预应力混凝土用钢棒

预应力混凝土用钢棒

预应力混凝土用钢棒

预应力混凝土用钢绞线GB

预应力混凝土用钢绞线GB/T5224-2003 结构公称直径 (mm) 公称截面 积 (mm2) 允许 偏 差 (mm) 强度 级别 (Mpa) 整根钢绞线 的最大负 荷 (KN) 规定非比例 延伸力 F p0.2/(KN) 最大力总伸长率 (L0≥500mm) Agt/% 每 1000m 理论重 量 (kg) 1000h松 弛率%不 大于 初始负荷 为70%公 称最大负 荷 不小于 1×7标准 型 9.50 54.8 +0.30 -0.15 1860 10291.8 3.5 432 2.5 1960 107 96.30 1860 138 124 582 11.10 74.20 1960 145 131 12.70 98.70 +0.40 -0.20 1860 184 166 775 1960 193 174 1720 241 217 1101 1860 260 234 1960 274 247 15.70 150+0.40 -0.20 1770 266239 1178 1860 279 251 1720 327 294 1500 17.80 191 1860 353 318 模拔 型 12.70 112 +0.40 -0.20 1860 209 178 890 15.20165 1820 300 270 1295 18.00 223 1820 300 255 1750 说明: 本标准是 GB/T 5224-1995标准的修改版,对应国际标准ISO 6934-4:1991《预应力混凝土用钢 第4部分钢纹线》。本标准与ISO 6934-4:1991的一致性程度为非等效,主要差异如下: —增加了品种、强度级别,调整了规格; —取消了I级松弛钢绞线; —提高了屈强比; —增加了附录A疲劳试验和附录B偏斜拉伸试验; —取消了1X19结构钢绞线。 本标准代替GB/T 5224-1995《预应力混凝土用钢绞线》。 本标准与GB/T 5224-1995标准相比主要变化如下: —增加了品种、规格、强度级别;

预应力钢棒张拉施工方案

预应力钢棒张拉施工操作方案 一、目的 为了明确张拉施工的工作准备和施工步骤,保证施工质量,达到规定技术要求,特编写本施工操作方案,以此起到指导施工的作用。 二、材料 在本工程连续梁腹板竖向预应力采用PSU16-2预应力混凝土用钢棒螺纹锚具组件,质量应符合GB/T 5223.3-2005有关规定的要求,预应力钢棒锚固体系采用M17*1.5mm 支承式锚固螺母,其质量应符合GB/T 14370-2007有关规定的要求;并按设计要求制备螺旋筋、锚垫板及定位钢筋。 三、张拉施工设备 本工程竖向预应力钢棒张拉采用原精轧螺纹钢张拉千斤顶配套张拉支架进行施工,张拉设备机具包括:高压油泵、高压油管、穿心式千斤顶、张拉支架、张拉杆件及锁母、六方套筒、锁紧链钳以及其他便于施工的辅助装备。(后附张拉配件价格表)预应力张拉设备应具备有效的标定报告,以确保施工时预应力施加符合设计要求。 四、预应力张拉作业 1、预应力钢棒张拉作业应在达到混凝土龄期或者混凝土强度达到设计强度的90%且混凝 土龄期不少于7天时,方可张拉作业; 2、预应力钢棒张拉控制应力应根据设计要求及施工规范的要求,且张拉采用单端单支张 拉; 3、预应力钢棒张拉顺序应采用对称张拉,即每个号块对称张拉,每组钢棒对称张拉(先张 拉中间再张拉两边); 4、预应力钢棒张拉应采用“双控”控制,以张拉力控制为主,伸长值校核。张拉时采用 0 10%σcon 100%σcon 的张拉方法,张拉后预应力钢棒的实测伸长量与理论伸长 量误差范围在±6%以内。 五、张拉施工步骤 1、张拉工艺流程: 清理张拉锚穴清理钢棒端部螺纹安装张拉杆件安装六方套筒摆放张拉支架至正确位置安装千斤顶安装千斤顶底部锁母油泵加荷开始张拉链钳带动六方套筒锁紧锚固螺母卸除载荷千斤顶回油复位拆除千斤顶其他钢棒张拉重

钢纤维混凝土配合比

C50钢纤维混凝土配合比 1,设计依据及参考文献 《普通混凝土配合比设计规程》JGJ55-2000(J64-2000) 《公路桥涵施工技术规范》JTJ041-2000 《国内公路招标文件范本》之第二卷技术规范(1) 《混凝土配合比设计计算手册》——刘长俊主编,辽宁科学技术出版社 2,确定钢纤维掺量: 选定纤维掺入率P=1.5%, T0=(78.67*P)kg=78.67*1.5=118kg; 3,确定水灰比 取W/C=0.45 (水灰比一般控制在0.40-0.53); 4,确定用水量: 取W=215kg(用水量一般控制在180-220kg),施工中采用掺用UNF-2A型高效减水剂,掺量为水泥用量的1%,减水率达10%,但考虑钢纤维混凝土的和易性较差,且施工中容易结团,故在试配中不考虑其减水效果,在试拌过程中观察其坍落度及施工性能。 5,计算水泥用量: C O=W O/(W/C)=215/0.45=478kg; 6,确定砂率: 取S P=65%(从强度和稠度方面考虑,砂率在60%-70%之间); 7,计算砂石用量: 设a=2 V S+G=1000L-[(W O/ρw+C O/ρc+T O/ρt+10L*a)] =1000L-[(215/(1/L)+478/(3.1/L)+118/(7.85/L)+10L*2)] =1000L-404L=596Lkg; S O = V S+G * S P * ρs=596 * 0.65 * 2.67 = 1034kg; G O = V S+G * (1-S P)*ρs = 596*0.35*2.67kg/L=557kg;

8,初步配合比: C O:S O:G O:T O:W O:W外= 478 : 1034 : 557 : 118 : 215 : 4.78 kg/m3 = 1: 2.16 : 1.17 : 0.25: 0.45 : 1% 9、混凝土配合比的试配、调整与确定: 试拌材料用量为: 水泥:砂:碎石:钢纤维:水:减水剂 = 11: 23.76: 12.87:2.75:4.95:0.11 kg; 拌和后,坍落度为10mm,能符合设计要求。观察拌和物施工性能: 棍度:中;保水性:少量;含砂:多; 拌和物在拌和过程中比普通砼困难,较难搅拌,但经机械振捣易密实。 6、经强度检测(数据见试表),28天抗压符合试配强度要求,故确定该配合比为基准配合比,即: 水泥: 砂: 碎石: 钢纤维: 水: 减水剂 = 11 : 23.76 : 12.87 : 2.75 : 4.95 : 0.11 kg = 1 : 2.16 : 1.17 : 0.25 : 0.45 : 1% = 478 : 1034 : 557 : 118 : 215 : 4.78kg/m3

钢纤维混凝土配合比

l—2 钢纤维混凝土的配合比设计 钢纤维混凝土虽已在各种工程领域得到较广泛的应用,但对钢纤维混凝土拌合料的配合比设计,尚未建立起合理而成热的设计方法。国外有关学者,曾介绍过关于钢纤维混凝土配合比方面的资料,提出一些参考用表和经验配合比。国内有关单位”,曾提出要以抗折强度为指标进行钢纤维混凝土配合比设计,并通过试验,建立抗折强度与各主要影响因素之间量的关系,有利于配合比的设计。但多数仍按普通水泥混凝土的配合比设计方法,以混凝土的抗压强度确定拌合料的配合比,只是适当调整砂率、用水量和水泥用量。按此确定配合比时,为了获得较高的抗折强度,势必使抗压强度也相应提高,这是不必要的。钢纤维混凝土配合比的设计,应根据对钢纤维混凝土的使用要求和钢纤维混凝土配合比的特点进行合理的设计。 1-2-11-2-1钢纤维混凝土配合比设计的要求和特点 一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将其组成的材料,即钢纤维、水泥、水、粗细骨料及外掺剂等合理的配合,使所配制的钢纤维混凝土应满足下列要求: 1. 满足工程所需要的强度和耐久性。对建筑工程一般应满足抗压强度和抗拉强度的要求对路(道)面工程一般应满足抗压强度和抗折强度的要求。 2.配制成的钢纤维混凝土拌合料的和易性应满足施工要求。 3.经济合理。在满足工程要求的条件下,充分发挥钢纤维的增强作用,合理确定钢纤 维和水泥用量,降低钢纤维混凝土的成本。 二、钢纤维混凝土配合比设计的特点 钢纤维混凝土的配合比设计与普通水泥混凝土相比,其主要特点是: 1.在水泥混凝土的配合拌合料中掺入钢纤维,主要是为了提高混凝土的抗弯、抗拉、抗疲劳的能力和韧性,因此配合比设计的强度控制,当有抗压强度要求时,除按抗压强度控制外,还应根据工程性质和要求,分别按抗折强度或抗拉强度控制,确定拌合料的配合比,以充分发挥钢纤维混凝土的增强作用,而普通水泥混凝土一般以抗压强度控制(道路混凝土以抗折强度控制)来确定拌合料的配合比。 2.配合比设计时,应考虑掺人拌合料中的钢纤维能分散均匀,并使钢纤维的表面包满砂浆,以保证钢纤维混凝土的质量。 3.在拌合料中加入钢纤维后,其和易性有所降低。为了获得适宜的和易性,有必要适当增加单位用水量和单位水泥用量。 1-2-2钢纤维混凝土配合比设计原理与方法。 钢纤维混凝土配合比设计的基本方法是建立在钢纤维混疑土拌合料的特性及其硬化后的强度基础上的。其主要目的是根据使用要求,合理确定拌合料的水灰比,钢纤维体积率、单位用水量和砂率等四个基本参数,由此,即可计算出各组成材料的用量。 在确定基本参数时,既要满足抗压强度要求,又要符合抗折强度或抗拉强度要求,以及和易性、经济性要求。 试验表明,钢纤维混凝土的抗压强度、抗折强度和抗拉强度与水泥标号;水灰比、钢纤维体积率和长径比、砂率、用水量等因素有关,其中水灰比和水泥标号对抗压强度影响最大,其他因素影响较小。即钢纤维体积率和长径比、水泥标号却对抗折强度和抗拉强度影响最大,砂率和用水量对和易性影响较大。因此,采用以抗压强度与水灰比,水泥标号的关系来确定水灰比,然后用抗折强度或抗拉强度确定

预应力混凝土用钢绞线

一.目的 检测预应力混凝土用钢丝的性能指标,指导检测人员按规程正确操作,保证检测结果科学准确。 二.检测参数及执行标准 表面质量、尺寸、每米质量、拉伸试验。 执行标准: GB/T228 金属拉伸试验方法 GB/T238 金属线材反复弯曲试样方法 GB/T239 金属线材扭转试验方法 GB/T2103 钢丝验收、包装、标志及质量证明书的一般规定 GB/T10120-1996 金属应力松弛试验方法 GB/T17505 钢及钢产品交货一般技术要求 YB/T146 预应力钢丝及钢绞线用热轧盘条 YB/T170 制丝用非合金钢盘条 三.适用范围 适用于工业与民用建筑的预应力混凝土用钢丝。 四.职责 检测人员必须认真执行国家标准,按操作规程做好检测工作,整理数据记录,编制报告,并给出等级结果的判定。 五.样本大小及抽样方法 1、表面:逐盘。 2、外观尺寸:逐盘。

3、消除应力钢丝伸直性:每盘1根,每根1米。 4、抗拉强度:每盘1根。 5、规定非比例伸长应力:每批3根。 6、最大力下总伸长率:每批3根。 7、断后伸长率:每盘1根。 8、弯曲:每盘1根。 9、扭转:每盘1根。 10、断面收缩率:每盘1根。 11、镦头强度:每批3根。 12、应力松弛性能:每合同批不小于1根。 取样部位:在每(任一)盘中任意一端截取。 六.仪器设备 60吨试验机 七.环境条件 试验一般在室温10℃~35℃范围内进行。 八.试验步骤及数据处理 1.表面检验:表面质量用目视检查。 2.外形尺寸检验:①钢丝直径应用分度值为0.01mm的量具测量,在任何部位同一截面两个垂直方向上测量②螺旋肋钢丝的导程,刻痕钢丝的刻痕长度、节距应沿钢丝轴线方向测量,螺旋肋钢丝的肋宽应在螺旋肋法向上测量③每米质量测量:钢丝单位质量应采用如下方法:取3根长度不小于500mm的钢丝,每根钢丝长度测量精确至1mm,称量每根钢丝的质量,

钢纤维混凝土配合比设计及质量控制

钢纤维混凝土配合比设计及质量控制 [摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。 [关健词]钢纤维配合比设计质量控制 钢纤维混凝土是以水泥净浆、砂浆或混凝土为基体,以金属纤维增强材料组成的水泥基复合材料。它是将短而细的,具有高抗拉强度、高极限延伸率、高抗碱性等良好性能的金属纤维均匀分散在混凝土基体中形成的一种新型建筑材料。 桥面铺装层作为桥梁的非主体结构,通常被设计和施工所忽视,长期车辆荷载的作用,是造成桥面开裂、损坏的主要原因,从而影响桥梁的使用质量,降低使用寿命,在桥面铺装层使用钢纤维混凝土将会有效地解决桥面使用过程中容易出现的质量问题。

一、钢纤维混凝土配合比设计的要求 钢纤维混凝土配合比设计的目的是将组成材料,即钢纤维、水泥、水、粗细集料及外掺剂合理配合,使配制的钢纤维混凝土能够最大限度的满足施工和工程使用要求。 (1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能; (2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求; (3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。 二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜ 2,掺加量不超过70㎏/M 3。 水泥:采用32.5级或42.5级普通硅酸盐水泥。 碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。 细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。 水:无污染的自然水或自来水。 外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。 三、钢纤维混凝土配合比设计步骤

预应力混凝土用未涂层的7股钢绞线的标准规范 ASTM A416 A416M-05

预应力混凝土用未涂层的7股钢绞线的标准规范 ASTM A416/A416M-05 本标准印发的是修订的A416/A416M标准,后面的数字表明标准发行时间或最新的的修订时间,圆括号中的数字表明上次修订时间,设成上标的数字标明是从修订后编辑上的改变。 本标准已被国防部相关机构批准采用。 1、范围 1.1 本规范包含两种和两个级别的7股未涂层的用于预应力混凝土的钢绞线。这两种钢绞线分别是低松弛的和应力全释放的(普通松弛)。低松弛钢绞线被称为标准型,应力释放的钢绞线一般不予以提供除非特别需要,或者购买者和生产者有协议。250级和270级都有最小的强度要求分别是1725(ksi)MPa和1860MPa (270ksi),各以其级别命名。 1.2在英制体系和SI体系中两者的指标都认为是标准的,在本文内,英制指标出现在括号内。由于两种体系的指标并不是完全等价的,因此,各自的体系必须独立使用。混合使用两种指标可能导致使用本规范时没有一致性。 1.3提供者要求使用的预应力钢绞线应用于地下锚定装置时要特别要求15.2mm(0.6-in)直径的钢绞线。 2、参考引用文件 2.1 ASTM 标准[2] A370 钢制品机械试验的标准试验方法及定义。 A981 评估预应力地下锚定装置用270级未涂覆15.2mm(0.6in)直径预应力钢绞线结合强度的标准试验方法。 E328 材料和结构件的应力松弛试验。 2.2美国军用标准 MIL-STD-129 可以装载和存贮产品的标记规定[3] MIL-STD-163 可以装载和存贮的钢厂出产钢产品[3] 2.3美国联邦标准 FED-STD。NO.123出厂产品的标记规定(国内机构) 3、术语

预应力用材、钢绞线、锚夹具、波纹管A卷汇总

江苏省建设工程质量检测人员岗位合格证考核试卷 预应力用材、钢绞线、锚夹具、波纹管(A卷) (满分100分,时间80分钟) 姓名考试号单位 一、单项选择题(每题1分,共计40分) 1、对1×7结构钢绞线,测量最大力总伸长率时,原始标距应。 A、≥300mm B、≥400mm C、≥500mm D、≥800mm 2、预应力混凝土用钢绞线,其规定非比例伸长应力Rp0.2应不小于公称抗拉强度的。 A、80% B、90% C、75% D、85% 3、标记为“预应力钢绞线1×7-15.20-1860-GB/T5224-2003”的钢绞线的性能结果数值应进行修约,现行标准中规定Rm的修约间隔为MPa。 A、1 B、5 C、10 D、50 4、GB/T 21073-2007 环氧涂层七丝钢绞线规定填充型环氧涂层钢绞线,固化后的涂层厚度应在mm之间,涂装型环氧涂层钢绞线,固化后的涂层厚度应在mm之间。 A、0.38~0.65 0.65~1.14 B、0.38~1.140.65~1.15 C、0.38~1.000.65~2.00 D、0.38~1.140.65~1.14 5、依GB/T 52234-2003 预应力混凝土用钢绞线,其标记为: 1X7-15.20-1860-GB/T 5224-2003 表示。: A、公称直径为15.20 mm,强度级别为1860MPa的七根钢丝捻制的标准型钢纹线 B、公称直径为15.24 mm,强度级别为1860MPa的七根钢丝捻制的标准型钢纹线 C、公称直径为15.20 mm,强度级别为1570MPa的七根钢丝捻制的标准型钢纹线 D、公称直径为15.24 mm,强度级别为1570MPa的七根钢丝捻制的标准型钢纹线 6、一组三根钢绞线,直径Φ15.20,强度等级1860MPa,拉伸试验时,实测屈服荷载分别为261kN、258kN、257kN。破断荷载分别为270kN、260kN、261kN,实测最大力总伸长率分别为 4.2%、 3.7%、 3.6%,计算其屈服强度分别为,,。 A 1860 MPa、1840 MPa、1840 MPa; B 1864 MPa、1843 MPa、1836 MPa;

C30聚丙烯纤维混凝土配合比

C30聚丙烯纤维混凝土配合比设计说明 一、设计依据:JTJ041-2000、JGJ55-2000、GB/T1596-2005 二、原材料: 1、水泥:赤峰远航水泥有限责任公司P.O42.5R 2、砂:白音青格勒砂场中砂 3、石:宇厦石料厂4.75-9.5mm:25% 9.5-19mm:50% 19-31.5mm:25% 4、水:饮用水 5、粉煤灰:蓝旗电厂 6、减水剂:天津雍阳 7、聚丙烯腈抗裂纤维:北京中创同盛科技有限公司 三、 1、使用部位:墩.台身及台帽 2、设计坍落度:90-110mm 四、配合比设计: 1、确定配制强度:fcu,o=fcu,k+1.645σ=30+1.645*5=38.2MPa 2、计算水灰比(W/C): 水泥强度:fce = 42.5*1.00= 42.5MPa W/C =(Aa.fce)/(fcu,o+Aa.Ab.fce)=(0.46*42.5)/(38.2+0.46*0.07*42.5)=0.49按耐久性校正水灰比,查JTJ55-2000表 4.0.4允许最大水灰比 0.50,取水灰比为0.47; 3、选定单位用水量(m wO): 根据二.3,三.2和JGJ55-2000表4.0.1-2选定用水量229kg/m3加0.6%高效减水剂(减水率20%),则加过减水剂之后用水量为185 kg/m3 4、计算单位水泥用量(m C o): m C o = m w o/(w/c) = 185/0.47=394kg/m3 按耐久性校正单位水泥用量查JGJ55-2000表4.0.4允许最小水泥用量300kg/m3采用计算用量394kg/m3; 根据上级文件要求,并依据《用

钢纤维混凝土力学性能报告

钢纤维混凝土力学性能报告 作者:波尔派丝吴

前言 现如今在建筑行业中使用最为广泛的材料就是混凝土,它是由骨料、水泥和水组成的,在实际应用当中能够表现出具有良好的抗压效果。在构件受力时利用自身的抗压性能抵抗荷载消除形变。根据混凝土的抗压强度可划分混凝土的等级,混凝土强度是结构设计和施工的重要依据。 但由于普通混凝土力学性能上的缺陷,抗弯拉强度小、弯曲韧度低、易开裂,导致其在工程作业中的应用受到很大限制。我们通常的解决办法是配筋,随着施工技术的革新,钢纤维问世,现今钢纤维改变混凝土性能已成为混凝土改性的重要途经之一。 钢纤维混凝土是指将规定尺寸、不连续的金属短纤维(即钢纤维)均匀、乱向地分散于混凝土中,形成一种可浇筑、可喷射的新型复合材料。因其在实际应用中表现出的抗拉、抗弯、抗剪、耐冲击性能优异,所以在建筑、公路、水工等领域中得到广泛应用。同时钢纤维混凝土相比于配筋混凝土具有更好等效弯曲强度与施工流水节拍。

I.钢纤维混凝土的基本组成 钢纤维混凝土是由粗骨料(石子)、细骨料(砂)、水泥、水、钢纤维以及适用工程状况的外加剂(无特定情况可不加)组成的一种非均质集合体复合材料。按设计配合比配制,经过立模、浇筑、振捣、整平、养护、拆模,形成具有设计强度的钢纤维混凝土构件。 II.钢纤维混凝土的基本力学性能 为了对钢纤维混凝土的力学性能分析,我们选用C30混凝土、SF80/50BP钢纤维(长径比80、长度50mm的冷拉端钩钢纤维)分别制作了6组样块,每组分别做6个样块,为了保证钢纤维的分散率采用成排钢纤维(在不使用外界设备干扰时成排钢纤维分散效果会优于散纤维),掺量分别为0kg/m3、5kg/m3、10kg/m3、15kg/m3、20kg/m3、25kg/m3,在恒温箱养护 28d后拆模进行试验。 A.抗压强度 龄期28d钢纤维混凝土试块与同等养护条件下龄期28d的普通混凝土试块相比较,在弹性形变阶段弹性模量与泊松比可视为基本相同; 实验数据表明,钢纤维对基体的抗压强度增强效果并不明显。在基体中加入钢纤维后,当钢纤维体积率的增加时基体的抗压强度略有提升,但增量很小,提升在0%~10%(前期工作者的大量实验也印证了此观点)。同时为了保障钢纤维在混凝土基体中的方向效能系数与粘接强度,钢纤维的长度需满足混凝土最大粒径的1.5~2.0倍,否则容易造成钢纤维的局部结团,相当于构成了薄弱截面,此时加入钢纤维反而会产生不利影响,造成钢纤维与混凝土界面粘结性状变差,其抗压强度甚至会比同配比的普通混凝土有所下降。

C50钢纤维混凝土配合比设计说明

C50钢纤维砼配合比设计说明书 一、 设计目的: 该配合比适用于k75+500-k94+900段桥梁伸缩缝等的施工。 二、 设计说明: 1、 设计依据 ① 《公路工程国内招标文件范本》 ② 《普通混凝土配合比设计规程》 ③ 《普通混凝土拌合物性能试验方法标准》 ④ 《普通混凝土力学性能试验方法标准》 ⑤ 《普通混凝土长期性能和耐久性能试验方法标准》 GB/T 50082 ⑥ 《公路工程水泥及混凝土试验规程》 ⑦ 《公路工程岩石试验规程》 ⑧ 《公路工程集料试验规程》 ⑨ 《通用硅酸盐水泥》 ⑩ 《公路桥涵施工技术规范》 (11) 《建设用卵石、碎石》 (12) 《混凝土外加剂》 (13) 《钢纤维混凝土》 2、 配合比设计公式选用 根据《公路桥涵施工技术规范》 砼试配强度R 下式确定: JGJ 55-2011 GB/T 50080 GB/T 50081 JTGE30-2005 JTGE41-2005 JTGE42-2005 GB175-2007 JTG/T F50----2011 GB/T 14685-2011 GB8076-2008 JG/T 472-2015 JTG/T F50— 2011

Feu, o二f eu, k+1.645 a 其中值按下表选用: 三、C50砼配合比计算 1、原材料: ①水泥:柳州鱼峰水泥厂P .0 52.5普通硅酸盐水泥。 ②砂:贝江砂场河砂,细度模数2.72,表观相对密度2.654g/cm3。 ③碎石:神龙石场5?20mm,表观相对密度2.678g/cm3。采用 4.75-9.5mm碎石和9.5-19mm碎石按照30:70的比例进行掺配。 ④钢纤维:河北衡水鑫归机械加工厂,按照设计图纸每方掺量为60Kg ⑤水:饮用水 ⑥外加剂:郑州市邦基建材有限公司BJ聚羧酸高效减水剂,减水率为28%,掺量为1.0%。 ⑦设计坍落度:130?170mm 2、试配强度: f eu, o=f cu,k+1.645 (T =50+1.645 8=59.9 Mpa 3、水泥强度:(富余系数取1.0) f ee=52. 5Mpa 4、确定水灰比:

预应力砼用钢绞线

预应力砼用钢绞线 1.现行标准:GB/T 5224-2014 本标准代替GB/T5224-2003《预应力混凝土用钢绞线》,与GB/T5224-2003相比主要技术内容变化如下: —增加了19丝钢绞线类别、规格、强度级别; —增加了7丝钢绞线的规格; —规定了最大力的最大值,取消供方每一次交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa; —将松弛试验初始力由特征最大力百分比改为实际最大力百分比,增加如无特殊要求只进行初始为70%实际最大力Fma的松弛试验,取消原初始力为60%最大力的要求; —0.2%屈服力Fpo.2值由不小于整根钢绞线公称最大力Fm的90%改为应在整根钢绞线实际最大力Fma的88%~95%范围内; —增大了部分规格钢绞线的盘径,增加重量偏差要求; —增加了钢绞线特征值附录。 本标准使用重新起草法参考 ISO 6934-4;1991《预应力混凝土用钢第4 部分:钢绞线》编制,与ISO 6934 第 4 部分的一致性程度为非等效,主要差异如下: —增加了强度级别,调整了规格;

—增加了刻痕钢绞线品种; —调整了屈强比范围; —规定了最大力的最大值; —增加了附录 A。 2.1分类与代号 钢绞线按结构分为8类。其代号为: 1)用两根钢丝捻制的钢绞线 1X2 2)用三根钢丝捻制的钢绞线 1X3 3)用三根刻痕钢丝捻制的钢绞线 1X3I 4)用七根钢丝捻制的标准型钢绞线 1X7 5)用六根刻痕钢丝和一根光圆中心钢丝捻制的钢绞线 1X7I 6)用七根钢丝捻制又经模拔的钢绞线 (1X7)C 7)用十九根钢丝捻制的1+9+9西鲁式钢绞线 1X19S 8)用十九根钢丝捻制的1+6+6/6瓦林吞式钢绞线 1X19W 4.2 标记 4.2.1 标记内容

无粘结预应力钢棒在桥梁施工中的应用

龙源期刊网 https://www.360docs.net/doc/2916608166.html, 无粘结预应力钢棒在桥梁施工中的应用 作者:李旺 来源:《中国新技术新产品》2016年第09期 摘要:随着经济及交通行业的迅猛发展,预应力钢棒已成为我国预应力钢材中的新品 种。预应力混凝土用钢棒具有高强度、高韧性、低松弛、与混凝土握裹力强,良好的可焊接性等特点,在国内外已应用于高强度预应力混凝土离心管桩、高架桥墩、铁路轨枕及高层建筑、基坑支护、大型预制板等构件,具有十分广阔的市场。但国内外并无完整的公路桥梁无粘结钢棒施工技术工艺,也缺乏相应的施工参考文献。因此本文对无粘结预应力钢棒材料特性及施工工艺上做出详细介绍。 关键词:无粘结预应力钢棒;施工工艺;施工技术 中图分类号:U44 文献标识码:A 近年来,随着我国高速公路网的迅猛发展,预应力技术发展迅速,在预应力混凝土桥梁的设计、结构分析、试验研究、预应力材料及工艺设备、施工工艺等方面日新月异。随之预应力混凝土桥梁病害问题也日渐突出,预应力钢棒凭借自身在结构受力、便于施工等明显优势,定会在短距离直线预应力得到广泛的应用。而目前国内外的设计和施工尚无相应的技术规范和标准,可供借鉴经验的工程实例也不多。在此种情况下,只能靠现场认真细致的施工总结研究,实行动态调整,在确保安全、质量的前提下优化设计和调整施工工艺,来总结出一套相对完整、成熟的工艺方法和施工流程,为后续同类型项目的施工提供参考。 1 无粘结预应力钢棒设计原理及特点 无粘结预应力钢棒原材料为中低碳合金钢,通过冷拔调质工艺得到金相组织为回火索氏体。回火索氏体与索氏体相比较,其析出的碳化物呈球状弥散地分布于基体中,故回火索氏体具有更好的综合机械性能,其延伸率达到7%以上,一般可以做到10%。钢棒采用的调质工艺强度,比精轧螺纹钢筋高,比钢绞线低,延伸率优于前两者。延伸率的提高使其比钢绞线及精轧螺纹钢筋有更强的抗震吸能性。 无粘结预应力混凝土钢棒螺纹锚具组件在混凝土结构短距离的锚固中,解决了现有精轧螺纹钢锚自身强度低,通过增大其截面尺寸以达到锚固载荷要求;也解决了钢绞线夹片回缩量大;造成应力损失大的缺点。 2 无粘结预应力钢棒施工工艺流程及操作要点 2.1 工艺流程 (1)安装梁或板模板;

钢纤维混凝土在道路面层施工中的应用

钢纤维混凝土在道路面层施工中的应用 发表时间:2016-11-15T16:53:32.417Z 来源:《低碳地产》2016年8月第16期作者:常春燕[导读] 钢纤维混凝土是一种将钢纤维掺入普通水泥混凝土中的新型复合材料。 身份证号:13070519740217XXXX 河北省张家口市宣化区 075100 【摘要】钢纤维混凝土是一种将钢纤维掺入普通水泥混凝土中的新型复合材料。普通混凝土路面具有抗冲击性能力差、易产生裂缝并不断发展等缺陷。钢纤维混凝土是在混凝土中掺入钢纤维以改善混凝土性能,有效提高了混凝土的耐久性、抗拉强度、抗弯强度以及抗裂性能等。鉴于此,文章结合钢纤维混凝土的基本力学性能分析,主要针对钢纤维混凝土在道路面层施工中的应用要点进行了分析,以供 参考。 【关键词】钢纤维混凝土;道路面层施工;应用要点 1 导言 近年来,伴随着经济的快速发展,人们的生活水平有了很大的提高,汽车作为一种便利的交通工具,开始进入普通百姓的生活,也使得公路所要承担的交通压力越来越大,人们对于路面的施工质量和使用寿命提出了更加严格的要求。考虑到传统路面采用的是水泥混凝土或者沥青混凝土,使用年限相对较短,甚至实际使用寿命可能仅仅达到设计寿命的一半,影响了公路行业的可持续发展。在这种情况下,钢纤维混凝土路面施工技术得到了普及和应用,在提升路面整体性能方面发挥着积极的作用,得到了公路施工企业的重视。 2 钢纤维混凝土的基本力学性能 2.1抗压强度 在抗压强度方面,钢纤维并不能很好的增加混凝土基体的抗压强度。钢纤维的加入只是略微提高了混凝土的抗压强度,提高幅度并不是很大,在10%左右。石料的最大粒径对钢纤维的长度在一定程度上起着决定性的作用,石料粒径过大或者钢纤维较短会造成钢纤维在混凝土中分布不均,使钢纤维在混凝土中局部结团,间接形成薄弱截面,影响了钢纤维与混凝土基体的粘结性能,反而使钢纤维混凝土的抗压强度有所下降。 2.2耐腐蚀性强 混合杂乱分布在钢纤维混凝土内部的钢纤维只要不让其与空气接触,一般不会发生锈蚀。实验表明,钢纤维在空气、污水、海水中都不容易被锈蚀。当把钢纤维放在海水和污水中5年后,其表面锈蚀程度小于5mm,在钢纤维混凝土表面或者是裂缝处的钢纤维受腐蚀的可能性较大。所以,建筑物会因钢纤维混凝土的耐腐蚀性而延长使用寿命,从而节省资源、能源。钢纤维的耐冻融性、耐热性和抗气蚀性都比较好,物理性能也得到了很大的提高。当在混凝土中掺入1.5%的钢纤维时,即使是对其进行高达150次的冻融操作,抗折和抗压强度也才下降20%。掺有钢纤维的耐火混凝土的抗热性也是极佳的,在极度高温下不会太过膨胀而断裂。所以,钢纤维混凝土的耐腐蚀性要比普通混凝土的抗腐蚀性更为优越。 2.3抗拉强度 在抗拉强度方面,钢纤维的加入对混凝土劈拉强度还是有很明显的加强的。试验表明,钢纤维混凝土的劈裂抗拉强度比普通混凝土要高,且钢纤维掺量提高,劈拉强度也会相应提高,当混凝土中钢纤维掺量在1%~2%时,相应混凝土的28d劈拉强度增加40%~80%,但混凝土的早期劈拉强度与是否加入钢纤维的关系并不大。 2.4抗冲击性能 钢纤维的加入在很大程度上提高了混凝土的抗冲击性能,且在一定掺量范围内,抗冲击性能和钢纤维掺量是成正相关的。钢纤维混凝土具有良好的塑性变形能力,大大改善了普通混凝土性脆的缺陷,即使在冲击裂缝形成以后,钢纤维也能够延缓裂缝的延伸和扩大。在动荷载作用下,抗松散破碎的能力使钢纤维混凝土的耐久性大幅提升,这种情况下的混凝土虽然开裂,但不会立即破碎,基于这种能力钢纤维混凝土特别适用于一些铺面工程中,如:公路路面、桥面铺装、机场跑道等。 3 钢纤维混凝土在道路面层施工中的应用要点 3.1混凝土和钢纤维配合比的科学选择 在钢纤维和混凝土配合比方面,主要的参考依据是路面的厚度、抗弯强度的设计以及钢纤维混凝土的抗折强度设计,在实践使用中主要采用以下公式进行计算:钢纤维和混凝土的配合比=素混凝土的抗折强度值×(1+钢纤维的强度系数×钢纤维的体积率×钢纤维的长度比)。从上述公式可以看出,钢纤维混凝土配合比和素混凝土的水灰配合比以及钢纤维的使用率、相关的浇筑范围以及钢纤维的强度紧密相连,其比例应该通过相关的强度和性能进行确定。 3.2模板的选择 模板应具有一定的强度、稳定性和刚度,允许振动梁在其上面行走振动而不发生变形、倾覆现象。我们选取了钢模板,外侧支护采用圆钢三脚架,模板隔离层采用聚乙烯薄膜,这样既可以方便拆模,又防止混凝土混合料从纵向传力杆孔洞处流出。 3.3钢纤维的投放和搅拌环节 在钢纤维的投放和生产过程中,采用先湿后干的分散式投放方式,防止出现搅拌过程中出现结团现象。在投放过程中,钢纤维应该采用细骨料定量的方式进行搅拌工作,通过分散式振捣的方式将钢纤维混入到混凝土之中。在钢纤维混凝土搅拌的过程中,一般按照先投放砂石再投放钢纤维,在搅拌均匀之后,再进行碎石和水泥的投放工作,通过这样的分级投放工作实现每一个环节的均匀搅拌,防止出现搅拌不均匀的情况。此外,对于搅拌机的选择也具有一定的要求,为了实现最佳的搅拌效果,需要采用双锥反转的方式进行搅拌,以确保最终的搅拌效果。 3.4路面铺筑 钢纤维混凝土路面的铺筑,应符合设计图纸的要求,满足JTGD40-2011《公路水泥混凝土路面设计规范》的要求。对拌和钢纤维混凝土路面进行摊铺时,不仅需要满足相关设备在普通混凝土路面施工中的各类规范,还必须充分考虑一些其他因素:在施工中,使用的机械布料以及摊铺方式必须能够确保钢纤维的均匀分布,保证结构的连续性,在对一块面板进行浇筑与摊铺时,应该避免出现中断的情况;应该通过试铺对布料松铺高度进行确定,而当拌和物的塌落度相同时,相比于普通混凝土路面,松铺高度应该高出10mm左右;拌和物与摊铺方式应该相适应,同时其工作性可以满足相应摊铺工艺下的振捣要求。

预应力混凝土用钢绞线检验操作规程.

预应力混凝土用钢绞线检验操作规程 1 总则 1.0.1 预应力混凝土用钢绞线检验依据标准为《预应力混凝土用钢绞线》(GB/T5224—2003)。为统一山东地区预应力混凝土用钢绞线的检测方法,保证检测精度,制定本规程。 1.0.2 本规程规定了预应力混凝土用钢绞线的分类、技术要求、试验方法等。本规程适用于由冷拉光圆钢丝及刻痕钢丝捻制的用于预应力混凝土结构的钢绞线(以下简称钢绞丝)。 2 术语、符号 2.1 术语 2.1.1 标准型钢绞线 由冷拉光圆钢丝捻制成的钢绞线。 2.1.2 刻痕钢绞线 由刻痕钢丝捻制成的钢绞线。 2.1.3 模拔型钢绞线 捻制后再经冷拔成的钢绞线。 2.1.4 公称直径 钢绞线外接圆直径的名义尺寸。 2.1.5 稳定化处理 为减少应用时的应力松弛,钢绞线在一定张力下进行的短时热处理。 2.2 符号 D——钢绞线直径; n S——钢绞线参考截面积; n R m ——钢绞线抗拉强度; F m ——整根钢绞线的最大力; F p0.2 ——规定非比例延伸力; A gt ——最大力总伸长率; ΔF a——应力范围(两倍应力幅)的等效负荷值; D ——偏斜拉伸系数。 3 分类和标记 3.1 分类与代号 钢绞线按结构分为5类。其代号为: 用两根钢丝捻制的钢绞线1×2 用三根钢丝捻制的钢绞线1×3 用三根刻痕钢丝捻制的钢绞线1×3Ⅰ 用七根钢丝捻制的标准型钢绞线1×7 用七根钢丝捻制又经模拔的钢绞线(1×7)C

3.2 标记 3.2.1 标记内容包含下列内容: 预应力钢绞线,结构代号,公称直径,强度级别,标准号 3.2.2 标记示例 公称直径为15.20mm,强度级别为1860MPa的七根钢丝捻制的标准型钢绞线其标记为:预应力钢绞线1×7-15.20-1860-GB/T5224—2003 4 检验规则 4.1 检查和验收 产品的检查由供方技术监督部门按表4.3.1的规定进行,需方可按本标准进行检查验收。 4.2 组批规则 钢绞线应成批验收,每批钢绞线由同一牌号、同一规格、同一生产工艺捻制的钢绞线组成。每批质量不大于60吨。 4.3 检验项目及取样数量 4.3.1 钢绞线的检验项目及取样数量应符合下表4.3.1的规定。 表4.3.1 供方出厂常规检验项目及取样数量 4.3.2 设备有重大变化及新产品生产、停产后复产时进行检验。 4.4 复验与判定规则 当4.3.1中规定的某一项检验结果不符合本规程规定时,则该盘卷不得交货。并从同一批未经试验的钢绞线盘卷中取双倍数量的试样进行该不合格项目的复验,复验结果即使有一个试样不合格,则整批钢绞线不得交货,或进行逐盘检验合格后交货。供方有权对复验不合格产品进行重新组批提交验收。 5 尺寸、外形、重量及允许偏差 5.1 预应力钢绞线的截面形状如附录A中图1、图2、图3所示。

预应力混凝土管桩的计算

预应力混凝土管桩的计算 C.1预应力混凝土管桩的预应力损失及桩身混凝土有效预压应力值的计算方法,按照现行《混凝土结构设计规范》GB50010的规定计算。根据管桩的生产工艺特点,预应力损失一般考虑管桩中直线预应力钢棒由于锚夹具变形和钢棒内缩引起的预应力损失值ii;预应力钢棒 的应力松驰引起的预应力损失14;管桩混凝土收缩、徐变引起预应 力损失|5。 1、预应力钢筋由于锚夹具变形和钢筋内缩引起的预应力损失值 按下列公式计算: |1= 式中a—张拉端锚具变形和钢筋内缩值(伽); L—单节管桩长度或单根和模长度(mm); Es—预应力钢筋的强性模量(2.0 X 105N/m 2)。 2、预应力钢筋的应力松驰引起的预应力损失值14按下列公式计算: 11=0.025 con 式中con —预应力钢筋张拉控制应力(N/m 2); 0.025 —松驰系数,按低松驰螺旋槽钢棒确定。 3、混凝土收缩、徐变引起的预应力损失值15按下列公式计算: 60+340 opc i f 'u l 5= 1 + 15 式中pc i —管桩横截面上预应力钢棒合力点处的混凝土法向应力 ( pc i = ( con- 11- |4) A P/ A o)

f施加预应力时的混凝土立方体抗压强度; —管桩横截面上预应力钢筋的配筋率。 4、管桩横截面上混凝土有效预压力值应按下式计算: pc= ( con- J A p/A o 式中:con—预应力钢筋张拉控制应力(一般取con =0.70f ptk) 1—钢筋的总预应力损失值(1=(11+ 14+ 15) A p—管桩横截面上预应力钢筋总截面积; A o—管桩换算横截面面积。 C.2管桩在纯弯状态下的抗弯承载力设计值和抗弯承载力极限值分别 按下规定计算: 1、管桩的抗弯承载力设计值按下式计算 Sn兀a Sn n a Sn兀 a M = a i f c A(r i+r2)—+ f Py A p r p (f '- po)A p「p 2 n n n 式中:f py A p a= a f c A+f py A p+1.5(f py- po)A p a t =1-1.5 a A—管桩有效横截面面积(m^); A—预应力钢棒的总横截面面积(mm ; 「1、「2—管桩截面的内、外半径(mr); 九一纵向预应力钢筋重心所在圆周的半径(mr); a—受压区混凝土截面面积与全截面面积的比值; a t—纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值, 当a> 2/3 时,取a t =0 a 1—受压力混凝土矩形应力图的应力值与混凝土轴心抗压强

预应力混凝土用钢绞线

预应力混凝土用钢绞线 1 范围 本标准规定了预应力混凝土用钢绞线的分类、尺寸呢、外形、质量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书等。 本标准适用于由冷拉光园钢丝及刻痕钢丝捻制的用于预应力混凝土结构的钢绞线(以下简称钢绞线)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 228 金属材料室温拉伸试验方法 GB/T 5223 预应力混凝土用钢丝 GB/T 10120—1996 金属应力松弛试验方法 GB/T 175005 钢及钢产品交货一般技术要求 YB/T 146 预应力钢丝及钢绞线用热轧盘条 YB/T 170 制丝用非合金钢盘条 3 术语和定义 下列术语和定义适用于本标准 3.1 标准型钢绞线standard strand 由冷拉光园钢丝捻制成的钢绞线。 3.2 刻痕钢绞线indented strand 由刻痕钢丝捻制成的钢绞线。 3.3 模拔型钢绞线compact strand 捻制后再经冷拔成的钢绞线。 3.4 公称直径nominal diameter 钢绞线外接圆直径的名义尺寸。 3.5 稳定化处理stabilizing treatment 为减少应用时的应力松弛,钢绞线在一定张力下进行的短时热处理。 4 分类和标记 4.1 分类与代号 钢绞线按结构分为5类,其代号为: 用两根钢丝捻制的钢绞线1×2 用三根钢丝捻制的钢绞线1×3 用三根刻痕钢丝捻制的钢绞线1×3 I 用七根钢丝捻制的标准型钢绞线1×7 用七根钢丝捻制又经过模拔的钢绞线(1×7)C 4.2 标记

谈公路桥梁钢纤维混凝土的性能

谈公路桥梁钢纤维混凝土的性能 摘要:采用复合路面结构是充分发挥钢纤维混凝土路用性能和降低工程造价的有效途径。关键词:钢纤维;混凝土;施工技术;加固 1钢纤维和钢纤维混凝土的性能分析 1.1钢纤维基本性能 钢纤维按其制造方式分为切断钢纤维、剪切钢纤维、切削钢纤维和熔抽钢纤维4种。 切断钢纤维抗拉强度高,但与水泥砂浆的界面粘结性较差。对钢纤维表面进行变形处理,制成表面有刻痕的、末端带钩的、波纹形的钢纤维,或者圆截面与扁平截面交替的呈规律性变化的钢纤维可以改善其力学性能。当用废钢丝绳切断而成时,必须进行除油污和除锈处理。 剪切钢纤维由剪切冷轧薄板制得,厚0.2~0.5mm,宽0.25~0.9mm,抗拉强度为450~800MPa,与水泥砂浆的粘结性比切断钢纤维好。 切削钢纤维由旋转的铣刀切削软钢锭或厚钢板制得,强度比原材料有较大提高,截面呈三角形,与水泥混凝土的粘结较好。熔抽钢纤维由熔融的钢水甩制而成,纤维强度因熔钢成分与热处理条件而异,表面不规则且有一层强度很低的氧化层。氧化层的存在降低了钢纤维与混凝土的粘结强度。钢纤维的弹性模量与抗拉强度都比较高,大约为水泥基材的5倍以上。同时钢纤维也可以制成各种变截面形状,以增加与水泥基材之间的握裹力。1.2钢纤维增强混凝土强度机理 钢纤维在混凝土中的主要作用,在于限制外力作用下基体中裂缝的扩展。在受荷(拉、弯)初期,水泥基料与钢纤维共同承受外力,而前者是外力的主要承受者:当基料发生开裂后,横跨裂缝的钢纤维成为外力的主要承受者。若钢纤维体积掺量超过某一临界值,整个复合材料可继续承受较高的荷载,并产生较大的变形,直到钢纤维被拉断或钢纤维从基料中被拨出,以至复合材料破坏。 1.3钢纤维混凝土的基本性能

相关文档
最新文档