1.4.3正切函数的性质与图象
必修四1.4.3正切函数的性质与图象

3 (1) 2 4 (1)
(2)2
(2)
题型三
【例 3】 求下列函数的最小正周期: ( 1) y=- tan x 3 ;
求周期
ቤተ መጻሕፍቲ ባይዱ
3
5
( 2) y=| tan x| . 分析: ( 1) 利用 T= 求解; ( 2) 画出函数图象利用图象法求解.
|ω|
解: ( 1) ∵ ω= , ∴ 最小正周期 T= = 3.
内都是增函数。
kπ , ( ,0) k Z 2
对称轴呢?
典型例题
例1.求函数y= tan(
2
x
3
)的定义域、周期和单调区间。
5 定义域: x x 2k , k 3
周期:T 2
5 1 单调增区间: +2k , 2k , k 3 3
y tan x
正切函数的图象
3 2
0
y
3 2
2
3 2
o
x
问题4、正切函数 y
= tanx 的单调性。
2 k ,
正切函数在开区间(问题5、正切函数 y
= tanx
2 的值域。
k ), k 内都是增函数.
值域为R
正 切 函 数 图 像
性质 :
预习自测 1 (1) x k x k , k (2) x x k , k 2 (3) x k x k , k 2 k 2 x x , k 3 6
x k x k , k 2
1.4.3正切函数的性质与图象

--米山国藏
谢谢大家
(2) 作正切线
(3) 平移
y
(4) 连线
o
2
o 3 x
84 8 2
探究函数
y
tan
x
,x
[0,
2
)
的图像在
[0,
2
)
的趋势
“ ”正切
y
-
x
-ห้องสมุดไป่ตู้
-
O
2
2
正切曲线
“华”正切
“华”正切
性质 数
图象 形
性质 数
数形 结合
“华”正切
已知tan x 3, x (- , ),求x.
22 变式1:已知 tan x 3, 求x.
f (x) f (x)
tan(-x) - tan x, x R, x k , k Z
2
正切函数是奇函数
“画”正切
“画”正切
利用正切线作正切函数的图象
yT P
O
Ax
正切线:有向线段AT
“画”正切
利用正切线画出函数
y tan x,
x [0, )
2
的图象:
作法:(1) 等分:把单位圆在第一象限的部分分成4等份。
1.4.3 正切函数的 性质与图象
甘肃省临洮中学 朱建辉
核心素养
学习目标
能画出正切 函数的图象, 掌握正切函 数的性质.
数学抽象 直观想象
思想方法
数形结合 类比推理
“话”正切
1.4.3正切函数的性质和图象课件.ppt

y
的终边 的终边
y
y
y
的终边
的终边
复习回顾 问题:正弦曲线是怎样画的?
练习:画出下列各角的正切线:
y
的终边 的终边
y
y
y
的终边
的终边
复习回顾 问题:正弦曲线是怎样画的?
练习:画出下列各角的正切线:
y
的终边 的终边
y
y
y
的终边
的终边
复习回顾 问题:正弦曲线是怎样画的?
3
2
2k
]
减函数
奇函数
2
对称轴: x
2
k
,k
Z
对称中心: (k , 0) k Z
y=cosx
y
1
0
2
3 2
2
5 2
x
-1
xR
y [1,1]
x 2k 时, ymax 1 x 2k 时,ymin 1
x[ 2k , 2k ] 增函数
2
值域: R
y y tan x
周期性: 正切函数是周期函数,
周期是
2
2
o 2
x 2
奇偶性: 奇函数
单调性: 在 ( k , k ) k Z
2
2
内是增函数
对称性: 对称中心是(k , 0), k Z
2
对称轴呢?
例1.观察图象,写出满足下列条件的x值的范围:
解:
y
3
0 x
高中数学复习课件-高中数学必修4课件 1.4.3正切函数的性质与图象

1.能借助单位圆中的正切线画出 y=tan x 的图象. 2.理解正切函数的定义域、值域、周期性、奇偶性和单调性,并能应用.
正切函数的图象与性质 (1)图象:如图所示.
正切函数 y=tan x 的图象叫做正切曲线.
(2)性质:如下表所示.
性质
函数
y=tan x
定义域
(1)y=-tan
3
x
3 5
;
(2)y=|tan x|.
分析:(1)利用 T= 求解;(2)画出函数图象利用图象法求解.
|ω|
解:(1)∵ω= ,∴最小正周期 T= =3.
3
3
(2)函数 y=|tan x|的图象是将函数 y=tan x 图象 x 轴下方的图象沿 x 轴翻折 上去,其余不变,如图所示.
2
4
答案:B
4
函数
y=tan
x
4
的定义域为
.
解析:要使函数有意义,自变量 x 的取值应满足 x+ ≤kπ+ (k∈Z),解得
4
2
x≠kπ+ .
4
答案:x|x
k
π 4
,
k
Z}
5 比较 tan 1,tan 2,tan 3 的大小.
解:∵tan 2=tan(2-π),tan 3=tan(3-π),
错解:∵1+tan x≠0,即 tan x≠-1,
∴x≠kπ-
4
(k∈Z),即
y=
1
1 tanx
的定义域为
x|x
k
π 4
,
k
Z}.
错因分析:错解忽略了 tan x 本身对 x 的限制.
1.4.3 正切函数的性质与图象 课件

-
-
P1
6
o1
M-11 A
y
1p1/
作法: (1) 等分 (2) 作正弦线 (3) 平移 (4) 连线
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
x
-1 -
1、用平移正弦线得y sin x, x [0,2 ]图象.
2、再利用周期性把该段图象向左、右扩展得到.
§
正切函数的性质
周期性
由诱导公式得 tan(x ) tan x, x R,x k, k Z
2
所以,正切函数是周期函数,周期是 .
奇偶性
由诱导公式得 tan(x) tan x, x R,x k, k Z
2
所以正切函数是奇函数.
单调性
所以,函2数的3定义2域是x
x
2k
3
,
k
Z.3
由于f+x
2
kT<
2
txan
32<2x
Tk,k3Z,
tan
2
x
3
2
T
解得
ta2nk23x<x<3 2k
f (3x,)k,
Z .
2
T
即T
2
因此,函数的单调递增区间是:
2k
,2k 3
3
, k Z. 2
周期T
另解:周期T
1.4.3正切函数的图象与性质

x 变式题:求函数y 3 tan(- )的单调区间. 2 4 x
4 3 (2k , 2k ),k Z . 2 2
y 3 tan(-
3 2k - x 2k ,k Z 2 2 x
2
)的单调递减区间为 :
1、函数y tan( x A.{ x R | x k
4
)的周期是( C )
C、 3
D、 6
课堂练习
3、直线y=a(a为常数)与正切曲线y=tanx 相交的 相邻两点间的距离是( A )
A、
B、/2
C、2
D、与a值有关
4、与函数y tan( 2 x 一条直线是( D) A. x
4
)的图象不相交的
2
B. x -
2
C.x
4
D. x
8
课堂练习 课本P45 练习2
3 2
y
y tan x
1
2
-1
0
2
3 2
x
观察正切曲线,写出满足下列条件的x的值的范围:
(1) tan x 0
(2) tan x 0
︱ k x k , k Z} {x 2 {x︱ x k , k Z }
(2)
3 (0, ) ( , ) 4 4
课本P45 小(1)tan138与tan143
课堂练习 练习6 比较下列各组是两个正切值的大
思想:在同一个单调区间比较!
13 17 (2) tan 与 tan 4 5 (1) 90 138 143 270 tan 138 tan 143 13 17 2 (2) tan tan , tan tan 4 4 5 5 2 且 0 2 5 4 2 17 13 tan tan tan tan 5 4 5 4
1.4.3正切函数的性质与图象

B
)
π 2.y=tanx(x≠kπ+ ,k∈Z)在定义域上的单调性为( 2 A.在整个定义域上为增函数 B.在整个定义域上为减函数
C
)
π π C.在每一个区间- +kπ, +kπ (k∈Z)上为增函数 2 2 π π D.在每一个区间- +2kπ, +2kπ (k∈Z)上为增函数 2 2
(2)∵tan496°=tan136°,
y=tanx 在(90°,270°)上是增函数,270°>136°>126
°>90°,∴tan136°>tan126°,即 tan496°>tan126°.
不求值, 比较下列每组中两个正切值的大小, 用不等号 “<” 、 “>”连接起来.
< (1)tan32°________tan215 °.
O 6
4 3 2
x
正切函数的性质 :
定义域: x x k , k Z 2 值域: R
周期性:
k 对称中心是 ( , 0), k Z 2
T
奇偶性: 奇函数
单调性: 在开区间 2 k , 2 k k Z 内递增
cosx 是偶函数,∴(4)对. 因此,正确的命题的序号是(1)(4).
解:令 z x
例1.求函数 y tan (x )的定义域 . 4
z z k , k z 2 由x z k , 4 2 可得 x k k 2 4 4
y A tan( x ) T y tan x T π
2、奇偶性 π tan( x ) tan x , x R, x kπ , k Z 2 正切函数是奇函数
数学必修四课件 1.4.3 正切函数的性质与图象

17π - 【解析】tan =-tan 4 22π - tan =-tan 5
π , 4
2π , 5
π π 2π π 2π π ∵- < < < ,∴tan >tan , 2 4 5 2 5 4 即
17π 22π - tan- 4 >tan . 5
)
tan 2x 3.函数 f(x)= 的定义域为( tan x
kπ A.xx∈R且x≠ 4 ,k∈Z
)
π B. xx∈R且x≠kπ+4,k∈Z π C. xx∈R且x≠kπ+2,k∈Z π D.xx∈R且x≠kπ-4,k∈Z
【答案】A
• 正切函数的性质
【例 1】 求函数 间.
【解题探究】 利用正切函数的定义域, 求出函数的定义域, 通过正切函数的周期公式求出周期,结合正切函数的单调增区 间求出函数的单调增区间.
π π y=tan2x+3 的定义域、周期和单调区
π π π 1 【解析】由 x+ ≠ +kπ,k∈Z,解得 x≠ +2k,k∈Z. 2 3 2 3
1 ∴定义域为 xx≠3+2k,k∈Z .
π 周期 T= =2. π 2 π π π π 由- +kπ< x+ < +kπ,k∈Z, 2 2 3 2 5 1 解得- +2k<x< +2k,k∈Z. 3 3
5 1 ∴函数的单调递增区间为-3+2k,3+2k ,k∈Z.
• 【方法规律】运用正切函数单调性比较大小 的方法 • (1)运用函数的周期性或诱导公式将角化到同 一单调区间内. • (2)运用单调性比较大小关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.3正切函数的性质与图象
教学目的:
知识目标:1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质; 能力目标:1.理解并掌握作正切函数图象的方法;2.理解用函数图象解决有关性质问题的方法;
教学重点:用单位圆中的正切线作正切函数图象; 教学难点:正切函数的性质。
教学过程:
一、复习引入:
问题:1、正弦曲线是怎样画的? 2、练习:画出下列各角的正切线:
.
下面我们来作正切函数的图象. 二、讲解新课:
1.正切函数tan y x =的定义域是什么? ⎭
⎬⎫⎩⎨⎧∈+≠
z k k x x ,2|ππ 2.正切函数是不是周期函数? ()tan tan ,,2x x x R x k k z πππ⎛⎫
+=∈≠+∈ ⎪⎝⎭
且,
∴π是tan ,,2y x x R x k k z π
π⎛
⎫
=∈≠+
∈ ⎪⎝
⎭
且的一个周期。
π是不是正切函数的最小正周期?下面作出正切函数图象来判断。
3.作tan y x =,x ∈⎪⎭⎫
⎝
⎛-2,2ππ的图象
说明: (1)正切函数的最小正周期不能比π小,正切函数的最小正周期是π;
(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数
R x x y ∈=tan ,且()z k k x ∈+≠
ππ
2
的图象,称“正切曲线”。
(3)正切曲线是由被相互平行的直线()2
x k k Z π=+∈所隔开的无穷多支曲线组成的。
4.正切函数的性质 引导学生观察,共同获得: (1)定义域:⎭
⎬⎫
⎩
⎨⎧∈+≠
z k k x x ,2|ππ
; (2)值域:R 观察:当x 从小于()z k k ∈+2
π
π,2
π+π−→−k x 时,tan x −−
→+∞ 当x 从大于()z k k ∈+ππ
2
,ππ
k x +−→−
2
时,-∞−→−
x tan 。
(3)周期性:π=T ;
(4)奇偶性:由()x x tan tan -=-知,正切函数是奇函数;
(5)单调性:在开区间z k k k ∈⎪⎭
⎫ ⎝⎛++-ππππ2,2内,函数单调递增。
5.讲解范例:
例1比较⎪⎭⎫ ⎝⎛-
413tan π与⎪⎭
⎫
⎝⎛-517tan π的大小解:tan 413tan -=⎪⎭⎫ ⎝⎛-
π 4π,52tan 5
17tan ππ-=⎪⎭⎫ ⎝⎛-
,⎪⎭
⎫
⎝⎛=<<2,0tan ,5240πππ在x y 内单
调递增, ⎝⎛->⎪⎭⎫ ⎝⎛-->-∴<∴ππππππ
517tan 413tan ,52tan 4tan ,52tan
4tan
即 例2:求下列函数的周期: (1)3tan 5y x π⎛
⎫
=+ ⎪⎝
⎭
答:T π=。
(2)tan 36y x π⎛⎫
=-
⎪⎝
⎭
答:3
T π
=。
说明:函数()()
tan 0,0y A x A ωϕω=+≠≠的周期T πω
=
.
例3:求函数⎪⎭⎫
⎝
⎛
-
=33tan πx y 的定义域、值域,指出它的周期性、奇偶性、单调性, 解:1、由233πππ+≠-k x 得1853ππ+≠k x ,所求定义域为⎭
⎬⎫
⎩⎨⎧∈+≠
∈z k k x R x x ,1853,|ππ且 y
2、值域为R ,周期3
π
=
T ,
3、在区间()z k k k ∈⎪⎭
⎫
⎝⎛+-1853,183ππππ上是增函数。
思考1:你能判断它的奇偶性吗? (是非奇非偶函数), 练习1:求函数⎪⎭⎫
⎝⎛+=32
tan ππ
x y 的定义域、周期性、奇偶性、单调性。
略解:定义域:⎭
⎬⎫⎩
⎨⎧
∈+
≠∈z k k x R x x ,4|π
π且 值域:R 奇偶性:非奇非偶函数 单调性:在)4
,43(π
πππ+-
k k 上是增函数 思考2
:你能用图象求函数y =的定义域吗?
解:
由tan 0x ≥ 得
tan x ≥利用图象知,所求定义域为(),
k k k Z ππππ⎡
⎫++∈⎪⎢,
亦可利用单位圆求解。
四、小结:本节课学习了以下内容:
1.因为正切函数x y tan =的定义域是},2
,|{Z k k x R x x ∈+
≠∈π
π,所以它的图象被
, (2)
3
,2ππ
±±
=x 等相互平行的直线所隔开,而在相邻平行线间的图象是连续的。
2.作出正切函数的图象,也是先作出长度为一个周期(-π/2,π/2)的区间内的函数的图象,然后再将它沿x 轴向左或向右移动,每次移动的距离是π个单位,就可以得到整个正切函数的图象。