高中物理选修电磁感应中的力学问题
电磁感应中的力学问题

典例1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为B的绝缘斜面上,两导轨间距为L, M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图。
(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及加速度的大小。
(3)求在下滑过程中,ab杆可以达到的最大速度。
典例2、如图所示,固定在同一水平面内的两根长直金属导轨的间距为L,其右端接有阻值为R的电阻,整个装置处在竖直向上、磁感应强度大小为B的匀强磁场中,一质量为m的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为w杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨向左运动,当杆运动的距离为d 时,速度恰好达到最大(杆始终与导轨保持垂直) 不计,重力加速度为g。
求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量。
b典例3、如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。
一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。
导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。
整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。
求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流经电流表电流的最大值。
1如图,两平行金属导轨位于同一水平面上,相距I,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下•一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
电磁感应中的力学问题

电磁感应中的力学问题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力. 本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力. [解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =StB∆∆+B lv 而ktBtt t B t B ktB =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,REI=作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ① 杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③ 杆受到的安培力为F 安=IBL ④ 根据牛顿第二定律,有F -F 安=ma ⑤联立以上各式,得at Rl B ma F 22= ⑥由图线上各点代入⑥式,可解得 a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t 由法拉第电磁感应定律,回路中的感应电动势 E =B △S/△t =B ι(νl 一ν2) 回路中的电流 i =E /2 R杆甲的运动方程 F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2 联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2 ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s 练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( ).R lvB A 2.R vBlB R lvB C 2 RvBl D 2图1图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( ). A·线圈可能一直做匀速运动 B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( ).图3A B CD4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( ).图7A 、2222/)(L B fR v L B v m -= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m+= 答案: 1 .A 2. D 3. A 4. D 5.B 6.BC 7. C8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2) (1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大? (3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动). (2)感应电动势E —vBL ,感应电流I=E/R安培力RLvB BIL F m22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RLvB BIL F +==22)(22f F l B Rv -=由图线可以得到直线的斜率k=2)(12T kLR B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlvR E I ==杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R vL B g a 22sin -=θ(3)当RvL B mg 22sin =θ时,ab 杆达到最大速度mAX V22sin LB mgR V m θ=10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问: (1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f r R v d B f BId F m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m))((--==回路中产生的感应电流为:BdfF r R E I -=+=则R 中消耗的电功率为:2222)(dB Rf F R I R P -== (3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A-== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。
电磁感应中的动力学和能量问题

专题9・4电磁感应中的动力学和能量问题一、电磁感应与力和运动1.安培力的大小EB2l2v由感应电动势E=Blv、感应电流/=万和安培力公式F=BIl得F=~R~.2.安培力的方向判断(1)对导体切割磁感线运动,先用右手定则确定感应电流的方向,再用左手定则确定安培力的方向.(2)根据安培力阻碍导体和磁场的相对运动判断.3.电磁感应中的力和运动电磁感应与力学问题的综合,涉及两大研究对象:电学对象与力学对象.联系两大研究对象的桥梁是磁场对感应电流的安培力,其大小与方向的变化,直接导致两大研究对象的状态改变.二、电磁感应与能量守恒1.能量转化导体切割磁感线或磁通量发生变化,在回路中产生感应电流,这个过程中机械能或其他形式的能转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或内能.因此,电磁感应过程中总是伴随着能量的转化.2.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.高频考点一电磁感应与力和运动1.受力分析与运动分析对电磁感应现象中的力学问题,除了要作好受力情况和运动情况的动态分析外,还需要注意导体受到的安培力随运动速度变化的特点,速度变化,弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化.2.应用牛顿运动定律和运动学规律解答电磁感应问题的基本思路(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流.(3)分析研究导体的受力情况(包含安培力,用左手定则确定其方向).(4)根据牛顿第二定律和运动学规律或平衡条件列方程求解.例1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3么导轨平面与水平面的夹角为6,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直•质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为人,其他部分的电阻均不计,重力加速度为g.求:(1)导体棒与涂层间的动摩擦因数“;(2)导体棒匀速运动的速度大小V;(3)整个运动过程中,电阻产生的焦耳热0.【变式探究】如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO'平行,线框平面与磁场方向垂直.设OO'下方磁场区域足够大,不计空B.B= 12mR L叮Ft C.v=^0-°D.v=2F-0m【举一反三】(多选)如图甲所示,MN左侧有一垂直纸面向里的匀强磁场,现将一边长为L、质量为加、电阻为R的正方形金属线框置于该磁场中,使线框平面与磁场方向垂直,且bc 边与磁场边界MN重合.当t=0时,对线框施加一水平拉力F,使线框由静止开始向右做匀加速直线运动;当t=t0时,线框的ad边与磁场边界MN重合.图乙为拉力F随时间t变高频考点二电磁感应与能量守恒1.电磁感应中的几个功能关系(1)导体克服安培力做的功等于产生的电能W安=£电安电(2)若电路为纯电阻电路,则电磁感应中产生的电能又完全转化为电路的焦耳热Q=E电电(3)导体克服安培力做的功等于消耗的机械能W安=左机械能;(4)综合起来可以看出“电路的焦耳热”等于“电磁感应中产生的电能”等于“机械能的减小”,即Q=E*=E机械能这里还要特别明确“能量转化的层次性”,即E机械能f E电-Q,其中电机械能.机械能电第一次转化是通过克服安培力做功W、来实现,第二次转化是通过感应电流流经电阻转化为安焦耳热来实现.2.用能量方法解决电磁感应问题的一般步骤(1)用法拉第电磁感应定律和楞次定律确定电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的关系式.例2、半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m 且化的图线.由以上条件可知,磁场的磁感应强度B的大小及t0时刻线框的速率v为()质量分布均匀的直导体棒AB置于圆导轨上面.BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水XXXxxxX XX XXX平外力作用下以角速度①绕o 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为〃,导体棒和导轨的电阻均可忽略.重力加速度大小为g ,求:(1) 通过电阻R 的感应电流的方向和大小;(2) 外力的功率.1【变式探究】(多选)如图所示,固定在同一水平面上的两平行金属导轨AB 、CD ,两端接有阻值相同的两个定值电阻.质量为m 的导体棒垂直放在导轨上,轻弹簧左端固定,右端连接导体棒,整个装置处于竖直向下的匀强磁场中.当导体棒静止在00位置时,弹簧处于原 长状态.此时给导体棒一个水平向右的初速度v 0,它能向右运动的最远距离为d ,且能再次经过00位置.已知导体棒所受的摩擦力大小恒为/,导体棒向右运动过程中左侧电阻产生B .弹簧的弹性势能最大为2mv &—20—fdC •导体棒再次回到00'位置时的动能等于1mv 0—40—2fdD .导体棒再次回到00'位置时的动能大于2mv g —40—2fd 的热量为0,不计导轨和导体棒的电阻.贝%)【举一反三】如图甲所示,在虚线mn的上方存在垂直纸面向里的匀强磁场,mn的下方存在竖直向下的匀强磁场,mn上下两侧磁场的磁感应强度大小相等.将两根足够长的直导轨平行放置在磁场中,且贯穿虚线的上下两侧.取两根等长的金属棒a、b,两端分别套上金属环,然后将两金属棒套在长直导轨上,其中a棒置于虚线上侧,b棒置于虚线下侧.从t=0时刻开始在a棒上加一竖直向上的外力F,使a棒由静止开始向上做匀加速直线运动,外力随时间的变化规律如图乙所示,同时b棒在t=0时刻由静止释放.已知两导轨的间距为L=1.5m,a、b棒的质量分别为m y=1kg、m2=0.27kg,两金属棒的总电阻为R=1.8Q,忽略导轨的电阻,b棒与导轨的动摩擦因数为“=0.75,不计a棒与导轨之间的摩擦,取g甲乙(1)求虚线上下两侧的磁感应强度大小以及a棒匀加速运动的加速度大小;(2)如果在0〜2s的时间内外力F对a棒做功为40J,则该过程中整个电路产生的焦耳热为多少?(3)经过多长时间b棒的速度最大?高频考点三、微元法在电磁学中的应用微元法是将研究对象无限细分,从中抽取出微小单元进行研究,找出被研究对象变化规律,由于这些微元遵循的规律相同,再将这些微元进行必要的数学运算(累计求和),从而顺利解决问题.用该方法可以将一些复杂的物理过程,用我们熟悉的规律加以解决,是物理学中常用的思想方法之一.例3、如图所示,两条平行导轨所在平面与水平地面的夹角为0,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面向下.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为“,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系(2)金属棒的速度大小随时间变化的关系.护鮎—真题练习泮一1.【2016・全国卷I】如图1-,两固定的绝缘斜面倾角均为0,上沿相连.两细金属棒刃(仅标出a端)和c〃(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为人,两金属棒与斜面间的动摩擦因数均为“,重力加速度大小为g,已知金属棒ab匀速下滑.求:()(1)作用在金属棒ab上的安培力的大小(2)金属棒运动速度的大小.图1-2.【2016・全国卷II】如图1-所示,水平面(纸面)内间距为/的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为〃•重力加速度大小为g.求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.图1-3.【2016•浙江卷】小明设计的电磁健身器的简化装置如图1-10所示,两根平行金属导轨相距l=0.50m,倾角0=53°,导轨上端串接一个R=0.05Q的电阻.在导轨间长d=0.56m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0T.质量m=4.0kg的金属棒CD 水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距5=0.24m.—位健身者用恒力F=80N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10m/s2,sin53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)•求:(1)CD棒进入磁场时速度v的大小;(2)CD棒进入磁场时所受的安培力F A的大小;(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.4.【2016•全国卷III】如图1-所示,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为B=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过劇,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.图1-5.(2013・天津理综・3)如图2所示,纸面内有一矩形导体闭合线框abed,ab边长大于be边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q],通过线框导体横截面的电荷量为q1;第二次be边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,贝%)A.0>Q2,q pC.Q1=Q2,qfB.Q1>Q2,q1>q2D.Q1=Q2,q>qi图2。
高考物理小一轮复习(假期之友)电磁感中的力学问题

拾躲市安息阳光实验学校2011江苏高考物理小一轮复习(假期之友)--电磁感应中的力学问题【知识梳理】1.电磁感应与力学的联系在电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用。
因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学的有关规律,要将电磁学和力学知识综合起来应用。
电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.【典型例题】例1:下图中a1b1c1d1 和a2b2c2d2 为同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的a1b1段与a2b2段是竖直的,距离为l1,c1d1与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连接的金属杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆x1y1上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
【分析与解】本题是电磁感应现象与物体的平衡相结合的问题,分析中应着重于两个方面,一是分析发生电磁感应回路的结构并计算其电流;二是分析相关物体的受力情况,并根据平衡条件建立方程。
设杆向上运动的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.由法拉第电磁感应定律,回路中的感应电动势的大小E = B(l2-l1)v①回路中的电流REI=②电流沿顺时针方向.两金属杆都要受到安培力作用,作用于杆x1y1的安培力为f1 = B l1I③方向向上,作用于杆x2y2的安培力f2 = B l2I④方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g + f1-f2=0 ⑤解以上各式,得)()(1221llBgmmFI-+-=⑥RllBgmmFv212221)()(-+-=⑦作用于两杆的重力的功率的大小P = (m1+m2)gv⑧电阻上的热功率Q =I2R⑨由⑥、⑦、⑧、⑨式,可得gmmRllBgmmFP)()()(21212221+-+-=,RllBgmmFQ21221])()([-+-=。
12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
电磁感应中的力学问题2015最新

电磁感应中的力学问题 姓名:1、闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比 ( )A 、磁通量B 、磁感应强度C 、磁通量的变化率D 、磁通量的变化量2、穿过一个电阻为R=1Ω的单匝闭合线圈的磁通量始终每秒钟均匀的减少2Wb ,则:( )A 、线圈中的感应电动势每秒钟减少2VB 、线圈中的感应电动势是2VC 、线圈中的感应电流每秒钟减少2AD 、线圈中的电流是2A3.下列几种说法中正确的是: ( )A 、线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大B 、穿过线圈的磁通量越大,线圈中的感应电动势越大C 、线圈放在磁场越强的位置,线圈中的感应电动势越大D 、线圈中的磁通量变化越快,线圈中产生的感应电动势越大4、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab 以水平初速度v 0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将 ( )A.越来越大B.越来越小C.保持不变D.无法确定5、在图6中,闭合矩形线框abcd 位于磁感应强度为B 的匀强磁场中,ad 边位于磁场边缘,线框平面与磁场垂直,ab 、ad 边长分别用L 1、L 2表示,若把线圈沿v 方向匀速拉出磁场所用时间为△t ,则通过线框导线截面的电量是: ( )A 、12BL L R t ∆B 、12BL L R C 、12BL L t ∆ D 、12BL L6、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大7、如图所示,金属导轨MN 、PQ 之间的距离L=0.2m,导轨左端所接的电阻R=1Ω,金属棒ab 可 沿导轨滑动,匀强磁场的磁感应强度为B=0.5T, ab 在外力作用下以V=5m/s 的速度向右匀速滑 动,求金属棒所受外力的大小。
电磁感应中的动力学和能量问题

电磁感应中的动力学和能量问题一、电磁感应中的动力学问题1.所用知识及规律(3)牛顿第二定律及功能关系2.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.(2)导体的非平衡状态——加速度不为零.3.两大研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为感应电流产生安培力),而感应电流I和导体棒的速度v则是联系这两大对象的纽带例1:如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab 边的边长l1=1 m,bc边的边长l2=0.6 m,线框的质量m=1 kg,电阻R=0.1 Ω,线框通过细线与重物相连,重物质量M=2 kg,斜面上ef(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5 T,如果线框从静止开始运动,进入磁场的最初一段时间做匀速运动,ef和gh的距离s=11.4 m,(取g=10 m/s2),求:(1)线框进入磁场前重物的加速度;(2)线框进入磁场时匀速运动的速度v;(3)ab边由静止开始到运动到gh处所用的时间t;(4)ab边运动到gh处的速度大小及在线框由静止开始运动到gh处的整个过程中产生的焦耳热.反思总结分析电磁感应中动力学问题的基本思路(顺序):即学即练1:如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端连接一个定值电阻R,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F恒定,经时间t1后速度为v,加速度为a1,最终以速度2v做匀速运动;若保持拉力的功率P恒定,棒由静止经时间t2后速度为v,加速度为a2,最终也以速度2v做匀速运动,则( ).A.t2=t1 B.t1>t2C.a2=2a1 D.a2=5a1即学即练2:如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存有匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨道间距为L =2 m,重力加速度g取10 m/s2,轨道充足长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.二、电磁感应中的能量问题1.电磁感应中的能量转化2.求解焦耳热Q 的三种方法例2、如图所示,充足长的光滑平行金属导轨MN 、PQ 竖直放置,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,重力加速度g 取10 m/s2.试求:(1)当t =0.7 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 在开始运动的0.7 s 内,电阻R 上产生的焦耳热;(3)从开始运动到t =0.4 s 的时间内,通过金属棒ab 的电荷量.即时训练3:如图,充足长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( ).A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ即时训练4:某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd 的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强时间t (s) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 下滑距离s (m) 0 0.1 0.3 0.7 1.4 2.1 2.8 3.5度大小均为B,方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)电磁感应力学问题中,要抓好受力分析.运动情况的动 态分析.导体受力运动产生感应电动势→感应电流→通电 导体受安培力→合外力变化→加速度变化→速度变化→ 周而复始地循环,循环结束时,加速度等于零,导体达稳定 运动状态,抓住a=0时,速度v达最大值特点.
解题要点:
电磁感应中产生的感应电流在磁场中 将受到安培力的作用,从而影响导体棒 (或线圈)的受力情况和运动情况。解决 这类力电综合问题,要将电学、力学中的 有关知识综合起来应用。常用的规律有: 楞次定律、法拉第电磁感应定律、左右手 定则、安培力公式及牛顿运动定律、动量 定理、动量守恒定律。一般可按以下步骤 进行。
磁感应强度大小为B。开始时,导体棒静止于磁场区域的右端,
当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受 到水平向左、大小为 f 的恒定阻力,并很快达到恒定速度,此时
导体棒仍处于磁场区域内。
(1)求导体棒所达到的恒定速度v2; (2)为使导体棒能随磁场运动,阻力最大
不能超过多少?
(3)导体棒以恒定速度运动时,单位时间
FN1 F
a B 2 L2v1
mg AD
2R
cd杆水平方向弹力与安培力平衡:FN2
B 2 L2v1 2R
。
竖直方向匀速运动,合力也为零: FN2
f2 F安
mg B 2 L2v1
2R
于是得:
=
2Rmg B2 L2v1
mg
2.如图所示,两平行金属导轨固定在水平面上,匀 强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨 构成闭合回路且都可沿导轨无摩擦滑动。ab、cd 两棒 的质量之比为2∶1。用一沿导轨方向的恒力F水平向右 拉cd 棒,经过足够长时间以后( )
3. 运用规律:根据电学规律、力学规律列方程求解。
1. 两根相距为L的足够长的金属直角导轨如图所示放置,
它们各有一边在同一水平面内,另一边垂直于水平面。质量均 为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导 轨之间的动摩擦因数为 μ,导轨电阻不计,回路总电阻为2R。 整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场 中。当ab杆在平行于水平导轨的拉力F作用下以速度v1沿导轨 匀速运动时,cd杆正好以速率向下v2匀速运动。重力加速度为
mg h B
落地速度为:v
2ah
2mgh m CB 2l 2
6.(07上海)如图(a)所示,光滑的平行长直金属导轨置于水
平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导
体棒垂直跨接在导轨上。导轨和导体棒的电阻均不计,且接触良
好。在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,
后作匀速运动。
匀速时速度达到最大,最大速度满足:B2L2vm mg
R
得:
vm
mgR B 2 L2
⑵ 经过时间t,ab的速度为:v = a t
t
时刻的安培力:F安
BIL=B
BLv R
L
B 2 L2a R
t
由牛顿第二定律:F+mg-F安= ma
解之得:F m(a g) B2 L2a t
m1、m2和R1 、 R2,两杆与导轨接触良好,与导轨间的动 摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v0 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导
轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做
功的功率。
M2
1N
v0
P
Q
解答 设杆2的运动速度为v,两杆运动时回路中产
生的感应电动势 :E=Bl(v0-v)
x0
做匀速直线运动。
解答
(1)电动势为:E=BLv
E 电流为: I= R r
匀速运动时,外力与安培力平衡:F=B0IL=
B02 L2v Rr
(2)
由法拉第电磁感应定律得:E
t
B t
Lx0
kLx0
静止时水平外力与安培力平衡:
F
BIL
BLv Rr
kx0 L2 Rr
(B0
电磁感应现象 中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用, 电磁感应问题往往和力学问题联系在一起,基本解题 方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的 大小和方向. ②求回路中电流强度. ③分析研究导体受力情况(包括安培力.用左手定则确 定其方向. ④列动力学方程或平衡方程求解.
g。以下说法正确的是( )
A、ab杆所受拉力F的大小为 μmg+ B 2 L2v1 2R
B、cd杆所受摩擦力为零
C、回路中的电流为 BL(v1 v2 ) 2R
D、μ与v1大小的关系为
= 2Rmg
B 2 L2v1
解答 由于cd不切割磁感线,故电路中的电动势为
BLv1,电流为:
BLv1 2R
ab杆、cd杆的受力分析如图。 F安 f1
内克服阻力所做的功和电路中消耗的电功率
各为多大?
(4)若t=0时磁场由静止开始水平向右做
(b)
匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运
动,其v-t关系如图(b)所示,已知在时刻t导体棒瞬时速度大小
为vt,求导体棒做匀加速直线运动时的加速度大小。
解答
(1)导体棒的感应电动势为:E=BL(v1-v2),
导体棒作匀速运动时水平外力与安培力平衡:
F BIL BLE (B0 kt)[( B0 kt)v k(x0 vt)]L2
Rr
Rr
5.如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端 接有一个电容器 , 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度 为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab由静止下 滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属 棒做什么运动?棒落地时的速度为多大?
kt)
(3)任意时刻 t 导体棒的速度为:v=a t
由牛顿第二定律得: F-BIL=ma·
于是水平力为: F BIL ma B02 L2 at ma Rr
(4) 由法拉第电磁感应定律得:
E
t
BLv kL(x0
vt)
(B0
kt)Lv kL(x0
kt)
(1)磁感应强度为B=B0 保持恒定,导体棒以速度v向右做匀速直 线运动;
(2)磁感应强度为B=B0+kt 随时间 t均匀增强,导体棒保持静止;
(3)磁感应强度为B=B0保持恒定,
B
导体棒由静止始以加速度 a 向右做
匀加速直线运动;
L
F
(4)磁感应强度为B=B0+kt 随时
间 t 均匀增强,导体棒以速度v向右
1. 确定对象:明确产生感应电动势的是哪一根(两 根)导体棒或是哪一个线圈。
2. 分析情况:分析研究对象的受力情况:一共受几 个力,哪些是恒力,哪些是变力,画出受力图。分析研 究对象的运动情况:初始状态怎样,作什么运动,终了 状态如何。此类问题中力的变化与运动的变化往往交错 在一起。可以从感应电动势开始分析:感应电动势→感 应电流→安培力→合外力变化→加速度变化→速度变化 →感应电动势变化→……周而复始地循环,循环结束时, 达到稳定状态(静止、匀速、匀变速)。
统达稳定状态。
对整体有:F= (2m+m) a
C
对ab棒有:F安=2ma
得ab棒所受安培力为:F安=
2 3
F
cd棒所受安培力与ab棒所受安培力大小相等。
由于开始时cd棒的加速度大于ab棒的加速度, cd棒的速度必始终大于ab棒的速度,因此两棒间 距离不断增大。
3. 如图所示,两根竖直的平行光滑导轨MN、PQ, 相距为L。在M与P之间接有定值电阻R。金属棒ab的质 量为m,水平搭在导轨上,且与导轨接触良好。整个装 置放在水平匀强磁场中,磁感应强度为B。金属棒和导 轨电阻不计,导轨足够长。
导体棒所受安培力为: F BIL B2 L2 (v1 v2 )
R
速度恒定时安培力与阻力平衡:B2 L2 (v1 v2 )=f
R
可得导体棒所达到的恒定速度:v2
v1
fR B 2 L2
(2)导体棒的最大速度为v1 ,此时安培力达最大:
Fm
BIL
B 2 L2v1 R
所以阻力最大不能超过:f m
(1)现把金属棒ab锁定在导轨的左端,如图甲,对cd施加与 导轨平行的水平向右的恒力F,使金属棒cd向右沿导轨运动,当 金属棒cd的运动状态稳定时,金属棒cd的运动速度是多大?
作用于杆的安培力: F =B l i
v
解得: F= 3k2 l 2 t / 2r0 ,
代入数据解得: F =1.44×10 -3 N
LP l
Q
﹡9.两根水平平行固定的光滑金属导轨宽为L,足够长,
在其上放置两根长也为L且与导轨垂直的金属棒ab和cd,它们的 质量分别为2m、m,电阻阻值均为R,金属导轨及导线的电阻均 可忽略不计,整个装置处在磁感应强度大小为B、方向竖直向下 的匀强磁场中.
B 2 L2v1 R
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做
的功为:
P棒=f v2
f(v1
fR ) B 2 L2
电路中消耗的电功率:
P电=
E2 R
B 2 L2 (v1 v2 )2 = f 2 R
R
B 2 L2
(4)导体棒要做匀加速运动,必有v1-v2为常数,由牛顿 第二定律 可得: B 2 L2 (v1 v2 ) -f=ma