人教版数学六年级教材梳理

合集下载

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。

2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数.所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。

的27×512.27 表示: 512 是多少。

(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

人教版-小学数学-六年级-数与代数-知识梳理

人教版-小学数学-六年级-数与代数-知识梳理

人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。

(1)自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。

自然数的个数是无限的,没有最大的自然数。

自然数的基本单位:任何非“0”的自然数都是假设干个“1”组成,所以“1”是自然数的基本单位。

1也是最小的一位数。

“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。

“0”还可以表示起点、分界点等。

“0”是最小的自然数。

自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。

〔2〕正数正数的定义以前学过的8、16、200……..这样的数叫做正数。

正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八。

“+”号一般可以省略不写。

〔2〕负数负数的定义像-1、-5、-132……这样的数叫做负数。

“一”叫负号。

负数的写法和读法负数前面加“一”号,例如:-15读作:负十五。

数字越大的负数反而越小。

“0”既不是正数,也不是负数。

〔4〕整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数。

2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级。

个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。

计数单位整数、小数都是按照十进制写出的数,其中一〔个〕、十、百…….是整数的计数单位。

计数单位是按一定顺序排列的。

数位各个计数单位所占的位置叫数位。

如9357中的“5”在右起第二位,即“5”所在的数位是十位。

位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。

十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。

人教版六年级数学上册教材的知识点归纳总结

人教版六年级数学上册教材的知识点归纳总结

人教版六年级数学上册教材的知识点归纳总结人教版六年级数学上册教材内容丰富,包括了数的概念、整数、小数、分数、计算、图形、运算定律、面积、体积等多个知识点。

下面将对这些知识点进行归纳总结,帮助同学们更好地理解和记忆这些知识。

一、数的概念1. 自然数:从1开始的数叫做自然数,用N表示。

2. 整数:包括自然数和负整数,用Z表示。

3. 真分数:分子小于分母的分数叫做真分数。

4. 假分数:分子大于等于分母的分数叫做假分数。

5. 数轴:用来表示数的大小关系的直线。

二、整数1. 整数的概念:正整数、负整数和0统称为整数。

2. 整数的比较:同号相比较,大的数更大;异号相比较,负数更小。

3. 整数的加法和减法:同号相加减,结果的符号不变;异号相加减,结果的符号取绝对值大的数的符号。

4. 整数的乘法:同号相乘结果为正;异号相乘结果为负。

5. 整数的除法:两个整数相除,商的符号与被除数和除数的符号相同。

三、小数1. 小数的概念:整数和小数点后的数字组成的数。

2. 小数的读法:按位读出小数点前的数字,小数点后的数字按位数读。

3. 小数的比较:同样位数的小数,从左至右比较每一位的大小。

4. 小数的加法和减法:按位对齐,从右到左进行加减运算。

5. 小数的乘法和除法:按照整数运算法则进行计算,最后保留相应的小数位数。

四、分数1. 分数的概念:一个整数除以一个非零的整数所得的数。

2. 分数的分类:真分数和假分数。

3. 分数的化简:将分子和分母的公约数都除掉,得到最简分数。

4. 分数的加法和减法:分母相同,直接加减分子;分母不同,通分后再进行加减运算。

5. 分数的乘法:分子乘以分子,分母乘以分母,得到的新分数即为乘积。

6. 分数的除法:将除数倒转,变成乘法运算。

五、图形1. 正方形:四条边相等且四个角都是直角的四边形。

2. 长方形:相邻两边相等且四个角都是直角的四边形。

3. 三角形:有三条边和三个角的多边形。

4. 直角三角形:一个角为直角的三角形。

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全

人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:

人教版数学六年级上册《整理和复习》获奖说课稿

人教版数学六年级上册《整理和复习》获奖说课稿

人教版数学六年级上册《整理和复习》获奖说课稿一. 教材分析人教版数学六年级上册《整理和复习》这一章节,是在学生掌握了小学阶段数学知识的基础上进行的一次全面的梳理和复习。

内容主要包括数的认识、数的运算、几何图形、计量单位、统计和概率等几个部分。

这部分内容是小学数学的基础,对于提高学生的数学素养,培养学生的逻辑思维能力具有重要意义。

二. 学情分析六年级的学生在数学学习上已经积累了一定的知识,对于数的认识、运算、几何图形等都有了一定的了解。

但是,由于学生之间的学习情况参差不齐,有的学生对于一些概念的理解还不是很清晰,运算的速度和准确性也有待提高。

因此,在教学过程中,需要关注每一个学生的学习情况,针对性地进行指导。

三. 说教学目标1.知识与技能目标:通过复习,使学生对小学阶段所学的数学知识有一个清晰的认识,提高学生的数学素养。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生整理和复习知识的能力,提高学生的自主学习能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学的价值。

四. 说教学重难点1.教学重点:通过复习,使学生对小学阶段所学的数学知识有一个全面、系统的了解。

2.教学难点:如何引导学生自主地进行复习,提高学生的复习效率。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法,让学生在复习过程中主动探索,提高学生的自主学习能力。

2.教学手段:利用多媒体课件、教学卡片等辅助教学,提高教学的趣味性和效果。

六. 说教学过程1.自主复习:让学生自主选择一部分知识点进行复习,通过自主学习,提高学生的自我管理能力。

2.合作交流:学生分组进行讨论,分享自己的复习心得,互相解答疑问,培养学生的团队合作精神。

3.教师引导:教师针对学生的复习情况进行指导,解答学生的疑问,引导学生对知识点进行深入理解。

4.练习巩固:学生进行相关的练习,巩固所学的知识,提高学生的运用能力。

人教版六年级数学上册教材的知识点重点梳理

人教版六年级数学上册教材的知识点重点梳理

人教版六年级数学上册教材的知识点重点梳理重点梳理:人教版六年级数学上册教材的知识点一、整数的认识与比较1. 整数的定义及表示方法2. 正整数、负整数、零的概念3. 整数的大小比较二、整数的加减运算1. 整数的加法运算2. 整数的减法运算3. 整数的加减法运算规则三、整数的乘法与除法运算1. 整数的乘法运算2. 整数的除法运算3. 乘法、除法的运算规则四、整数的应用1. 整数在坐标系中的表示与应用2. 整数的温度计表示法3. 整数在日常生活中的应用五、小数的认识与比较1. 小数的定义及表示方法2. 小数的大小比较3. 小数的整数部分与小数部分六、小数的加减运算1. 小数的加法运算2. 小数的减法运算3. 小数的加减法运算规则七、小数的乘法与除法运算1. 小数的乘法运算2. 小数的除法运算3. 乘法、除法的运算规则八、分数的认识与比较1. 分数的定义及表示方法2. 分数的大小比较3. 分数的整数部分与分数部分九、分数的加减运算1. 分数的加法运算2. 分数的减法运算3. 分数的加减法运算规则十、分数的乘法与除法运算1. 分数的乘法运算2. 分数的除法运算3. 乘法、除法的运算规则十一、分数的应用1. 分数在日常生活中的应用2. 分数在图形中的应用十二、单位换算1. 长度单位的换算2. 容量单位的换算3. 质量单位的换算十三、面积的认识与计算1. 长方形的面积计算2. 正方形的面积计算3. 三角形的面积计算十四、容量与质量的认识与计算1. 容量的认识与计算2. 质量的认识与计算十五、几何图形1. 图形的分类2. 平行线与垂直线的认识3. 常见几何图形的性质与应用以上是人教版六年级数学上册教材的知识点重点梳理。

通过对这些知识点的学习与掌握,学生将能够建立起整数、小数、分数等数学概念的基础,并能够进行相应的计算与运用。

这些知识点的理解与掌握对于学生进一步学习数学及日常生活中的应用都具有重要意义。

六年级数学人教版第三单元知识梳理

六年级数学人教版第三单元知识梳理

六年级数学人教版第三单元知识梳理在六年级的数学学习中,第三单元是一个非常重要的部分,它涵盖了很多基础的数学知识,对于学习数学的孩子来说至关重要。

在这篇文章中,我们将全面评估六年级数学人教版第三单元的知识,包括整数的加减、带括号的运算、数字之间的大小比较等,并按照深度和广度的要求进行全面梳理和探讨。

我们将从整数的加减开始。

在第三单元的学习中,学生将会学习如何对整数进行加减法运算,包括同号相加、异号相加、同号相减和异号相减等情况。

通过这一部分的学习,学生可以更好地掌握整数加减法的基本规则,并能够熟练地运用到实际问题中去。

接下来,我们将深入探讨带括号的运算。

在第三单元中,学生将学习如何进行带括号的混合运算,包括加减混合运算和乘除混合运算。

通过这一部分的学习,学生可以提高对运算符号的理解和运用能力,从而更好地解决复杂的数学问题。

我们还将讨论数字之间的大小比较。

在第三单元的学习中,学生将学习如何比较大小数的大小关系,包括正整数、负整数和0之间的大小比较。

通过这一部分的学习,学生可以更好地理解数的大小关系,并能够在实际问题中准确地比较数的大小。

总结回顾起来,六年级数学人教版第三单元的知识梳理非常重要,它涵盖了整数的加减、带括号的运算和数字之间的大小比较等内容。

通过这一单元的学习,学生可以提高数学运算能力和逻辑思维能力,为进一步的数学学习打下坚实的基础。

在我看来,数学是一门非常重要的学科,它不仅可以锻炼孩子的逻辑思维能力,还可以培养他们的数学素养和创新意识。

我非常看重六年级数学人教版第三单元的知识,希望通过深度和广度兼具的学习,让孩子们能够全面、深刻和灵活地理解数学知识,为将来的学习和生活打下坚实的基础。

在本文中,我们从整数的加减、带括号的运算和数字之间的大小比较等方面进行了全面评估和探讨,通过对第三单元知识的梳理,希望对您的学习有所帮助。

以上仅为个人观点,文章末尾应该有一个个人签名,表示文章的责任和观点立场。

2022年人教版小学数学六年级(上下册)知识点梳理归纳

2022年人教版小学数学六年级(上下册)知识点梳理归纳

人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级上册数学全册知识要点梳理第一单元分数乘法(一)分数乘法意义:1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2.一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1.分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算 1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2.整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

1.倒数是两个数的关系,它们互相依存,不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)2.判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a、b互为倒数。

3.求倒数的方法:①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4. 1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母。

5.真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(六)分数乘法应用题——用分数乘法解决问题1.求一个数的几分之几是多少?(用乘法)已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2.巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3.什么是速度?速度是单位时间内行驶的路程。

速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4.求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向(二) 1.什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

数对的作用:确定一个点的位置。

经度和纬度就是这个原理。

2.确定物体位置的方法:(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1.被除数÷除数=被除数×除数的倒数。

2.除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3.分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4.被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1.混合运算用梯等式计算,等号写在第一个数字的左下角。

2.运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。

加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

(a±b)÷c=a÷c ±b÷c第四单元比比:两个数相除也叫两个数的比 1.比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

连比如:3:4:5读作:3比4比52.比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

4.化简比:化简之后结果还是一个比,不是一个数。

(1)用比的前项和后项同时除以它们的最大公约数。

(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

也可以求出比值再写成比的形式。

(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

5.求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

6.比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数除法和比的应用1.已知单位“1”的量用乘法。

2.未知单位“1”的量用除法。

3.分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4.按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

5.画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

两个量的关系画两条线段图,部分和整体的关系画一条线段图。

第五单元圆一、圆的特征 1.圆是平面内封闭曲线围成的平面图形。

2.圆的特征:外形美观,易滚动。

3.圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里,有无数条半径,且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里,有无数条直径,且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24.等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5.圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6.画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1.圆的周长总是直径的三倍多一些。

2.圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。

3.周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4.半圆周长=圆周长一半+直径= πr+d三、圆的面积s1.圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22.几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

3.圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4.环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5.跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。

因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

相关文档
最新文档