连续型随机变量函数的分布

合集下载

随机变量函数的分布

随机变量函数的分布





二 、连续型随机变量函数的分布 2.分布函数法 一般地,若已知X的概率密度为 fX(x),求其函数 Y=g(X)的概率密度 fY(y)分两个步骤: 10 根据分布函数的定义求Y的分布函数FY(y); 20 由 fY(y) = F (y) 求出 fY (y)
例3 对一圆片直径进行测量, 其值在[5,6]上均匀分
定理 设X是一连续型随机变量,其密度函数f(x) , (-∞<x< +∞ ),又函数y = g(x)处处可导,且严格单 调,其反函数为x = h(y ),则Y = g(X)也是一连续型随 机变量,且密度函数为
h y f[ h ( y )], y f y Y , 其他 0
计算离散型随机变量函数的分布的方法: 首先将xi的取值代入函数关系,求出随机变量Y相应的取值
y g ( x )( i 1 , 2 , .) i i
如果yi(i=1,2,…)的值各不相等,则Y的概率分布为 Y P y1 p1 y2 p2 … … yi pi … …
如果 yi=g(xi)(i=1,2,…)中出现m(≥2)个相同的函数值,即存在
0 , y25 /4 F (y) * 25 /4y9 1, y9
F ( y ) P { Y y } P { X / 4 y }
2
P { X 4 y / }

4 y /

f ( x ) dx X
例3 对一圆片直径进行测量, 其值在[5,6]上均匀分
其中, m g ( in{ ), g ( )}, m g ( ax ), g ( )
注意 若f(x)在有限区间[a,b]外等于0,则只需设在[a,b] ( x ) 0 [ 或 g ( x ) 0 ]. 上有 g

连续型随机变量常见的几种分布

连续型随机变量常见的几种分布

)
29
◆ 对任意区间 ( x1 , x2 ], 则有: x1 X x2 ) P ( x1 X x2 ) P ( x2 x1 ( )

(

)
30
(6) 3 原则 由标准正态分布的查表计算可以求得,
当X~N(0,1)时,
6
解: 设以7:00为起点0,以分为单位 从上午7时起, 每15分钟来 依题意, X ~ U ( 0, 30 ) 一班车,即 1 7:00,7:15, 0 x 30 f ( x ) 30 7:30 其 它 等时刻有汽 0 车到达汽站 为使候车时间X 少于 5 分钟, 乘客必须在 7:10 到 7:15 之间,或在7:25 到 7:30 之间到达车站. 故所求概率为:
2( 2) 1 2 0.9772 1 0.9544
33
例4. 从旅馆到飞机场沿 A 路走(路程短,交通拥挤)
所需时间(分钟) X ~ N (27,52 ), 沿 B 路走(路程 长,阻塞少)所需时间(分钟)Y~N (30,22 ) 若现在只有 30分钟. 问:分别选择哪一条路为好? 解: 依题意,选择所需时间超过规定时间的概率较 小的路线为好. 当只有30分钟可用时: 30 27 ) A 路: P ( X 30) 1 P ( X 30) 1 ( 5 1 (0.6) 1 0.7257 0.2743
P{10 X 15} P{25 X 30} 15 1 30 1 1 dx dx 10 30 25 30 3
7
候车时间超过10分钟,则乘客必须在7:00到7:05或 7:15到7:20之间到达车间
P (0 x 5) P (15 x 20)

连续型随机变量的分布与例题讲解

连续型随机变量的分布与例题讲解

(3) f(x) = F ¢ x) = (
1 (- ? p (1 + x 2 )
x< +
ì
- 3x
)
, x > 0, x £ 0,
例2
ï ke 设随机变量 X 的概率密度为 f (x) = ï í ï 0, ï î
试确定常数
k,并求其分布函数 F(x)和 P{X>0.1}. 解:由
+?
ò
+
f (x)dx = 1 得
X ~ W (m, , ).
Weibull 分布的分布函数为
F ( x)
x
m


(t )
m 1

( t )m
e

dt 1 e

( x )m

(x )
——位置参数
——尺度参数
m ——形状参数
Weibull 分布概括了许多典型的分布。
本次课小结:
即是说该大学的实录线约为 512 分。 (三) 对数正态分布 定义:若随机变量 X 的概率密度函数为
1 (ln x )2 2 f ( x) 2 x e 2 0
4

本 内

备 注
其中, , 0 为常数,则称 X 服从参数为 和 的对数正态分布,记作
(四)Weibull 分布 定义:若随机变量 X 的概率密度函数为
( x ) m ( x )m1 e x f ( x) x 0
m
其中, m, , 0 为常数,则称 X 服从参数为 m, , 的 Weibull 分布,记作
故知,X~N( 450 ,1002 ) 又设该大学实录线为 a,由题设知:

第六章(三)常用连续型随机变量的理论分布

第六章(三)常用连续型随机变量的理论分布

(一)抽样分布的含义与无偏估计量 1、抽样分布的含义:统计推断是以总 体分布和样本抽样分布的理论关系为 基础的。 由总体中随机地抽取若干个体组成样 本,即使每次抽取的样本含量相等, 其统计量也将随样本的不同而有所不 同。因而样本统计量也是随机变量, 也有其概率分布,我们把统计量的概 率分布称为抽样分布。
如果总体是无限总
体,那么可以得到 无限多个随机样本。
随机样本1 2 3
……
无穷个样本
图 总体和样本的关系
如果从容量为N的有限总体抽样,若每次抽取容量为n的 样本,那么一共可以得到 N n个样本(所有可能的样本个数)。 抽样所得到的每一个样本可以计算一个平均数,全部可能 的样本都被抽取后可以得到许多平均数。 如果将抽样所得到的所有可能的样本平均数集合起来便构
正态分布的分位点的定义:
3、正态分布分位点计算
标准正态分布 N (0,1) 密度函数图形为:
x 图中的点 称为标准正态分布的 (1 )% 的分位点,相当于已知
F(x ) p( X x ) 1
求其中的 x
4、单侧概率与双侧概率 •统计学中,把随机变量 x 落在区间 (μ-kσ,μ+kσ)之外的概率称为双侧(两 尾)概率,记作α。 •对应于双侧概率可以求得随机变量x 小于μ-kσ或大于μ+kσ的概率,称为 单侧概率,记作α/2。
2、无偏估计 • 在统计学上,如果所有可能样本的 某一统计数的平均数等于总体的相 应参数,则称该统计数为总体相应 参数的无偏估计值。
• 设有一N=3的总体,具有变量3,4, 5;求得μ=4,σ2=0.6667, σ=0.8165 • 现以n=2作独立的回置抽样,总共得 Nn=32=9个样本。 • 抽样结果列入下表:

第三节连续型随机变量及其概率密度

第三节连续型随机变量及其概率密度

则称X服从0 1分布.
这时X的分布函数为:
F(x)
1
0, x p,0
0, x
1,
1, x 1.
2. 二项分布:若随机变量 X所有可能取值为 0,1,,n,且分布律为:
P(X
k)
C
k n
pk qnk,k
0,1,,n,0
p
1,q
1
p,
则称X服从二项分布, 记为:X~B(n,p). 3. 泊松分布:若随机变量 X所有可能取值为 0,1,2,,且分布律为:
2
Acos
xdx
2 A sin
x
2
0
2 A,
2A 1,
(2) (3)
P(0 X
当x
2
时4,) F
( x042)故12coAsxxdf12x(.t)d12t
sin
x
4
0
x
0dt
2 4
.
0.

2
x
2
时,
F
(
x)
2 0dt
x
2
1 2
cos
tdt
1 2
(sin
x
1).
当x
2
时,F
6
三、几种常见的连续型分布
1. 均匀分布:设X的概率密度为
f
(
x)
b
1
a
,
a x b,
0, 其它.
则称X在区间[a,b]上服从均匀分布,记为 X~U[a,b].
0, x a,
易求X的分布函数为
F
(
x
)
x b
a a
,a
1, x

2.4连续型随机变量及其概率密度函数

2.4连续型随机变量及其概率密度函数

-?
a b- a
连续型随机变量及概率密度函数

蝌 P{c < X ? c l} = c+l f ( x)dx = c+l 1 dx = l
c
c b- a b- a
随机变量 X 落在任一长度为 l 的子区间(c,c + l],(a ? c c + l ? b)
内的可能性是相同的.
均匀分布的分布函数为
2
解 (2)X的分布函数为
ì
0,
ï
ï
ò ï
x x dx = x2 ,
F
(
x
)
=
ï í
ï
蝌 ï
ï
3 x dx + 06
06
x 3
骣 琪 琪 桫2
-
x 2
12 x2
dx = - 3 + 2x - , 4
ï î
1,
x <0 0? x 3 3? x 4
x³ 4
连续型随机变量及概率密度函数
例 1 设随机变量 X 具有概率密度
f
(x)
=
ì ï í
1 5
,0
<
x
<
5,
ï î
0,
其他
ì 0,
ï
蝌 F ( x) =
x
ï f ( x)dx = í
x dt = x ,
-?
ï 05 5
ï î
1,
x£ 0 0< x <5
x³ 5
(2)随机变量 X 的取值不小于 2,即
蝌 ò P{ X ? 2} = +? f ( x)dx = 5 1 dx + ? 0dx 3

3.5 两个随机变量的函数的分布

3.5 两个随机变量的函数的分布
第五节
两个随机变量的函数的分布
一、问题的引入 二、离散型随机变量函数的分布 三、连续型随机变量函数的分布 四、小结
一、问题的引入
有一大群人 , 令 X 和 Y 分别表示一个人的 年龄和体重, Z 表示该人的血压 ,并且已知 Z 与
X , Y 的函数关系 Z = g ( X ,Y ),如何通过 X ,Y 的分
(iii)备用的情况
由于这时当系统 L1 损坏时,系统 L2 才开始工 作, 因此整个系统 L 的寿命 Z 是 L1 , L2 两者之和: 两者之和:
Z = X +Y
当 z > 0 时 Z = X + Y 的概率密度为
f (z ) = ∫

−∞
f X ( z − y ) fY ( y ) d y
= ∫ αe − α ( z − y ) βe − βy d y
(1 − e − αz )(1 − e − βz ), z > 0, Fmax ( z ) = FX ( z ) ⋅ FY ( z ) = 0, z ≤ 0.
Z = max{ X , Y }的概率密度为
αe − αz + βe − βz − (α + β )e −( α + β ) z , z > 0, f max ( z ) = z ≤ 0. 0,
分布函数为
Fmax ( z ) = P { M ≤ z } = P { X ≤ z ,Y ≤ z }
=P { X ≤ z } P {Y ≤ z }.
即有 Fmax ( z ) = FX ( z )FY ( z ). 类似地, 类似地
可得 N = min{ X , Y }的分布函数为
Fmin (z ) = P { N ≤ z } = 1 − P{ N > z } (z

连续随机变量的分布函数与概率密度函数的特征

连续随机变量的分布函数与概率密度函数的特征

连续随机变量的分布函数与概率密度函数的特征连续随机变量是概率论与数理统计中重要的概念,它的分布函数和概率密度函数是描述其特征的重要工具。

本文将从连续随机变量的定义入手,逐步介绍其分布函数和概率密度函数的概念、性质和计算方法。

一、连续随机变量的定义在概率论与数理统计中,随机变量是指一个可能的结果对应一个实数的变量。

连续随机变量是指其可能的结果在一个区间内连续分布的随机变量。

连续随机变量可以取区间内的任何一个值,并且可以取到任何一个值的概率都不为零。

二、分布函数分布函数是描述连续随机变量的分布情况的函数,通常用F(x)表示,其中x为实数。

分布函数是表示随机变量X小于或等于某个实数x的概率,即F(x) = P(X ≤ x)。

分布函数具有以下性质:1. F(x)是非减的数函数,即对于任意的x1 < x2,有F(x1) ≤ F(x2)。

2. 当x趋于负无穷时,F(x)趋于0;当x趋于正无穷时,F(x)趋于1。

3. 分布函数是右连续的,即F(x)在任意实数点x处连续。

三、概率密度函数概率密度函数是描述连续随机变量的分布情况的函数,通常用f(x)表示,其中x为实数。

概率密度函数是表示随机变量X在某个实数x附近取值的概率。

概率密度函数满足以下条件:1. f(x) ≥ 0,即概率密度函数的取值非负。

2. 在整个定义域上的积分等于1,即∫f(x) dx = 1。

概率密度函数与分布函数之间存在以下关系:1. 概率密度函数是分布函数的导数,即f(x) = F'(x)。

2. 分布函数可以通过概率密度函数来计算,即F(x) = ∫f(t) dt,其中积分区间为负无穷到x。

四、特征与计算方法1. 均值连续随机变量的均值(期望值)可以通过积分的方法计算,即E(X) = ∫x f(x) dx。

2. 方差连续随机变量的方差可以通过均值和积分的方法计算,即Var(X) = E[(X - E(X))^2] = ∫(x - E(X))^2 f(x) dx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档