教案 中考复习 《全等三角形》

合集下载

最新版初中数学教案《全等三角形》精品教案(2022年创作)

最新版初中数学教案《全等三角形》精品教案(2022年创作)

第十二章全等三角形全等三角形【知识与技能】1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.【过程与方法】在图形变换以及操作的过程中开展学生的空间观念,培养学生的几何直觉.【情感态度】使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.【教学重点】探究全等三角形的性质.【教学难点】掌握两个全等形的对应边\,对应角.一、情境导入,初步认识问题1 观察以下列图形,指出其中形状与大小相同的图形.问题2 从上面的图形中你有什么感受?在实际生活中,你能找到形状、大小相同的图形的应用的例子么?二、思考探究,获取新知让学生交流问题1,问题2的答案,并带着问题“这些图形有什么共同特征?〞自学课本内容.【教学说明】变化的图形易引起学生的注意,使它们很快地投入到学习的情境中,并通过观察发现其中的共同特点,形成猜想.再结合自学课本,从而认识全等形、全等三角形的定义及记法.教师讲课前,先让学生完成“自主预习〞.思考1 把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?思考2 全等三角形的对应边、对应角有什么关系?为什么?、旋转、翻折的不变性,让学生通过具体操作直观感知全等三角形的概念,然后让学生通过操作和观察,猜想并验证全等三角形的性质.利用根本三角形变换出各种图形,然后观察对应边、角的变化,利于提高学生的识图能力.思考1 得到的根本图案如图:【归纳结论】1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.“全等〞用“≌〞表示,读作“全等于〞.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫对应角.2.全等三角形的对应边相等,对应角相等.三、运用新知,深化理解【教学说明】出示以下问题,让学生通过交流\,思考寻找问题的答案,并共同讨论:全等三角形的对应顶点\,对应边之间有什么关联.1.以下每对三角形分别全等,看看它们是怎样变化而成的,并指出对应边、对应角.2.两个全等的三角形按如下位置摆放,指出它们的对应顶点,对应角,对应边.3.如图,将△ABC沿直线BC平移,得到△DEF.(1)线段AB,DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)假设∠A=70°,∠B=40°,你知道其他各角的度数吗?为什么?4.如图,将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,并说明理由.5.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40°,∠B=30°,求∠ADC的大小.【教学说明】题3题4中要通过观察发现,EC是线段BC与EF的公共局部,从而有BC-EC=EF-EC即BE=CF的结论;可以挖掘更深层次的结论,提升分析问题的能力,如AB∥DE,AC∥DF,BE=CF,S四边形ABEG=S四边形FDGC等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练〞中的题.【答案】1.图〔1〕是△EDC由△ABC绕过C点且垂直于BD的直线翻折而成,AB的对应边ED,AC的对应边EC,BC的对应边DC,∠A的对应角∠E,∠B的对应角∠D,∠ACB的对应角为∠ECD.图〔2〕是△ABC延BC边平移BE长的距离得到△DEB,AC的对应边DB,AB 的对应边为DE,CB的对应边为BE,∠A的对应角为∠D,∠C的对应角为∠DBE,∠ABC的对应角为∠E.图〔3〕是△ABD绕BD的中点旋转180°得△CDB,AB的对应边为CD,BD对应边为DB、AD的对应边为CB,∠A的对应角∠C,∠ABD的对应角为∠CDB,∠ADB的对应角为∠CBD.4.AB=DE AC=DF BC=E F∠A=∠D ∠B=∠DEF ∠ACB=∠F理由:全等三角形对应边相等,对应角相等.5.∠ADC=110°四、师生互动,课堂小结1.引导学生回忆全等三角形定义\,记法与性质.2.归纳寻找对应边\,对应角的规律:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边的夹角是对应角.(2)公共边一般是对应边;有对顶角的,对顶角一般是对应角;公共角一般是对应角等.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等〞“对应〞等含义的理解.对“全等三角形〞的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵AB BC CD DE EA====,∴AB=BC=CD=DE=EA,3==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。

全等三角形复习课教案

全等三角形复习课教案

《全等三角形复习》教学设计市桥中学 数学科 梁仲宁一、教学目标1、 使学生能综合运用三角形全等的各种识别方法解题。

2、 让学生学会从多角度,多方位观察图形。

3、 培养学生将生活实际问题转化为数学问题去思考。

4、 培养学生合作交流,自主探究的能力。

二、教学重点与难点重点难点:三角形全等的各种识别方法的综合运用。

三、教具准备电脑、实物投影、相关课件。

四、教学过程设计 (一)知识回顾利用课件回顾三角形全等的各种识别方法。

(SSS 、SAS 、ASA 、AAS 、HL )(二)师生互动,熟悉全等三角形识别方法的基础应用1、投影以下图形,提供开放的教学平台,让学生自主编题与解题。

(图1) (图2) (图3)2、提醒学生注意发掘图中的隐含条件(公共边、对顶角、公共角)。

3、如有需要,教师对学生所编题目作出适当补充。

DCBAA BCDOOABCDE(三)全等知识在其他知识领域中的应用1、测量如图河的宽度,某人在河 的对岸找到一参照物树木A,视线AB 与河岸垂直,然后该人沿河岸步行7米 到O 处,进行标记,再向前7米到D 处, 最后背对河岸向前步行15米到C 点, 此时A ,O ,C 三点恰好在同一视线上, 则河的宽度为_________米.2、直线l 经过正方形ABCD 的顶点B , 点A 、C 到直线l 的距离分别是3和4,则 正方形的边长是______________.3、如图,AB 是⊙O 的直径,BC 是⊙O 的 切线,D 是⊙O 上一点,且∠ABD= ∠C=30°, 求证:ΔADB ≌ ΔOBC4、 将平行四边形纸片ABCD 按如图方式 折叠,使点C 与点A 重合,点D 落到D'处, 折痕为EF. 求证ΔABE ≌ΔAD'F(四)掌握全等的变换思想,深化提高5、 将两个全等的等腰直角三角板按如图所示摆放,令两个三角形的斜边在同一直线上,C 为两个三角形的公共顶点,连结AE 、DB ,试猜想AE 与DB 的关系。

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。

另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。

四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。

2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。

常考全等三角形模型教案

常考全等三角形模型教案

常考全等三角形模型教案一、教学目标。

1. 知识与技能:(1)掌握全等三角形的定义和性质;(2)能够运用全等三角形的性质解决相关问题;(3)能够灵活运用全等三角形模型进行证明和计算。

2. 过程与方法:(1)培养学生观察问题、提出问题、解决问题的能力;(2)培养学生分析问题、探索问题、解决问题的能力;(3)培养学生合作探究、独立思考、自主学习的能力。

3. 情感态度与价值观:(1)培养学生的数学思维能力和数学解决问题的兴趣;(2)培养学生的合作意识和团队精神;(3)培养学生的耐心和细心的品质。

二、教学重点与难点。

1. 教学重点:(1)全等三角形的定义和性质;(2)全等三角形模型的运用。

2. 教学难点:(1)全等三角形的性质证明;(2)全等三角形模型的灵活运用。

三、教学过程。

1. 导入新知识。

教师可通过提问或举例的方式,引导学生了解全等三角形的定义和性质,激发学生的学习兴趣。

2. 讲解新知识。

(1)讲解全等三角形的定义和性质,包括全等三角形的判定条件、全等三角形的性质等内容;(2)讲解全等三角形模型的运用,包括利用全等三角形模型解决实际问题、利用全等三角形模型进行证明和计算等内容。

3. 案例分析。

教师可选择一些典型的案例,引导学生利用全等三角形模型进行分析和解决,帮助学生加深对全等三角形模型的理解和运用。

4. 练习与训练。

(1)教师布置一些练习题,让学生利用全等三角形模型进行练习和训练;(2)教师组织学生进行小组合作,让学生在合作中相互交流、相互学习,提高解决问题的能力。

5. 总结与拓展。

教师对本节课的内容进行总结,并对全等三角形模型的拓展进行引导,让学生在课后能够继续深入学习和探究。

四、教学反思。

本节课采用了导入新知识、讲解新知识、案例分析、练习与训练、总结与拓展等教学方法,使学生在实际操作中更好地理解和掌握了全等三角形模型的相关知识。

同时,通过小组合作的方式,培养了学生的合作意识和团队精神。

然而,在教学过程中,也存在一些不足之处,如案例分析的数量和质量有待提高,学生的自主学习能力有待培养等。

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。

(3)、此公理与前面学过的公理区别与联系。

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考复习 《全等三角形》教案
教学目标:
1.了解图形的全等,掌握两个三角形全等的条件与性质
2.会用三角形全等的判定方法,判定两个三角形全等,并能用几何语言准确表达 3.培养逻辑推理思维能力
教学重点难点:
1.重点:掌握全等三角形的性质与判定方法 2.难点:对全等三角形性质及判定方法的运用
教学准备:
三角板、多媒体设备
教学过程:
一、导
比一比,看谁做得最快?
(设计意图:通过小测,唤醒学生记忆,并从中发现学生遗忘点和易错点)
1.如图,已知△ABC ≌△DEF,则∠B=∠E,AB= DE ,BC= EF .
师:解决本题的依据是什么?(温故全等三角形的性质)
2.如图,下列给出的五组条件,能否判定△ABC ≌△DEF ,能的请在括号内打“√”,不能的请打“×”,并说说理由.
(1).AB=DE,BC=EF,AC=DF ( √ ) (2).AB=DE, ∠B=∠E,BC=EF ( √ ) (3) ∠B=∠E, BC=EF, ∠C=∠F ( √ ) (4).∠B=∠E,∠C=∠F, AC=DF ( √ ) (5). AB=DE,AC=DF, ∠B=∠E ( × )
师:三角形全等的判定方法有哪几种?它们都需要知道三角形的几对元素相等?
记一记,知识要点需牢记!
(设计意图:巩固知识点,让学生在脑海中有一个完整的知识结构.)
1.全等三角形的性质:
(1).全等三角形对应边 相等、对应角相等
(2).全等三角形的周长、面积、对应线段(高、对应中线、对应角平分线)都相等. 2.三角形全等的四种判定方法:SSS 、SAS 、ASA 、AAS. 对于直角三角形,除了以上方法外,还可以用HL_.
二、学
C
A
B
F
D
E
(第1题)
A
B
C
D
E F
(第2题)
(设计意图:通过例题学习,掌握推理方法,学会规范书写.)
例1.已知:如图,E 、F 在AC 上,AD ∥CB 且AD=CB ,∠D=∠B 求证:AF=CE
师分析:要证明AF=CE ,即要证△ADF ≌△CBE ,
现已有两组条件:AD=CB,∠D=∠B,还需要一组 ,由AD ∥CB 可得,∠A=∠C,三组条件已具备, 且符合判定方法中的ASA.下面,我们请
请一个学生说过程,教师PPT 板演,规范书写过程.
证明:第一步: ∵AD ∥CB ∴∠A= ∠C
第二步:在△ADF 和△CBE 中 ∠A= ∠C AD=CB ∠D= ∠B
∴ △ADF ≌△CBE ∴ AF=CE
总结:1.书写证明过程格式要规范;
2.另外,要证两个三角形全等一般分为两步,第一步,先根据已知条件证明全等中所
缺少的条件,条件充分后,第二步,再按顺序罗列出条件证明全等.
过渡:大家对证明全等的方法及书写掌握了吗?考验你们的时刻到了,请迅速完成下面这道变式题,看谁做得又快又好!
变式练习:
1.如图,已知AE=CF,∠A=∠C,AD=CB.求证:△ADF ≌△CBE
(思考后,请学生上台分析过程,并板演解题.)
证明:第一步: ∵AE=CF
∴ AE+EF=CF+EF 即 AF=CE 第二步:在△ADF 和△CBE 中 AF=CE ∠DAF= ∠BCE AD=CB
∴ △ADF ≌△CBE
对比PPT 与学生解答过程,根据学生答题情况作出总结,证明全等坚持两步走.
D
A
C
E
F
B
C
F A
E
B
D
练一练,看看谁最棒!
题组一
1.如图1,已知△AOD ≌△BOC, ∠O=50°,∠D=35°,则∠OBC=85 °.
2.如图2,已知△DCE 顺时钟旋转30°得到△ACB ,若DC=4,则AC= 4 .
3.如图2,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( B ) A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA
本组题难度不大,主要是巩固知识要点,并教会学生挖掘已知条件的方法.
挖掘已知条件的方法可以从以下三方面考虑:1.文字给出的显性条件;2.文字给出的隐形条件,比如旋转前后图形全等,平行四边形对边平行且相等;3图形本身隐含的条件,比如公共角相等、公共边相等、对顶角相等.
题组二
4.如图,已知正方形ABCD 中,E 与F
分别是AD 、BC 上的一点,现有如下四个条件,
①∠1=∠2,②∠3=∠4,③AE=CF,④BE=DF,从中选择一个作为条件,证明△ABE
≌△CDF. (1) 若选择①∠1=∠2,判定全等的依据是__SAS_____. (2) 若选择②∠3=∠4,判定全等的依据是AAS (3) 若选择③AE=CF ,判定全等的依据是_ASA______. (4) 若选择④BE=DF ,判定全等的依据是HL.. 请选择其中一种,加以证明.
解:我选择__________,证明过程如下: ∵四边形ABCD 是正方形 ∴AB=CD,∠A= ∠C=90° (略)
教师巡堂,请同学上台板演证明过程.
四、升
B O
A E
C
B
D
(图1)
E
(图2) A D
C
图1
试一试,真题演练!
1.(广东省深圳市)如图1,已知,在△ABC和△DCB中,
AC=DB,若不增加任何字母与辅助线,要使△ABC≌△DCB,
则还需增加一个条件是_ .
2.(2010柳州改编)如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC=________°,BC=________;
(2)请你在图中找出一点D,再连结DE、DF,使以点D、E、
F为顶点的三角形与△ABC全等. 你知道这样的点有几个
吗?
想一想
1、这节课你学到了什么知识?
2、你觉得自己学得怎样?
板书设计:
中考复习:全等三角形
1.性质:
(1).全等三角形对应边相等、对应角相等.
(2).全等三角形的周长、面积、对应线段都相等.
2.判定方法:SSS、SAS、ASA、AAS、HL(Rt△).
3.学生练习。

相关文档
最新文档