专题06 抛物线上的点到定点与焦点(或准线)距离之差的最值定稿-高中数学破题致胜微方法(抛物线上的点到定点

合集下载

高中数学解析几何中的焦点与准线问

高中数学解析几何中的焦点与准线问

高中数学解析几何中的焦点与准线问高中数学解析几何中的焦点与准线问题在高中数学的解析几何领域,焦点与准线是两个极为重要的概念。

它们不仅是圆锥曲线(椭圆、双曲线、抛物线)的核心要素,也是解决众多相关问题的关键所在。

首先,让我们来了解一下什么是焦点和准线。

焦点,简单来说,就是圆锥曲线上一个特殊的点,它具有特定的几何性质。

对于椭圆,两个焦点的位置决定了椭圆的形状和大小;对于双曲线,两个焦点的距离与双曲线的形态密切相关;而对于抛物线,焦点则位于对称轴上。

准线,则是与焦点相对应的一条直线。

在圆锥曲线中,动点到焦点的距离与动点到准线的距离之比是一个定值,这个定值就是离心率。

以椭圆为例,假设椭圆的标准方程为\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a >b >0\)),其焦点在\(x\)轴上,焦点坐标为\((\pm c, 0)\),其中\(c^2 = a^2 b^2\)。

准线方程为\(x =\pm \frac{a^2}{c}\)。

在解决椭圆相关的问题时,焦点和准线常常能发挥重要作用。

比如,已知椭圆上一点到焦点的距离,求该点到准线的距离,就可以利用上述的距离比例关系。

再来看双曲线。

双曲线的标准方程分为两种情况:焦点在\(x\)轴上时,方程为\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\);焦点在\(y\)轴上时,方程为\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。

同样地,双曲线也有焦点和准线,并且通过焦点和准线的性质,可以解决很多与双曲线相关的距离、最值等问题。

抛物线是一种特殊的圆锥曲线,其标准方程有多种形式。

例如,当抛物线开口向右时,方程为\(y^2 = 2px\)(\(p > 0\)),焦点坐标为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。

在实际解题过程中,焦点和准线的应用非常广泛。

高中数学抛物线最值问题精品

高中数学抛物线最值问题精品

抛物线求最值问题(第一类)1.已知抛物线和一条直线,求抛物线上的一点到直线与(y 轴、准线、焦点)距离之和的最小值问题。

此类题常用方法转化为求焦点到直线的距离。

例题已知抛物线方程为x y 42=,直线l 的方程为04=+-y x ,在抛物线上有一动点P 到y 轴的距离为d1到直线l 的距离为d2,则d12的最小值为多少? 分析:如图点P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线4=0的垂线,此时d12最小,依据抛物线方程求得F ,进而利用点到直线的距离公式求得d12的最小值.解:如图点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1.过焦点F 作直线4=0的垂线,此时d122-1最小,∵F (1,0),则2,则d12的最小值为.抛物线求最值问题(其次类)2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差肯定值的最值问题。

此类题常用方法转化为三点共线或者顶点到直线问题。

例题已知点P在抛物线y2=4x上,则点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.⎪⎭⎫⎝⎛-1,41B.⎪⎭⎫⎝⎛1,41C.(1,2)D.(1,-2)分析:先推断点Q与抛物线的位置,即点Q在抛物线内,再由点P到抛物线焦点距离等于点P到抛物线准线距离,依据图象知最小值在M,P,Q三点共线时取得,可得到答案.解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图,故最小值在M,P,Q三点共线时取得,此时P,Q的纵坐标都是-1,抛物线求最值问题(第三类)3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。

此类题常用方法:①设点转化成二次函数问题;②求导数,让抛物线上点的切线斜率等于直线斜率。

高三抛物线知识点归类

高三抛物线知识点归类

高三抛物线知识点归类抛物线是数学中的一个重要概念,也是高中数学课程中的重点内容之一。

在高三阶段,学生需要全面掌握抛物线的相关知识,因此本文将对高三抛物线知识点进行归类,以帮助学生更好地理解和应用。

一、基本概念1. 定义:抛物线是平面上到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹。

2. 轴线:抛物线的对称轴,垂直于准线并通过焦点。

3. 焦点:与抛物线上的任意一点距离相等的定点。

4. 准线:与抛物线上的任意一点距离相等的定直线,其中准线和抛物线的焦点不重合。

二、方程与图像1. 一般形式方程:y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。

2. 顶点坐标:抛物线的最高(或最低)点,坐标为(h, k),其中h为顶点的横坐标,k为顶点的纵坐标。

3. 对称轴方程:x = h,是抛物线的对称轴,与抛物线相交于顶点。

4. 开口方向:由二次系数a决定,若a > 0,则抛物线开口朝上;若a < 0,则抛物线开口朝下。

5. 图像特征:抛物线关于对称轴对称,图像左右对称。

三、性质与特点1. 焦点与准线距离的关系:抛物线上任意一点P与焦点F的距离等于P到准线的距离。

2. 焦准焦定性质:过抛物线焦点F的直线与抛物线相交于对称点P',且P'也在这条直线上的垂线上,则P'为抛物线上该点P的对称点。

3. 切线与法线关系:抛物线上任意一点P处的切线与过该点的法线垂直。

4. 焦点坐标与相关系数的关系:焦点坐标为(-b/2a, 1-Δ/4a),其中Δ为方程的判别式。

5. 最值点:抛物线的最高(或最低)点即为顶点,最值点的纵坐标等于抛物线函数的值域的下(或上)界。

四、应用1. 抛物线的平移与旋转:通过对抛物线的平移和旋转操作,可以得到不同位置和形状的抛物线函数。

2. 抛物线的最优问题:在一定约束条件下,求解抛物线上的最值点,可以用于解决最小二乘法、优化问题等。

3. 物理应用:抛物线在物理学中有广泛的应用,如炮弹的抛物线轨迹、摆锤的运动、光的反射等。

抛物线知识点汇总及考点例题

抛物线知识点汇总及考点例题

抛物线姓名:___________ 班级:________________ 得分:________________知识点回顾:1、定义:把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做 ,点F 叫做抛物线的 ,直线l 叫做抛物线的 。

2、椭圆的简单几何性质3、抛物线焦点弦性质直线过抛物线px y 22=的焦点与抛物线交于()()2211,,,y x B y x A 两点(1)221221,4p y y p x x -== (2))(sin 2221的倾斜角为直线AB p p x x AB αα=++= (3)PFB FA 211=+ (4)以弦AB 为直径的圆与准线相切 考点一: 定义和标准方程[例1]设P 是抛物线y 2=4x 上的一个动点.(1) 求点P 到点A (-1,1) 的距离与点P 到直线x =-1的距离之和的最小值; (2) 若B (3,2),求 |PB |+|PF | 的最小值.练习1:已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.归纳:运用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.“看到准线想到焦点,看到焦点想到准线”。

考点二: 抛物线性质[例2] (2013·四川高考)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是_____________.练习1:抛物线214y x =-的焦点坐标是( ). A 1016⎛⎫ ⎪⎝⎭, B 1016⎛⎫-⎪⎝⎭, C (01)-,D (10)-, 练习2:抛物线上一点到直线的距离最短的点的坐标是 ( )A (1,1)B .() C . D .(2,4)归纳(1)关键:利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.(2)技巧:要结合图形分析,灵活运用平面几何的性质以图助解. 考点三: 抛物线与直线[例3] (2012·福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py ( p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.2x y =042=--y x 41,21)49,23(练习1:已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C 两点.当直线l 的斜率是12时, =4 . (1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.课后练习:一、选择题(本大题共10小题,每小题5分,共50分) 1、如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2、圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( )A .x 2+ y 2-x -2 y -=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0D .x 2+ y 2-x -2 y +=0 3、一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .mB . 2mC .4.5mD .9m4、平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是( )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x5、抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是 ( ) A . y 2=-2x B . y 2=-4x C . y 2=2x D . y 2=-4x 或y 2=-36x6、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( ) A .8B .10C .6D .47、把与抛物线y 2=4x 关于原点对称的曲线按向量a 平移,所得的曲线的方程是( )A .B .C .D .8、过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有 ( ) A .0条 B .1条 C .2条 D .3条9、过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则等于( ) A .2aB .C .4aD .414166)3,2(-=)2(4)3(2--=-x y )2(4)3(2+-=-x y )2(4)3(2--=+x y )2(4)3(2+-=+x y qp 11+a21a4二、解答题10、过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明: ·<2p 2; (2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程.11、(2013·广东高考)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322,设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.12、已知直线y =-2上有一个动点Q ,过点Q 作直线l 1垂直于x 轴,动点P 在l 1上,且满足OP ⊥OQ (O 为坐标原点),记点P 的轨迹为C .(1)求曲线C 的方程;(2)若直线l 2是曲线C 的一条切线,当点(0,2)到直线l 2的距离最短时,求直线l 2的方程.。

抛物线上一点到两定点距离和最小值问题

抛物线上一点到两定点距离和最小值问题

抛物线上一点到两定点距离和最小值问题GAO KAO DAO JI SHI中考倒计时11天毕业季GRADUATION SEASON《怎样解题》一书的作者匈牙利数学家波利亚说过,掌握数学就意味着要善于解题。

做题不在多而在精,题要解得精彩;对待解题的思想方法要对头,要通过做题,深刻理解概念,扎实掌握基本知识,学会运筹帷幄,纵横捭阖,使自己的思维水平不断提升,高屋建瓴;只有这样,面对千变万化、形式各异的题目时,才能应对自如,使一道道难题迎刃而解。

也就是说,我们在解题时应力求做到一题多解,多解归一,多题归一,用“动”的观点分析问题,尽可能地拓宽思路,训练自己敏锐的思维,做到“八方联系,浑然一体”,最终达到“漫江碧透,鱼翔浅底”的境界。

原题呈现NO.1(1)将点D(0,4),代入y=a(x-1)2+3a,求得a=1,所以抛物线的解析式为y=x2-2x+4.NO.2第(2)问中求∠ABD-∠DBE的度数,在直角坐标系背景下求两角的差,自然会联想到特殊角,结合题中相关点的坐标,易∠DBA=45°,故过点B作BF⊥y轴,则△BFD为等腰直角三角形,易证△DBE∽△ABF,则∠DBE=∠ABF,由∠ABD-∠ABF=45°,所以∠ABD-∠DBE=45°。

NO.3第(3)问求△KAF周长的最小值,顶点A、F为定点,所以AF定长,故周长最小只需求KA+KF的最小值,两定一动,线段和最值是不是将军饮马模型呢?显然不是,因为动点K是抛物线上的动点,而不是直线上的动点,故不能用将军饮马模型处理,又该如何破解呢?为什么是点F这个点,F(1,13/4)这个点有何特殊性,请看下面动图。

抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线(来自百度)显然定点F是抛物线的焦点,如何求出抛物线的准线,将动点K 到F的距离转化成K到准线距离是关键。

高三数学抛物线知识点总结

高三数学抛物线知识点总结

高三数学抛物线知识点总结在高中数学中,抛物线是一个重要的几何概念。

它被广泛用于解决与运动、轨迹、最值等问题相关的数学计算。

为了帮助大家更好地掌握和理解高三数学中的抛物线知识点,本文将对抛物线的定义、性质以及应用进行总结。

1. 抛物线的定义抛物线是指平面上到一个定点距离与到一条固定直线距离相等的点的轨迹。

这个定点称为焦点,固定直线称为准线。

抛物线的形状呈现出对称性,以焦点为中心对称。

抛物线有开口方向,开口向上时准线在抛物线的上方,开口向下时准线在抛物线的下方。

2. 抛物线的标准方程一般情况下,我们可以使用标准方程来表示抛物线。

对于开口向上的抛物线,其标准方程为 y = ax^2 + bx + c,其中 a > 0;对于开口向下的抛物线,其标准方程为 y = ax^2 + bx + c,其中 a < 0。

3. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最值点,是抛物线开口方向的转折点。

对于标准方程 y = ax^2 + bx + c,如果 a > 0,顶点坐标为 (-b/2a, -Δ/4a),其中Δ = b^2 - 4ac;如果 a < 0,顶点坐标为 (-b/2a, Δ/4a)。

抛物线的对称轴是通过焦点和顶点的直线,是抛物线的中心轴线。

4. 抛物线的焦点和准线对于标准方程 y = ax^2 + bx + c,焦点的纵坐标为 (-Δ/4a),焦点的横坐标为 (-b/2a),其中Δ = b^2 - 4ac。

准线与抛物线的距离等于焦点到抛物线上任意一点的距离,准线的方程为 x = -b/2a。

5. 抛物线的形状和方向抛物线的形状与参数 a 的值相关。

当 a 的绝对值越大时,抛物线越“尖”,开口越窄;当 a 的绝对值越小时,抛物线越“平”,开口越宽。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

6. 抛物线的焦距焦距是指焦点到准线的距离,记为 f。

专题06椭圆双曲线与抛物线方程的图像与基本性质(理)(知识点串讲)原卷版

专题06椭圆双曲线与抛物线方程的图像与基本性质(理)(知识点串讲)原卷版

专题06 椭圆、双曲线与抛物线方程的图像与基本性质知识网络重难点突破知识点一 椭圆的方程与性质 1、椭圆的定义平面内与两个定点F 1,F 2的距离之和等于常数(大于||F 1F 2)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |||MF 1+||MF 2=2a },||F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数.(1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2、椭圆的标准方程和几何性质 标准方程x 2a 2+y 2b 2=1(a >b >0)x 2b 2+y 2a 2=1(a >b >0)图形性质范围-a ≤x ≤a ,-b ≤y ≤b-b ≤x ≤b , -a ≤y ≤a对称性 对称轴:坐标轴,对称中心:(0,0) 顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)轴长轴A 1A 2的长为2a ,短轴B 1B 2的长为2b焦距||F1F2=2c离心率e=ca,e∈(0,1) a,b,c的关系c2=a2-b2例1、(1)(2020·河南洛阳一模)已知椭圆x211-m+y2m-3=1的长轴在y轴上,且焦距为4,则m等于() A.5B.6C.9 D.10(2).已知m是两个数2,8的等比中项,则圆锥曲线221yxm+=的离心率为()A.32或52B.32或5C.32D.5【变式训练11】、已知圆F1:(x+1)2+y2=16,定点F2(1,0),动圆M过点F2,且与圆F1相内切,那么点M的轨迹C的方程为____.【变式训练12】、如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是____.知识点二 直线与椭圆的位置关系1.焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段的长度叫做椭圆的焦半径,分别记作r 1=|PF 1|,r 2=|PF 2|.(1)x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; (2)y 2a 2+x 2b 2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0;(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).2.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b 2=1(a >b >0)中 (1)当P 为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ).3.焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b 2a . 4.AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|= 1+1k 2|y 1-y 2|; (2)直线AB 的斜率k AB =-b 2x 0a 2y 0.例2、已知椭圆Γ:22221(0)x y a b a b +=>> 4.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)直线l 与椭圆Γ交于A ,B 两点,AB 的中点M 在圆221x y +=上,求AOB ∆(O 为坐标原点)面积的最大值.【变式训练21】、已知A 、B 分别是椭圆2222x y C 1(a b 0)a b+=>>:的左、右顶点,P 为椭圆C 的下顶点,F为其右焦点.点M 是椭圆C 上异于A 、B 的任一动点,过点A 作直线l x ⊥轴.以线段AF 为直径的圆交直线AM 于点A 、N ,连接FN 交直线l 于点H.点G 的坐标为()b,0-,且PF PG ⋅=,椭圆C 的离心率为12. ()1求椭圆C 的方程;()2试问在x 轴上是否存在一个定点T ,使得直线MH 必过该定点T ?若存在,求出点T 的坐标,若不存在,说明理由.知识点三 双曲线的方程与性质 1、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P ={M||| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 2、双曲线的标准方程和几何性质 标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围 x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性 对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a )渐近线 y =±b a x y =±a b x离心率e = ca ,e ∈(1,+∞) a ,b ,c 的关系c 2=a 2+b 2实虚轴线段A 1A 2叫做双曲线的实轴,它的长||A 1A 2=2a ;线段B 1B 2叫做双曲线的虚轴,它的长||B 1B 2=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长例3、(1).已知一个双曲线的方程为:22132x y m m -=-+,则m 的取值范围是__.(2)设双曲线x 24-y 22=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为__________.【变式训练31】、设双曲线22221(0,0)y x C a b a b-=>>:的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A ,且与另一条渐近线交于点B ,若32OF OB OA =+,则双曲线C 的离心率为( ) A .2 B .2C .233D .143知识点四 直线与双曲线位置关系例4、设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C的方程为( )A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -=【变式训练41】、(2019年全国Ⅱ卷)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A 2B 3C .2D 5知识点五 抛物线的方程与性质 1、抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2、抛物线的标准方程与几何性质标准方程y 2=2px(p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0) 对称轴 x 轴y 轴焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p 2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2离心率 e =1 准线 x =-p2 x =p 2 y =-p2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右向左向上向下焦半径(其中P (x 0,y 0))||PF =x 0+p 2||PF =-x 0+p2||PF =y 0+p 2||PF =-y 0+p2例5、已知点()0,2A ,抛物线1:C 2y ax =()0a >的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N .若:5FM MN =a 的值为( ) A .14B .12C .1D .4【变式训练51】、已知点F 1,F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,点P 是抛物线y 2=8ax 与双曲线的一个交点,若||PF 1+||PF 2=12,则抛物线的准线方程为__________.知识点六 直线与抛物线位置关系 1、 与焦点弦有关的常用结论设A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角). (3)1|AF |+1|BF |为定值2p .(4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.2、设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角); (3)1|F A |+1|FB |=2p ;(4)以弦AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.例6、已知F 是抛物线C :22y px =(0)p >的焦点,点A 在C 上,A 到y 轴的距离比||AF 小1.(1)求C 的方程;(2)设直线AF 与C 交于另一点B ,M 为AB 的中点,点D 在x 轴上,||||DA DB =.若||6DM =直线AF 的斜率.【变式训练61】、已知直线()20y x m m =+≠与抛物线24y x =交于B 、A 两点, (1)若OA OB ⊥,求m 的值;(2)以AB 为边作矩形ABCD ,若矩形ABCD 的外接圆圆心为1,22⎛⎫⎪⎝⎭,求矩形ABCD 的面积.知识点七 直线与圆锥曲线方程的综合应用 1、 直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点、仅有一个公共点以及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l 的方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f x ,y =0,消元(如消去y ),得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合). ②若a ≠0,设Δ=b 2-4ac .当Δ>0时,直线和圆锥曲线相交于不同的两点; 当Δ=0时,直线和圆锥曲线相切于一点; 当Δ<0时,直线和圆锥曲线没有公共点. 2、 直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长:||P 1P 2=1+k 2||x 1-x 2=1+k 2[x 1+x 22-4x 1x 2]=⎝⎛⎭⎫1+1k 2[y 1+y 22-4y 1y 2]=1+1k 2||y 1-y 2 .(2)斜率不存在时,可求出交点坐标,直接求解(利用坐标轴上两点间距离公式). 3、 圆锥曲线的中点弦问题遇到弦中点问题常用“点差法”或“根与系数的关系”求解.在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k = -b 2x 0a 2y 0 ;在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k = b 2x 0a 2y 0 ;在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率 k =py 0 .在使用根与系数的关系时,要注意使用条件是Δ≥0.例7、已知直线l :y =kx +2,椭圆C :x 24+y 2=1.试问当k 取何值时,直线l 与椭圆C :(1) 有两个不重合的公共点; (2) 有且只有一个公共点; (3) 没有公共点.【变式训练71】、(安徽蚌埠二中2019届模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l与椭圆C:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.。

高中抛物线知识点归纳总结与练习题及答案

高中抛物线知识点归纳总结与练习题及答案

uuur uuur 设 M(x,y) 是以线段 AB 为直径的圆上的任意一点 ,则 MA MB 0 ,
即 ( x x1)( x x2 ) ( y y1)( y y2) 0 ,整理得 : x2 y2 (x1 x2 )x ( y1 y2 ) y 0 ,
故线段 AB 是圆 C 的直径。 uuur uuur uuur uuur uuur uuur uuur uuur
证明 2: Q OA OB OA OB , (OA OB )2 (OA OB) 2 ,
uuur 2 uuur uuur uuur 2 uuur 2 uuur uuur uuur 2
uuur uuur
OA 2OA OB OB OA 2OA OB OB ,整理得 : OA OB 0 ,
x1 x2 y1 y2 0 …… ..(1)
设 (x,y) 是以线段 AB 为直径的圆上则即 y y2 y y1 x x2 x x1
1(x x1, x x2) ,
去分母得 : ( x x1 )( x x2 ) ( y y1 )( y y2 ) 0 ,
点 ( x1, y1),( x1, y2),( x2 , y1)( x2, y2) 满足上方程 ,展开并将 (1) 代入得 :
x1 x2 , y0 2
y1 y2 2
设交点坐标为 A( x1, y1) , B(x2 , y2) ,代入抛物线方程,得
2
y1 2 px1
2
y 2 2 px2
将两式相减,可得
( y1 y2 )( y1 y2 ) 2 p(x1 x2 )
y1 y2 x1 x2
2p y1 y2
a. 在涉及斜率问题时, kAB
5
4 p2
4(2 p2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题06 抛物线上的点到定点与焦点(或准线)距离之差的最值 本内容主要研究抛物线上的点到定点与焦点(或准线)距离之差的最值.根据三角形两边之和不小于第三边,即||PA PF AF -≤,当且仅当A 、P 、F 三点共线时,||PA PF -的最大值是AF .利用抛物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化,定点所在位置是抛物线的内部还是外部,求抛物线上的点到定点与焦点(或准线)之和的最值时方法有差异.
先看例题:
例:抛物线C: y 2=8x 上一点P 到点A (4,-2)与到其准线的距离之差的绝对值最大,求点P 的坐
标.
归纳整理:
求抛物线上的点到定点与焦点(或准线)之差的最值:
利用抛物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化; 定点所在位置是抛物线的内部还是外部; 根据三角形两边之差小于第三边,共线时取得最值.
再看一个例题,加深印象
例:已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线
上的一动点,则|MQ |-|QF |的最小值是( )
A.72
B .3 C.52
D .2 总结:
1. 利用抛物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化;
2. 判断定点所在位置是抛物线的内部还是外部;
3. 根据三角形两边之和大于第三边,共线时取得最值.
练习:
1. 已知抛物线22y x =,P 是抛物线上一点.设F 是焦点,一个定点为()2,3A ,当PF PA -取得最大值,则点P 的坐标是( ).
2. 设抛物线C : y 2=4x 上,F 是焦点,P 是抛物线上的动点,A (5,4),求P A P F -的最大值.
答案:
1.
解析:作PM垂直于准线,其中M为垂足,则|PF|=|PM|,
所以PF PA PM PA
-=-,可知,当AP垂直准线时三点A,P,M共线,
PF PA
-取得最大值,此时
9
,3
2
P
⎛⎫ ⎪⎝⎭。

相关文档
最新文档