牛顿环测量曲率半径---大学物理仿真实验报告
大学物理仿真实验报告牛顿环法测曲率半径

大学物理仿真实验报告-牛顿环法测曲率半径————————————————————————————————作者: ————————————————————————————————日期:大学物理仿真实验报告实验名称牛顿环法测曲率半径班级:姓名:学号:日期:牛顿环法测曲率半径实验目的1.学会用牛顿环测定透镜曲率半径。
2.正确使用读书显微镜,学习用逐差法处理数据。
实验原理如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…) (3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re是一个小量,可以忽略,所以上式可以简化为k(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、掌握用牛顿环测量透镜曲率半径的方法。
3、加深对光的波动性的认识。
二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。
当平行单色光垂直照射到牛顿环装置上时,从空气膜上下表面反射的两束光会在膜表面附近相遇而产生干涉。
由于膜的厚度不同,形成的干涉条纹是一系列以接触点为中心的明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 r_m,对应的空气膜厚度为 d_m。
由于光程差满足半波长的奇数倍时出现暗纹,所以有:\\begin{align}2d_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2d_m &= m\lambda\\d_m &=\frac{m\lambda}{2}\end{align}\又因为几何关系有:\d_m = R \sqrt{R^2 r_m^2} \approx \frac{r_m^2}{2R}\将其代入上式可得:\r_m^2 = mR\lambda\对多个不同的暗环测量其半径,作 r_m^2 m 直线,其斜率为Rλ,从而可求出透镜的曲率半径 R。
三、实验仪器牛顿环装置、钠光灯、读数显微镜、游标卡尺。
四、实验步骤1、调节牛顿环装置将牛顿环装置放置在显微镜的载物台上,调节目镜,使十字叉丝清晰。
调节显微镜的焦距,使清晰地看到牛顿环。
移动牛顿环装置,使十字叉丝的交点位于牛顿环的中心。
2、测量牛顿环的直径转动显微镜的鼓轮,从中心向外移动,依次测量第 10 到 20 级暗环的直径。
测量时,要使叉丝的竖线与暗环的外侧相切,记录读数。
3、重复测量对同一级暗环的直径进行多次测量,取平均值,以减小误差。
4、用游标卡尺测量牛顿环装置中平凸透镜的直径 D。
五、实验数据记录与处理|级数 m |暗环直径 D_m(mm)|暗环半径 r_m(mm)|r_m^2(mm^2)||||||| 10 ||||| 11 ||||| 12 ||||| 13 ||||| 14 ||||| 15 ||||| 16 ||||| 17 ||||| 18 ||||| 19 ||||| 20 ||||计算暗环半径的平均值:\\bar{r} =\frac{1}{n}\sum_{i=1}^{n}r_i\绘制 r_m^2 m 曲线,求出斜率 k。
牛顿环测透镜曲率半径实验报告

牛顿环测透镜曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习利用牛顿环测量平凸透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个厚度由中心向边缘逐渐增加的空气薄层。
当单色光垂直入射时,从空气薄层上下表面反射的两束光将会产生干涉。
在反射光中,相同厚度处的光程差相同,形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设平凸透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气薄层厚度为$d$。
由于$R >> d$,可以将这一空气薄层近似看作一个楔形薄膜。
由几何关系可得:\d = r^2 / 2R\两束反射光的光程差为:\Delta = 2d +\frac{\lambda}{2}\其中,$\lambda$ 为入射光的波长。
当光程差为波长的整数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
对于暗条纹,有:\2d +\frac{\lambda}{2} =(2k + 1) \frac{\lambda}{2}\\d = k\frac{\lambda}{2}\\r^2 = 2kR\lambda\则第$k$ 级暗环的半径为:\r_k =\sqrt{2kR\lambda}由于中心为暗斑,所以第$k+m$ 级暗环半径与第$k$ 级暗环半径之差为:\r_{k+m}^2 r_k^2 = 2mR\lambda\所以,平凸透镜的曲率半径为:\R =\frac{(r_{k+m}^2 r_k^2)}{2m\lambda}\三、实验仪器1、读数显微镜:用于测量牛顿环的直径。
2、钠光灯:提供单色光源。
3、牛顿环装置:由平凸透镜和平面玻璃组成。
四、实验步骤1、仪器调节将牛顿环装置放置在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
调节显微镜的物镜,使其接近牛顿环装置,但不接触。
然后缓慢向上移动物镜,直到能清晰地看到牛顿环。
牛顿环测量曲率半径实验报告.doc

大学物理仿真实验实验报告牛顿环测量曲率半径实验土木21班2120702008崔天龙实验名称:牛顿环测量曲率半径实验1.实验目的:1 观察等厚干涉现象,理解等厚干涉的原理和特点2 学习用牛顿环测定透镜曲率半径3 正确使用读数显微镜,学习用逐差法处理数据2.实验仪器:读数显微镜,钠光灯,牛顿环,入射光调节架3.实验原理图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍,即此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1)当∆满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为,对应的膜厚度为,则(4)在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k 2相对于2Rek是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果r k是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
牛顿环测量曲率半径实验报告

牛顿环测量曲率半径实验报告实验目的1 观察等厚干涉现象,理解等厚干涉的原理和特点2 学习用牛顿环测定透镜曲率半径3 正确使用读数显微镜,学习用逐差法处理数据实验仪器读数显微镜,钠光灯,牛顿环仪,入射光调节架实验内容1.观察牛顿环将牛顿环放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2.测牛顿环半径使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。
记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。
记录标尺读数。
3.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R 和R的标准差数据处理及结果下图为在系统提供的表格内记录了相应的实验数据后由系统计算的结果下图为在仿真实验中先后调节好入射光调节架,显微镜镜筒,牛顿环位置及目镜位置后从目镜中观察到的衍射图样(牛顿环处于正中位置)思考题1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?牛顿环的薄膜是介于牛顿环下表面(凸面)与下面的平面玻璃之间的一层空气薄膜。
2.为什么牛顿环产生的干涉条纹是一组同心圆环?干涉时薄膜等厚处光程差相等,产生的干涉现象也相同。
而牛顿环的薄膜等厚处相连在空间上是一个圆形,其圆心在凸面与平面的接触点上,所以干涉条纹是一组同心圆。
3.牛顿环产生的干涉条纹在什么位置上?相干的两束光线是哪两束?条纹产生在凸面的表面上。
大学物理实验报告牛顿环法测量透镜曲率半径

大学物理实验报告牛顿环法测量透镜曲率半径实验目的:通过使用牛顿环法测量透镜的曲率半径,了解透镜的特性和性能。
实验原理:牛顿环法是一种测量透镜曲率半径的方法,其基本原理是利用透镜产生的干涉图案来测量透镜的曲率半径。
当透镜与光源之间存在一个薄透明介质时,透镜和介质之间会形成一系列干涉环,这些干涉环被称为牛顿环。
根据牛顿环的半径和透镜与介质之间的距离,可以计算出透镜的曲率半径。
实验步骤:1. 准备实验所需材料和仪器,包括透镜、白光光源、薄透明介质、光屏等。
2. 将透镜放在光源上方,调整光源和透镜之间的距离,使得透镜和光源之间存在薄透明介质。
3. 将光屏放在透镜下方,调整光屏的位置,使得牛顿环清晰可见。
4. 使用尺子测量透镜和光屏之间的距离,并记录下来。
5. 通过放大镜或显微镜观察牛顿环,并记录下最明亮的几个环的半径。
6. 根据实验原理中的公式,计算出透镜的曲率半径。
实验注意事项:1. 实验过程中要注意光源和透镜的安全使用,避免直接照射眼睛。
2. 调整光源和透镜的位置时要小心操作,避免碰撞和损坏实验器材。
3. 观察牛顿环时要保持光线充足,以确保清晰可见。
4. 记录实验数据时要准确无误,避免误差的产生。
实验结果:根据实验步骤中记录下来的数据,可以计算出透镜的曲率半径。
根据牛顿环的半径和透镜与介质之间的距离,使用适当的公式进行计算,最终得出透镜的曲率半径。
实验总结:通过本次实验,我们利用牛顿环法测量了透镜的曲率半径。
实验结果可以用来评估透镜的性能和特性。
同时,通过实验过程中的操作和观察,我们进一步了解了光学现象和光的干涉原理。
这对于我们深入理解光学知识和应用光学技术具有重要的意义。
用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。
这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。
实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。
你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。
这个实验的目的就是通过牛顿环现象,测出这个曲率半径。
1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。
不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。
看着那些环,真是让人感觉像是置身于一个光的梦境中。
二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。
这两者的搭配,简直是天作之合。
透镜的选择要小心,毕竟它的质量会直接影响实验结果。
2.2 光源接下来,得有个合适的光源。
我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。
实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。
2.3 观察设备最后,别忘了观察设备。
显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。
好的设备就像一双慧眼,能让我们看见别人看不见的细节。
三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。
用心点,这一步是关键。
之后,把光源对准透镜,让光线透过。
3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。
随着光线的透过,牛顿环渐渐显现出来。
那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。
记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。
根据牛顿环的半径,可以用公式计算透镜的曲率半径。
过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。
四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。
用牛顿环测平凸透镜的曲率半径实验报告

用牛顿环测平凸透镜的曲率半径实验报告实验名称:用牛顿环测平凸透镜的曲率半径实验目的:利用牛顿环的成像特性,测量平凸透镜的曲率半径,并掌握测量方法及误差分析。
实验原理:牛顿环实验是一种利用干涉现象来测量曲率半径的方法。
在实验中,光线经过一个平凸透镜后会在光斑处形成一组彩虹环,称为牛顿环。
当凸透镜与玻璃板接触时,光波的反射和折射都会产生相位差,因此彩虹环会发生移动。
根据牛顿环移动的程度,就可以计算出凸透镜的曲率半径。
牛顿环的半径r和平板厚度d之间的关系式为:r = (m-1)λd/m其中m为第m级暗纹,λ为光的波长。
实验步骤:1. 用蘸有甲醇的棉签擦拭干净透镜并与平板紧密相接。
2. 打开白光源,将凹透镜放在光源上方,调整高度,使之位于平板上方10-12厘米,使白光垂直入射,形成明暗相间的彩虹环。
3. 用显微镜对牛顿环进行观察,找到第一级暗圆环的位置,记下光程差d1,并记录m的值。
4. 令平板转过n个角度,找到第m级暗圆环的位置,记下光程差dn,并计算m个不同角度时的光程差d1,d2,…,dm。
5. 根据公式计算出曲率半径r的值。
实验数据及误差分析:移动前光程差d1=xxxx,移动n个单位后光程差dn=xxxx处理数据得到曲率半径r=xxxx误差主要来源于以下两个方面:1. 手动转动平板时,可能会出现误差,导致找到的暗纹位置有偏差。
2. 牛顿环受外界环境影响较大,如温度、湿度等,也会对测量结果产生影响。
实验总结:通过本次实验,我们掌握了利用牛顿环进行测量的方法,并对测量结果进行了误差分析。
同时,我们也发现,在实验中应尽量减少人为因素对实验结果的影响,提高实验精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿环测量曲率半径---仿真实验报告
实验日期:教师审批签字:
实验人:审批日期:
一.实验目的:
1.观察等厚干涉现象,了解等厚干涉的原理及特点;
2.学习使用利用干涉法测量平凸透镜的曲率半径的方法;
3.正确使用读数显微镜镜,学习用逐差法处理实验数据。
二.实验仪器及其使用方法:
(一)实验仪器:
○1读数显微镜(测微鼓轮的分度值为0.01mm);○2钠光灯,入射光调节架;○3牛顿环仪。
(二)使用方法:
1.将牛顿环放置在读数显微镜镜筒和入射光调节架下方,打开钠灯,调节玻璃片的角
度,使通过显微镜目镜观察时视场最亮。
2用鼠标点区域的入射光调节架,按住鼠标左键不放,调节架作顺时针旋转(从观察者角度),点右键则作相反动作。
当目镜观察窗中的条纹最明亮(未必清晰)时结束调整
3.打开标尺窗口。
用鼠标点击标尺窗口调整镜身的横向移动,左键点击时镜身向
左移动(所以目镜观察窗口中牛顿环向右移),右键则相反。
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行),此时不要关闭标尺窗口;记录标尺读数。
4.转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗
环数,从第16环开始直到竖丝与第50环相切为止;记录标尺读数。
5.重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R
和R的标准差。
三、实验原理:
如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生薄膜干涉。
在实验中选择两个离中心较远的暗环,假定他们的级数为m和n,分别测出它们的直径d m、d n,由薄膜干涉
原理可推知平凸透镜的曲率半径
²²
4m n
m n
d d
R
λ
+
=
-
()
四、测量内容及数据处理:
将牛顿环按要求放置,调节好玻璃片的角度、显微镜镜筒、牛顿环,目镜观察窗中的横向叉丝经过牛顿环圆心观测到以下干涉图样:
仿真实验提供了自动计算R值的工具,把所实验测得的数据录入表格,得到下表:
故R的半径平方差为99.83mm、R=1.694m
五、实验结论及误差分析
结论:实验中测得得凸透镜凸面的曲率半径R=1.694mm ,R的半径平方差为:
99.83mm
误差分析:○1数干涉条纹数时可能出错。
○2找切线位置应视觉原因而不准
建议:○1改进实验软件平台采用自动计数或者放大目镜观测窗的条纹以便观测。