数学人教版九年级上册21.2.2 公式法(第1课时)同步练习.2.2公式法(1)同步练习

合集下载

人教版九年级数学上册21.2.2公式法同步练习.docx

人教版九年级数学上册21.2.2公式法同步练习.docx

初中数学试卷桑水出品21.2.2 公式法要点感知1 一元二次方程ax2+bx+c=0(a≠0)的根的情况可由b2-4ac的符号来判定:①当b2-4ac______0时,方程有两个不相等的实数根;②当b2-4ac______0时,方程有两个相等的实数根;③当b2-4ac______0时,方程没有实数根.预习练习1-1 一元二次方程x2+x+2=0的根的情况是( )A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根要点感知2 一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac______0时,它的根为______. 预习练习2-1 用公式法解方程x2-x-1=0的根为( )A.231±B.231±-C.251±D.251±-2-2 一元二次方程a2-4a-7=0的解为______知识点1 根的判别式1.(苏州中考)下列关于x的方程有实数根的是( )A.x2-x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=02.(自贡中考)一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.(益阳中考)一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是( )A.m>1B.m=1C.m<1D.m≤14.不解方程,判定下列一元二次方程根的情况:(1)9x2+6x+1=0;(2)3(x2-1)-5x=0.知识点2 用公式法解一元二次方程5.方程x2+x-1=0的一个根是( )A.1-5B.251-C.-1+5D.251+-6.(荆州中考)已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是( )A.0<α<1B.1<α<1.5C.1.5<α<2D.2<α<37.已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则______.8.用公式法解下列方程:(1)2x2-3x+1=0;(2)1-x=3x2;(3)2x2-3x-1=0;(4)4x2-4x-1=0.9.(泰州中考)下列一元二次方程中,有两个不相等的实数根的方程是( )A.x 2-3x+1=0B.x 2+1=0C.x 2-2x+1=0D.x 2+2x+3=010.(内江中考)若关于x 的一元二次方程(k-1)x 2+2x-2=0有不相等实数根,则k 的取值范围是( )A.k >21B.k ≥21C.k >21且k ≠1D.k ≥21且k ≠1 11.(北海中考)若一元二次方程x 2-6x+m=0有两个相等的实数根,则m 的值为______.12.关于x 的方程(a-5)x 2-4x-1=0有实数根,则a 满足的条件是______13.(贺州中考)已知关于x 的方程x 2+(1-m)x+42m =0有两个不相等的实数根,则m 的最大整数值是______. 14.用公式法解一元二次方程:(1)x 2+4x-1=0; (2)x 2+2x=0; (3)x 2+10=25x ; (4)x(x-4)=2-8x.15.(汕尾中考)已知关于x 的方程x 2+ax+a-2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.挑战自我16.(北京中考)已知关于x 的方程mx 2-(m+2)x+2=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.参考答案21.2.2 公式法要点感知1 >,=,<.预习练习1-1 C要点感知2 ≥0,x=a acb b24 2-±-.预习练习2-1 C2-2 x1=2+11,x2=2-11.1.C2.D3.D4.(1)∵a=9,b=6,c=1,∴Δ=b2-4ac=36-36=0.∴此方程有两个相等的实数根;(2)化为一般形式为:3x 2-5x-3=0.∵a=3,b=-5,c=-3,∴Δ=(-5)2-4×3×(-3)=25+36=61>0.∴此方程有两个不相等的实数根.5.D6.C7.a=1或-2.8.(1)x=22124)3()3(2⨯⨯⨯--±--, x 1=1,x 2=21. (2)3x 2+x-1=0,x=32)1(34112⨯-⨯⨯-±-, x 1=6131--,x 2=6131+-. (3)x=22)1(24)3()3(2⨯-⨯⨯--±--, x 1=4173+,x 2=4173-. (4)x=42)1(44)4()4(2⨯-⨯⨯--±--, x 1=221+,x 2=221-.9.A 10.C 11.9. 12.a ≥1. 13.014.(1)x=12)1(14442⨯-⨯⨯-±-, x 1=-2+5,x 2=-2-5; (2)x=12014222⨯⨯⨯-±-; x 1=0,x 2=-2;(3)x 2-25x+10=0,∵Δ=(-25)2-4×1×10=-20<0,∴此方程无实数解; (4)x 2+4x-2=0,x=12)2(14442⨯-⨯⨯-±-,x 1=-2+6,x 2=-2-6. 15.(1)∵1为原方程的一个根,∴1+a+a-2=0.∴a=21.代入方程得:x 2+21x-23=0. 解得x 1=1,x 2=-23, ∴a 的值为21,方程的另一个根为-23.(2)证明:在x 2+ax+a-2=0中,Δ=a 2-4a+8=(a-2)2+4>0,∴不论a 取何实数,该方程都有两个不相等的实数根.挑战自我16.(1)∵a=m ,b=-(m+2),c=2,∴Δ=b 2-4ac=(m+2)2-8m=m 2+4m+4-8m=m 2-4m+4=(m-2)2≥0. ∴方程总有两个实数根.(2)∵x=a ac b b 242-±-=mm m 2)2(22-±+∴x 1=1,x 2=m 2. ∵方程的两个实数根都是整数, ∴m2是整数.∴m=±1或m=±2. 又∵m 是正整数,∴m=1或2.。

新人教版九年级数学上21.2.1公式法同步测试含答案

新人教版九年级数学上21.2.1公式法同步测试含答案

《21.2.1 公式法》一、选择题:1.一元二次方程x(x ﹣2)=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个实数根3.已知关于x 的一元二次方程(x+1)2﹣m=0有两个实数根,则m 的取值范围是( )A .m ≥﹣B .m ≥0C .m ≥1D .m ≥24.关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <B .k >C .k <且k ≠0D .k >且k ≠0二、填空题5.一元二次方程x 2+x=3中,a=______,b=______,c=______,则方程的根是______.6.若x 1,x 2分别是x 2﹣3x+2=0的两根,则x 1+x 2=______.7.已知三角形两边长是方程x 2﹣5x+6=0的两个根,则三角形的第三边c 的取值范围是______.8.已知关于x 的一元二次方程(k+1)x 2﹣2x ﹣1=0有两个不相同的实数根,则k 的取值范围是______.9.写出一个一元二次方程,使它有两个不相等的实数根______.10.一次二元方程x 2+x+=0根的情况是______.11.若关于x 的方程ax 2+2(a+2)x+a=0有实数解,那么实数a 的取值范围是______.12.已知代数式7x(x+5)与代数式﹣6x 2﹣37x ﹣9的值互为相反数,则x=______.13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k 的取值范围是______.14.对于实数a ,b ,定义运算“﹡”:a ﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2=______.三、解答题(共4小题,满分0分)15.用公式法解方程:①4x2﹣4x+1=0②x2﹣x﹣3=0.16.不解方程,判断下列方程的根的情况:①2x2+3x﹣4=0②3x2+2=2x③x2=x﹣1.17.已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0,求证:无论m取任何实数时,方程恒有实数根.18.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.《21.2.1 公式法》参考答案与试题解析一、选择题:1.一元二次方程x(x﹣2)=0根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是( ) A.m≥﹣B.m≥0 C.m≥1 D.m≥2【解答】解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是( )A .k <B .k >C .k <且k ≠0D .k >且k ≠0【解答】解:根据题意得k ≠0且△=(﹣1)2﹣4k >0,解得k <且k ≠0.故选C .二、填空题5.一元二次方程x 2+x=3中,a= ,b= 1 ,c= ﹣3 ,则方程的根是 x 1=﹣1+,x 2=﹣1﹣ . 【解答】解:移项得,x+x ﹣3=0∴a=,b=1,c=﹣3∴b 2﹣4ac=7∴x 1=﹣1+,x 2=﹣1﹣.6.若x 1,x 2分别是x 2﹣3x+2=0的两根,则x 1+x 2= 3 .【解答】解:根据题意得x 1+x 2=3.故答案为3.7.已知三角形两边长是方程x 2﹣5x+6=0的两个根,则三角形的第三边c 的取值范围是 1<c <5 .【解答】解:∵三角形两边长是方程x 2﹣5x+6=0的两个根,∴x 1+x 2=5,x 1x 2=6∵(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=25﹣24=1∴x 1﹣x 2=1,又∵x 1﹣x 2<c <x 1+x 2,∴1<c <5.故答案为:1<c <5.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是k>﹣2且k≠﹣1 .【解答】解:根据题意得k+1≠0且△=(﹣2)2﹣4(k+1)•(﹣1)>0,解得k>﹣2且k≠﹣1.故答案为k>﹣2且k≠﹣1.9.写出一个一元二次方程,使它有两个不相等的实数根x2+x﹣1=0 .【解答】解:比如a=1,b=1,c=﹣1,∴△=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.10.一次二元方程x2+x+=0根的情况是方程有两个相等的实数根.【解答】解:∵△=12﹣4×=0,∴方程有两个相等的实数根故答案为方程有两个相等的实数根.11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1 .【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x= 1±.【解答】解:根据题意得:7x(x+5)﹣6x2﹣37x﹣9=0,这里的:x2﹣2x﹣9=0,这里a=1,b=﹣2,c=﹣9,∵△=4+36=40,。

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法

21.2 解一元二次方程21.2.2 公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程 (一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274x x -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭, 2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=,112x =+212x =-2. 用配方法解一元二次方程的步骤?(出示课件3) 学生口答:化:把原方程化成 x 2+px +q = 0 的形式. 移项:把常数项移到方程的右边,如x 2+px =-q. 配方:方程两边都加上一次项系数一半的平方. x 2+px +(2p )2=-q +(2p)2 开方:根据平方根的意义,方程两边开平方. (x+2p )2=-q +(2p )2 求解:解一元一次方程. 定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知 探究一 公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5) 学生答:ax 2+bx +c=0(a ≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c. 二次项系数化为1,得x 2+b a x=-ca. 配方,得x 2+b a x+2()2b a =-ca+2()2b a ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?谈谈你的看法. 师生共同完善认知:(出示课件7)20,40,≠>a a当240,-b ac ≥.2b x a +=±x 1=-b+√b 2-4ac 2a , x 2=-b -√b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a ,b ,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac ≥0时,将a ,b ,c 代入式子x=2b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0; (出示课件9) 学生思考后,共同解答如下: 解:∵a=1,b=-4,c=-7, ∴b 2-4ac=(-4)2-4×1×(-7)=44>0.=x∴12=+x 22=-x(2)2x 2x+1=0;(出示课件10) 教师问:这里的a 、b 、c 的值分别是什么?解:2, 1.==-=a b c224(4210.△=-=--⨯⨯=b ac则方程有两个相等的实数根:122==-=-=b x x a(3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --= 1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根46.10±===x12464611,.10105+-====-x x(4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=ac b △方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac >0时,一元二次方程有两个不相等的实数根; ⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根; ⑶当∆=b 2-4ac <0时,一元二次方程没有的实数根. 教师问:用公式法解一元二次方程的步骤是什么? 学生思考后,共同总结如下:(出示课件14) 用公式法解一元二次方程的一般步骤: 1.将方程化成一般形式,并写出a ,b ,c 的值. 2.求出 ∆ 的值.3. (1)当 ∆ >0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答. 解:a=3, b=-6, c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.=x1=x 2=x探究二 一元二次方程的根的情况 出示课件16:用公式法解下列方程:(1)x 2+x -1=0;(2)x 2-+3=0;(3)2x 2-2x +1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗? ⑴x 2+2x -8=0; ⑵x 2=4x -4; ⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解. 师生共同总结如下:(出示课件18) 一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac >0 时,有两个不等的实数根:12,;x x ==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a -== (3)当b 2-4ac<0时,没有实数根.一般的,式子 b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1 不解方程,判断下列方程根的情况: (1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x ²-2mx+4(m-1)=0. 师生共同讨论解答如下: 解:⑴a =﹣1,b=,c =﹣6, ∵△= b 2-4ac=24-4×(﹣1)×(-6)=0. ∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4 ,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3 ,c=1,∵△= b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m ,c=4(m-1),∵△= b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D ⑵D出示课件23:例2 m 为何值时,关于x 的一元二次方程 2x 2-(4m+1)x+2m 2-1=0:(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?学生思考后,教师板演解题过程: 解:a=2,b=-(4m+1),c=2m 2-1,b 2-4ac=〔-(4m+1)〕2-4×2(2m 2-1)=8m+9.(1)若方程有两个不相等的实数根,则b 2-4ac >0,即8m+9>0,∴m >98-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=98-;(3)若方程没有实数根,则b2-4ac <0即8m+9<0, ∴m <98-.∴当m >98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m <98-时,方程没有实数根.出示课件24:m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b 2−4ac=[−(m −1)]2−4[−3(m+3)] =m 2+10m+37 =m 2+10m+52−52+37 =(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0, ∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根. (三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <12.解方程x 2﹣2x ﹣1=0.3.方程x 2-4x +4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等 的实根,则k 的取值范围是( )A.k>-1B.k>-1且k ≠ 0C.k<1D.k<1且k ≠05.已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.参考答案: 1.D2.解:a=1,b=﹣2,c=﹣1, △=b 2﹣4ac=4+4=8>0, 所以方程有两个不相等的实数根,2x 12±===±1211x x ==-3.B4.B5.证明:∵没有实数根,∴ 4-4(1-m)<0, ∴m<0.对于方程 x 2+mx =1-2m ,即. ,∵,∴△>0.∴x 2+mx =1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。

21.2.2 公式法 初中数学人教版九年级上册课后练习(含答案)

21.2.2 公式法 初中数学人教版九年级上册课后练习(含答案)

21.2.2 公式法一、单选题1.若关于的一元二次方程没有实数根,则实数的取值范围是()A.B.C.D.2.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根3.当时,下列一元二次方程中两个根是实数的是()A.B.C.D.4.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤15.若关于x的方程的一个根是2,则a的值为()A.B.C.或D.或6.形如的方程,下列说法错误的是()A.时,原方程有两个不相等的实数根B.时,原方程有两个相等的实数根C.时,原方程无实数根D.原方程的根为7.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠58.定义:如果一元二次方程满足,那么我们称这个方程为“美丽”方程.已知是“美丽”方程,且有两个相等的实数根,则下列结论正确的是()A.B.C.D.9.一元二次方程的较大实数根在下列数轴中哪个范围之内()A.B.C.D.10.用求根公式法解得某方程的两个根互为相反数,则()A.B.C.D.二、填空题11.方程的解为________.12.关于的一元二次方程有两个相等的实数根,则的值是______.13.若关于x的一元二次方程x2+2x+a=0有两个不同的实数根,则a应满足的条件_________________ 14.已知关于的一元二次方程,若,则________.15.关于x的一元二次方程有两个不相等的实数根,则m的最小整数值是____.16.若k为实数,关于x的一元二次方程(k﹣1)x2﹣2(k+1)x+k+5=0有实数根,则实数k的取值范围为__.17.一元二次方程,当=________时,方程有两个相等的实根;当_______时,方程有两个不相等的实根;当=______时,方程有一个根为0.18.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.三、解答题19.已知关于的方程有两个不相等的实数根.求的取值范围;若,且方程的两个实数根都是整数,求的值.20.若关于的一元二次方程无实数根,求的取值范围.21.公式法解方程:(1);(2);(3).22.李老师在课上布置了一个如下的练习题:若,求的值.看到此题后,晓梅立马写出了如图所示的解题过程:解:,①,②.③晓梅上述的解题步骤哪一步出错了?请写出正确的解题步骤.23.已知:关于x的方程,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.参考答案1.C【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.【详解】解:根据题意得△=(-2)2-4m<0,解得m>1.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.D【分析】先计算判别式的值,然后根据判别式的意义进行判断.【详解】解:∵,∴方程没有实数根.故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.A【分析】根据公式法,判断选项中的一元二次方程的实数根是否是题目中给出的那个.【详解】一元二次方程,当,的时候,它有两个实数根.故选:A.【点睛】本题考查一元二次方程的解法——公式法,解题的关键是掌握求根公式.4.A【分析】根据一元二次方程根的判别式即可求解.【详解】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知根的判别式. 5.D【分析】将2代入方程,得到关于a的方程,求解方程即可;【详解】把代入方程,得,即,所以,解得或,故选D.【点睛】本题主要考查了一元二次方程的根的知识点,准确理解是解题的关键.6.D【分析】根据应用直接开平方法求解的条件逐项判断即得答案.【详解】解:A、当时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B、当时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C、当时,原方程无实数根,故本选项说法正确,不符合题意;D、当时,原方程的根为,故本选项说法错误,符合题意;故选:D.【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.7.C【分析】由方程有实数根可知根的判别式b2﹣4ac≥0,结合二次项的系数非零,可得出关于a的一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:,解得:a≥1且a≠5,故选:C.【点睛】本题考查了根的判别式,解题的关键是得出关于a的一元一次不等式组,由根的判别式结合二次项系数非零得出不等式组是关键.8.D【分析】根据已知得出方程有x=-1,再判断即可.【详解】把x=−1代入方程得出a−b+c=0,∴b=a+c,∵方程有两个相等的实数根,∴△=,∴a=c,故选D.【点睛】此题考查根的判别式,解题关键在于利用有两个相等的实数根.9.B【分析】利用公式法解方程求得较大的实数根,根据无理数的估算得到这个实数根的范围,即可判断.【详解】解方程得.设是方程的较大的实数根,,,,则,只有B符合要求.故选:B.【点睛】本题考查了公式法解一元二次方程,无理数的估算以及在数轴上表示不等式的解集,熟练掌握公式法解一元二次方程和无理数大小的估算是解题的关键.10.A【分析】根据求根公式法求得一元二次方程的两个根,由题意得,可求出.【详解】方程有两根,且.求根公式得到方程的根为,两根互为相反数,所以,即,解得.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.11.或【分析】首先把方程转化为一般形式,再利用公式法求解.【详解】(x-1)(x+3)=12x2+3x-x-3-12=0x2+2x-15=0x=,∴x1=3,x2=-5故答案是:3或-5.【点睛】考查了学生解一元二次方程的能力,解决本题的关键是正确理解运用求根公式.12.9【分析】根据方程两个相等的实数根可得根的判别式,求出方程的解即可.【详解】解:一元二次方程有两个相等的实数根,△,解得:,故答案为:9.【点睛】本题考查了根的判别式.一元二次方程的根与△有如下关系:①当△时,方程有两个不相等的实数根;②当△时,方程有两个相等的实数根;③当△时,方程无实数根.上面的结论反过来也成立.13.a<1【分析】若一元二次方程x2+2x+a=0有两个不同的实数根,则根的判别式,建立关于a的不等式,求出a的取值范围.【详解】解:∵方程有两个不同的实数根,a=1,b=2,c=a,∴,解得:,故答案为:.【点睛】本题考查了一元二次方程的根的判别式:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【解析】【分析】找出方程中二次项系数a,一次项系数b及常数项c,将a,b及c的值代入计算,即可求出m的值.【详解】∵a=1,b=m,c=6,∴∴m=.故答案为:.【点睛】本题考查一元二次方程的解法,掌握公式法是解题的关键.15.0【分析】根据一元二次方程根的存在性,利用判别式求解即可;【详解】一元二次方程有两个不相等的实数根,∴△=4,∴故答案为0【点睛】本题考查一元二次方程的根的存在性;熟练掌握利用判别式确定一元二次方程的根的存在性是解题的关键.16.且【分析】根据二次项系数非零及一元二次方程根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵关于x的一元二次方程(k﹣1)x2﹣2(k+1)x+k+5=0有实数根,∴∴且故答案为:且.【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式,找出关于k的一元一次不等式组是解题的关键.17.-1 >-1 0【分析】先计算,当4+4m=0,方程有两个相等的实根;当4+4m>0,方程有两个不等实根;把x=0代入方程,得-m=0;然后分别解方程或不等式即可得到对应得答案.【详解】∵,,,,当,即时,方程有两个相等的实根;当,即时,方程有两个不等实根;令,则有,即时,方程有一个根为0.故答案为:;;0.【点睛】本题考查了一元二次方程()的根的判别式.当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.18.且k≠0【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠0故答案为﹣≤k<且k≠0.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.19.;,或.【分析】(1)关于x的方程x2-2x-2n=0有两个不相等的实数根,即判别式△=b2-4ac>0,即可得到关于n的不等式,从而求得n的范围;(2)利用配方法解方程,然后根据n的取值范围和限制条件“方程的两个实数根都是整数”来求n的值即可.【详解】∵关于的方程的二次项系数、一次项系数、常数项,∴,解得;由原方程,得,解得,∵方程的两个实数根都是整数,且,不是负数,∴,且是完全平方形式,∴,或,解得,或.【点睛】本题考查了一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20.【分析】确定a、b、c,计算,根据方程没有实数根得关于m的不等式,继而根据一元二次方程的定义可得答案.【详解】∵,,,∴,∵方程无实数根,∴,解得,又根据一元二次方程的定义,解得,故答案为:.【点睛】本题考查了一元二次方程()的根的判别式:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.21.(1);(2);(3).【分析】(1)直接利用公式法求解即可;(2)方程整理成一般式后,直接利用公式法求解即可;(3)方程整理成一般式后,直接利用公式法求解即可.【详解】(1),,,即;(2),,,,,;(3),整理,得,,,,.【点睛】本题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键.22.晓梅的解题步骤在第③步出错了,正确解题步骤详见解析.【分析】根据的值非负即可判断出错的解题步骤,根据直接开平方法和的非负性解答即可.【详解】解:晓梅的解题步骤在第③步出错了.正确解题步骤如下:,,.不论为何值都不等于,.【点睛】本题考查了一元二次方程的解法和代数式求值,解决此类问题时,我们需要注意所求代数式的范围,本题容易忽略的值是非负的,所以要找出题干所隐含的条件再解题.23.(1)证明见解析;(2)△ABC的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键。

人教版九年级上册数学公式法同步习题

人教版九年级上册数学公式法同步习题

21.2 解一元二次方程21.2.2 公式法1.一元二次方程ax2+bx+c=0(a≠0),当__b2-4ac≥0___时,x=-b±b2-4ac2a,这个式子叫做一元二次方程ax2+bx+c=0的__求根公式___.2.式子__b2-4ac___叫做一元二次方程ax2+bx+c=0根的判别式,常用Δ表示,Δ>0⇔ax2+bx+c =0(a≠0)有__有两个不等的实数根___;Δ=0⇔ax2+bx+c=0(a≠0)有__两个相等的实数根___;Δ<0⇔ax2+bx+c=0(a≠0)__没有实数根___.知识点1:根的判别式1.下列关于x的方程有实数根的是( C )A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=02.(2014·兰州)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,下列选项中正确的是( B ) A.b2-4ac=0 B.b2-4ac>0C.b2-4ac<0 D.b2-4ac≥03.一元二次方程x2-4x+5=0的根的情况是( D )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.利用判别式判断下列方程的根的情况:(1)9x2-6x+1=0;解:∵a=9,b=-6,c=1,∴Δ=(-6)2-4×9×1=0,∴此方程有两个相等的实数根(2)8x2+4x=-3;解:化为一般形式为8x2+4x+3=0,∵a=8,b=4,c=3,∴Δ=42-4×8×3=-80<0,∴此方程没有实数根(3)2(x2-1)+5x=0.解:化为一般形式为2x2+5x-2=0,∵a=2,b=5,c=-2,∴Δ=52-4×2×(-2)=41>0,∴此方程有两个不相等的实数根知识点2:用公式法解一元二次方程5.方程5x=2x2-3中,a=__2___,b=__-5___,c=__-3___,b2-4ac=__49___.6.一元二次方程x2-x-6=0中,b2-4ac=__25___,可得x1=__3___,x2=__-2___.7.方程x 2-x -1=0的一个根是( B ) A .1- 5 B .1-52C .-1+ 5D .-1+528.用公式法解下列方程:(1)x 2-3x -2=0;解:x 1=3+172,x 2=3-172(2)8x 2-8x +1=0;解:x 1=2+24,x 2=2-24(3)2x 2-2x =5.解:x 1=1+112,x 2=1-1129.(2014·广东)关于x的一元二次方程x2-3x+m=0有两个不相等的实数根,则实数m的取值范围为( B )A.m>94B.m<94C.m=94D.m<-9410.若关于x的一元二次方程kx2-2x-1=0有实数根,则实数k的取值范围是( C )A.k>-1 B.k<1且k≠0C.k≥-1且k≠0 D.k>-1且k≠011.已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数根,则b 的值是__2___.12.关于x 的方程(a+1)x2-4x-1=0有实数根,则a满足的条件是__a≥-5___.13.用公式法解下列方程:(1)x(2x-4)=5-8x;解:x1=-2+142,x2=-2-142(2)(3y -1)(y +2)=11y -4.解:y 1=3+33,y 2=3-3314.当x 满足条件⎩⎪⎨⎪⎧x +1<3x -3,12(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根. 解:解不等式组得2<x<4,解方程得x 1=1+5,x 2=1-5,∴x =1+ 515.(2014·梅州)已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.解:(1)a=12,另一个根为x=-32(2)∵Δ=a2-4(a-2)=(a-2)2+4>0,∴无论a取何实数,该方程都有两个不相等的实数根16.关于x的一元二次方程(a-6)x2-8x+9=0有实数根.(1)求a的最大整数值;(2)当a取最大整数值时,求出该方程的根.解:(1)∵关于x的一元二次方程(a-6)x2-8x+9=0有实根,∴a-6≠0,Δ=(-8)2-4×(a-6)×9≥0,解得a≤709且a≠6,∴a的最大整数值为7 (2)当a=7时,原一元二次方程变为x2-8x+9=0.∵a=1,b=-8,c=9,∴Δ=(-8)2-4×1×9=28,∴x=-(-8)±282=4±7,即x1=4+7,x2=4-717.(2014·株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC 三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a-c)=0,∴a +c-2b+a-c=0,∴a-b=0,∴a=b,∴△ABC是等腰三角形(2)∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形(3)当a=b=c时,可整理为2ax2+2ax=0,∴x2+x=0,解得x1=0,x2=-1先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版数学九年级上册:21.2.2 公式法 练习课件(共31张PPT)

人教版数学九年级上册:21.2.2 公式法  练习课件(共31张PPT)

Hale Waihona Puke 1 3且a≠0.
(2)若关于x的方程kx2-3x- 9 =0有实数根,则实数k 4
的取值范围是 k≥-1 .
5.已知关于x的一元二次方程ax2+bx+1=0. (1)当b=a+2时,利用根的判别式判断方程根的情况; 解:(1)∵a≠0,b=a+2,c=1,
∴Δ=b2-4a=(a+2)2-4a=a2+4a+4-4a =a2+4.
b
b2≥4ac.请你参考上面的方法,写出小明所编题目的
证明过程. 证明:∵ 4a c =-2,
b
∴4a+c=-2b.
∴4a+2b+c=0.
∵把x=2代入一元二次方程ax2+bx+c=0(a≠0), 恰好得到4a+2b+c=0, ∴一元二次方程ax2+bx+c=0有一个根是x=2. ∴Δ=b2-4ac≥0,即b2≥4ac.
∵a2>0,∴Δ>0. ∴方程有两个不相等的实数根.
(2)若方程有两个相等的实数根,写出一组满足条件 的a,b的值,并求此时方程的根. (2)∵方程有两个相等的实数根, ∴Δ=b2-4a=0. 若b=2,a=1,则方程变形为x2+2x+1=0, 解得x1=x2=-1(a,b取值不唯一).
知识点二 用公式法解一元二次方程
(2)x(2x-5)=4x-5.
解:(1)x1=
5
3
10
,x2=
5
3
10
.
(2)x1= 9 4 41 ,x2= 9 4 41 .
14.小明遇到这样一个问题:已知 b c=1,求证:
a b2-4ac≥0.经过思考,小明的证明过程如下:∵
b
c
a
=1,∴b-c=a.∴a-b+c=0.接下来,小明想:若
6.用公式法解方程-x2+3x=1时,先求出a、b、c

人教版数学九年级上册 21.2.2 公式法


小结
用公式法解一元二次方程的关键是解题步骤:
1.先写出a,b,c
2.再求出 b2 4ac
3.最后代入公式
当 b2 4ac 0 时,有两个实数根 当 b2 4ac 0 时,方程无实数

7、虚弱的人会游说各地的不幸,而坚强的人只会在沉默中变得更强。 26.同样的一瓶饮料,便利店里块钱,五星饭店里块。很多时候,一个人的价值取决于所在的位置。 22.忍无可忍,就重新再忍! 87.把生活当作游戏,谁游戏人生,生活就惩罚谁,这不是劝诫,而是--规则! 57.不好用借口搪塞失败,不好让骄傲占据心灵。 82.当你想要放弃的时候,想想当初为什么要开始。 32.如果有一天我们在路上重逢,而我告诉你:“我现在很幸福。”我一定是伪装的如果只能够跟你重逢,而不是共同生活,那怎么会幸福呢? 告诉你我很幸福,只是不想让你知道我其实很伤心。
2. 求出 ∆ 的值。 3. (a)当 ∆ >0 时,代入求根公式 : x b b2 4ac
写出一元二次方程的根(有两个不相等的实2a数根):
x1 = ______ ,x2 = ______ 。 (b)当∆=0时,代入求根公式:
x1
x2
b 2a
写出一元二次方程的根(有两个相等的实数根):
x1 = x2 = ______ 。 (b)当∆<0时,方程无实数根。
x2+px+ ( p )2 = -q+ ( p )2
方程右边
开方:根据平方根的2 意义,方程两边2 开平方。是非负数
( x+ p )2 =-q+ ( p )2
2
2
求解:解一元一次方程。
定解:写出原方程的解。
新课导入
一元二次方程的 一般形式是什么?
ax2+bx+c = 0(a≠0)

人教版九年级上册数学 21.2.1 ---21.2.2同步练习题含答案

21.2.1 配方法1.用配方法解方程x2-4x-4=0时,原方程应变形为( )(A)(x-2)2=0 (B)(x-2)2=8(C)(x+2)2=0 (D)(x+2)2=82.已知关于x的方程(2x-1)2=3-k没有实数根,那么k的取值范围是.3.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m-n)2020= .4.解方程:(1)4x2=81;(2)x2+2x+1=4;(3)x2-4x-7=0.21.2.2 公式法1.一元二次方程x2-8x=-17根的情况是( )(A)无实数根(B)有两个相等的实数根(C)有两个不相等的实数根(D)无法确定2.已知一元二次方程x2-x-3=0的较小根为x1,则下面对x1的估计正确的是( )(A)-2<x1<-1 (B)-3<x1<-2(C)2<x1<3 (D)-1<x1<03.若一元二次方程x2+mx+2=0有两个相等的实数根,则m的值是.4.将方程(4y-3)(3y-1)=4化成一般形式为ay2+by+c=0,则b2-4ac= ,此方程的根是.5.解方程(1)2x2-4x-1=0;(2)y(y-1)+2y-2=0.21.2.1 配方法1.B2.k>33.14.解:(1)由原方程,得x2=,两边开平方,得x=±,解得x1=4.5,x2=-4.5.(2)配方,得(x+1)2=4,两边开平方,得x+1=±2,解得x1=-3,x2=1.(3)移项,得x2-4x=7,配方,得x2-4x+4=11,即(x-2)2=11,两边开平方,得x-2=±,解得x 1=2+,x2=2-.21.2.2 公式法1.A 2.A 3.±2 4.2175.解:(1)因为a=2,b=-4,c=-1,所以Δ=b2-4ac=(-4)2-4×2×(-1)=24>0, 方程有两个不相等的实数根,x==1±,即x1=1+,x2=1-.(2)方程化为y2+y-2=0,a=1,b=1,c=-2,所以Δ=b2-4ac=(-1)2-4×1×(-2)=9>0,方程有两个不相等的实数根,y=,即y1=-2,y2=1.21.2.2公式法一、选择题1. 已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.可能有且只有一个实数根D.没有实数根2.用公式法解方程(x+2)2=6(x+2)﹣4时,b2﹣4ac的值为()A.52 B.32C.20 D.﹣123. 用求根公式求得方程x2-2x-3=0的解为( )A.x1=3,x2=1 B.x1=3,x2=-1C.x1=-3,x2=1 D.x1=-3,x2=-14.以下是方程3x2-2x=-1的解的情况,其中正确的是( ) A.∵b2-4ac=-8<0,∴方程有实数根B.∵b2-4ac=-8<0,∴方程无实数根C.∵b2-4ac=8>0,∴方程有实数根D.∵b2-4ac=8>0,∴方程无实数根5. 若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )6.一元二次方程x2﹣px+q=0的两个根是(4q<p2)()A.B.C.D.7.下列一元二次方程中,有两个不相等实数根的是( )A.x2+6x+9=0 B.x2=xC.x2+3=2x D.(x-1)2+1=08. 一元二次方程x2+x-1=0的根是( )A.x=1-B.x=C.x=-1+D.x1=,x2=9.已知关于x的一元二次方程x2+2x+m-2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为( )A.6 B.5 C.4 D.310. 关于x的一元二次方程(k-1)x2-2x+3=0有两个不相等的实数根,则k的取值范围是( )A.k<B.k<且k≠1C.0≤k≤D.k≠1二、填空题11.一元二次方程x2+x=3中,a=,b=,c =,则方程的根是.12.完成下面的解题过程:用公式法解方程:2x(x﹣1)+6=2(0.5x+3)解:整理,得.a=,b=,c=.b2﹣4ac==>0.x==,x1=,x2=.13.若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为____.14.等腰三角形的边长是方程x2-2x+1=0的两根,则它的周长为.15.把方程(x+3)(x﹣1)=x(1﹣x)整理成ax2+bx+c=0的形式,b2﹣4ac的值是.16.定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)满足a +b+c=0,那么我们称这个方程为“凤凰”方程.已知关于x的方程x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,则mn=______.17.用公式法解方程2x2﹣x﹣1=0的根是.三、解答题18.用公式法解方程:(1)x2+x-3=0;(2)3x2+1=2x;(3)2(x-1)2-(x+1)(1-x)=(x+2)2.19.不解方程,判断下列一元二次方程根的情况:(1)9x2+6x+1=0;(2)16x2+8x=-3.20.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.已知关于x的方程x2-(2k+1)x+4(k-12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰三角形ABC的一边长a=4,另两边b,c恰好是这个方程的两个实数根,求△ABC的周长.答案1. D2. C3. B4. B5. B6. A7. B8. D9. B10. B11. 1 ﹣3 x 1=﹣1+ x2=﹣1﹣12. 2x2﹣3x=0;2,﹣3,0;(﹣3)2﹣4×2×0,9;,;0,.13.7 214. 3+115. 2x2+x﹣3=0;25.16.-217.18. (1)∵a=1,b=1,c=-3,∴Δ=b2-4ac=12-4×1×(-3)=13>0, ∴x==,∴x1=,x2=.(2)整理,得3x2-2x+1=0,a=3,b=-2,c=1,Δ=(-2)2-4×3×1=0,x=,所以x1=x2=.(3)整理,得2x2-8x-3=0,a=2,b=-8,c=-3,Δ=(-8)2-4×2×(-3)=88,x==, 所以x 1=,x 2=.19. 解:(1)∵a =9,b =6,c =1,∴Δ=b 2-4ac =36-36=0, ∴此方程有两个相等的实数根(2)化为16x 2+8x +3=0,∵a =16,b =8,c =3,∴Δ=b 2-4ac =64-4×16×3=-128<0,∴此方程没有实数根 20. 解:(1)a ≠0,Δ=b 2-4a =(a +2)2-4a =a 2+4a +4-4a =a 2+4,∵a 2>0,∴Δ>0,∴方程有两个不相等的实数根 (2)∵方程有两个相等的实数根,∴Δ=b 2-4a =0,若b =2,a =1,则方程变形为x 2+2x +1=0,解得x 1=x 2=-1 21. 解:(1)∵Δ=(2k +1)2-4×4(k -12)=(2k -3)2≥0,故方程总有两个实数根(2)若底边为a =4,则b =c ,Δ=(2k -3)2=0,∴k =32,x 1=x 2=2,有b +c =a ,不能构成三角形;若腰为a =4时, 显然4是该方程的一个根,代入可得k =52,从而解得x 1=2,x 2=4,∴三边为4,4,2,周长为10。

人教版九年级数学上册第21章 一元二次方程2 公式法

定的?
( − 的值)
小组讨论
两人一组编题互判,首先根据根的判别式独立编制
出三个不同根的情况的一元二次方程,然后将所编
方程让同桌判断根的情况,并用公式法求解.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
教师讲评
知识点1:根的判别式(难点)
一般地,式子 − 叫方程a +bx+c=0(a≠0)根的判别式.
元一次方程)
自主探究
2.请同学们利用配方法解方程 ² + + = ≠ .
(原方程可变形为
所以 +




+

=

,


,

− + −
− − −
=
, =
)


自主探究
3.请同学们思考以下问题:
2.回忆用配方法解方程的一般步骤.
(1)移常数项,二次项系数化为1;(2)配方, 两边都加上一次项系数
一半的平方;(3)写成(x+n)²=p(p≥0)的形式;(4)直接开平方法解方程.
对于一元二次方程的一般形式ax2+bx+c=0(a≠0),
能不能利用配方法求出它的解呢?应该怎样做呢?
请同学们任意选择一个方程求解:
洁美,产生热爱数学的情感.
旧知回顾
1.用配方法解下列方程:
(1)2x2-9x+8=0 ;
(2)3x2+2x+1=0.
(1)原方程可变形为 −


(2)原方程可变形为 +


=

,所以

21.2.2公式法(同步教学设计)2024-2025学年九年级数学上册同步精品课堂(人教版)

教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的公式法知识点和技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
5. 练习题库:准备一些与本节课内容相关的练习题,包括不同类型的一元二次方程求解题目,以及一些实际问题的解决题目。这样可以帮助学生巩固所学知识,并进行实际应用。
6. 教学工具:准备黑板、粉笔、多媒体投影仪等教学工具,以便进行讲解和展示。
7. 教学课件:制作与本节课内容相关的教学课件,包括教学目标、教学内容、实例讲解、练习题等,以便进行多媒体教学。
- 帮助学生提前了解本节课的课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过一个实际问题案例,引出公式法的重要性,激发学生的学习兴趣。
- 讲解知识点:详细讲解公式法的推导过程和应用步骤,结合实例帮助学生理解。
- 组织课堂活动:设计小组讨论,让学生共同探讨如何应用公式法解决实际问题。
- 鼓励学生进行自我评估和反思,总结自己的学习成果和不足,制定改进计划,不断提高自己的学习效果。
- 鼓励学生参加数学竞赛或挑战赛,如数学奥林匹克、数学挑战赛等,以提高自己的数学水平和竞争力。
2. 拓展要求:鼓励学生利用课后时间进行自主学习和拓展。教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
- 要求学生阅读《数学之美》一书中关于一元二次方程的章节,并回答相关问题,以加深对一元二次方程和公式法的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2.2公式法(第1课时)同步练习
一、选择题
1.方程542=+x x 化为一般形式后,a 、b 、c 的值分别为( )
A.
a =4,
b =1,
c =5 B. a =1,b =4,c =5 C. a =4,b =1,c =-5 D. a =4,b =-5,c =1
2.解下列方程时,最适合用求根公式的是( ) A. ()0922
=-+x B. 1412=x C. 0201322=-+x x D. 142=-x x 3.方程0632=+-x x 的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法确定是否有实数根
4.已知关于x 的一元二次方程022=-+a x x 有两个相等的实数根,则a 的值是( )
A.1
B.-1
C.
41 D. 41- 5.方程x 2+x -1=0的一个根是( )
A.1-5
B.251-
C.-1+5
D.2
51+- 二、解答题
6.不解方程,判定下列一元二次方程根的情况:
(1)9x 2+6x +1=0; (2)3(x 2-1)-5x =0.
7.用公式法解下列方程:
(1)2x 2-3x +1=0; (2)1-x =3x 2;
(3)2x 2-3x -1=0;
(4)4x 2-4x -1=0.
8.用公式法解一元二次方程:
(1)x 2+4x -1=0;
(2)x 2+2x =0;
(3)x 2+10=25x ;
(4)x (x -4)=2-8x .
9.已知关于x 的方程x 2+ax +a -2=0,若该方程的一个根为1,求a 的值及该方程的另一根.
10.已知322
1--=x x y ,72+=x y ,当x 取何值时分别满足下列条件:
(1)21y y =;
(2)0221=+y y .
参考答案
1.C.;
2.C ;
3.C ;
4.B ;
5.D
6.(1)∵a =9,b =6,c =1,∴Δ=b 2-4ac =36-36=0.
∴此方程有两个相等的实数根;
(2)化为一般形式为:3x 2-5x -3=0.
∵a =3,b =-5,c =-3,
∴Δ=(-5)2-4×3×(-3)=25+36=61>0.
∴此方程有两个不相等的实数根.
7.(1)x =22124)3()3(2⨯⨯⨯--±--, x 1=1,x 2=2
1. (2)3x 2
+x -1=0,x =32)1(34112⨯-⨯⨯-±-, x 1=6131--,x 2=6131+-. (3)x =22)1(24)3()3(2⨯-⨯⨯--±--, x 1=4173+,x 2=4
173-. (4)x =42)1(44)4()4(2⨯-⨯⨯--±--, x 1=
221+,x 2=221-. 8.(1)x =1
2)1(14442⨯-⨯⨯-±-, x 1=-2+5,x 2=-2-5; (2)x =12014222⨯⨯⨯-±-; x 1=0,x 2=-2;
(3)x 2-25x +10=0,
∵Δ=(-25)2-4×1×10=-20<0,∴此方程无实数解; (4)x 2+4x -2=0,x =1
2)2(14442⨯-⨯⨯-±-,x 1=-2+6,x 2=-2-6. 9. ∵1为原方程的一个根,∴1+a +a -2=0.∴a =21.代入方程得:x 2+21x -2
3=0. 解得x 1=1,x 2=-23,∴a 的值为21,方程的另一个根为-2
3. 10.(1)2,521-==x x (2)21,121=
=x x。

相关文档
最新文档