动变频器额定电流的1/8。

4)变频器应用矢量控制模式驱动普通电动机时,要对电动机在冷却状态下进行参数辨识。

多电动机驱动。

多电动机驱动有两种工作方式:①一台变频器驱动多台电动机;②使用一台整流/回馈单元带多台逆变器,每个逆变器各驱动一台电动机。

当一台变频器驱动多台电动机时,应选择U/f控制模式,并且使变频器额定电流不小于所驱动多台电动机额定电流的总和。

当采用整流/回馈单元逆变器组合驱动多台电动机时,应注意整流/回馈单元的容量,其余与单电动机驱动相同。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城/。

相关文档
最新文档