最新人教A版选修2-1高中数学同步习题第一章常用逻辑用语1.3和答案
高中数学第1章常用逻辑用语:充分条件与必要条件限时规范训练含解析新人教A版选修2_1

高中数学新人教A版选修2_1:第一章 1.2基础练习1.(2019年湖北恩施期末)使|x|=x成立的一个必要不充分条件是()A.x≥0B.x2≥-xC.log2(x+1)>0D.2x<1【答案】B【解析】∵|x|=x⇔x≥0,∴选项A是充要条件.对于选项B,由x2≥-x得x≥0或x≤-1,故选项B是必要不充分条件.同理,选项C是充分不必要条件,选项D是既不充分也不必要条件.故选B.2.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当“直线a和直线b相交”时,“平面α和平面β相交”成立;当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.3.(2020年山西太原模拟)已知a,b都是实数,那么“2a>2b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】若2a>2b,则2a-b>1,∴a-b>0,∴a>b.当a=-1,b=-2时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.若a2>b2,则|a|>|b|.当a=-2,b =1时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.故选D.4.下面四个条件中,使a>b成立的充分不必要的条件是()A.a>b+1 B.a>b-1C.a2>b2D.a3>b3【答案】A【解析】a>b+1⇒a>b,a>b⇒/ a>b+1.5.已知两个命题A :2x +3=x 2,B :x 3x =x 2,则A 是B 的____________条件. 【答案】既不充分也不必要【解析】命题A 就是x ∈{x |2x +3=x 2}={-1,3};命题B 就是x ∈{x |x 3x =x 2}={0,3}.由于{-1,3}⃘{0,3}且{0,3}⃘{-1,3},∴A 是B 的既不充分也不必要条件.6.(2019年重庆期末)设p :12≤x ≤1;q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.【答案】⎣⎡⎦⎤0,12 【解析】∵q :a ≤x ≤a +1,p 是q 的充分不必要条件,∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,解得0≤a ≤12.7.指出下列各组命题中,p 是q 的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件).(1)p :x >1;q :x 2>1;(2)p :a =3;q :(a +2)(a -3)=0; (3)p :a >2;q :a >5.解:(1)p :x >1;q :x >1或x <-1,所以p 是q 的充分不必要条件. (2)p :a =3;q :a =-2或a =3,所以p 是q 的充分不必要条件. (3)p 是q 的必要不充分条件.8.已知p :1<2x <8,q :不等式x 2-mx +4≥0恒成立.若p 是q 的充分条件,求实数m 的取值范围.解:p :1<2x <8,即0<x <3. ∵p 是q 的充分条件,∴不等式x 2-mx +4≥0对任意x ∈(0,3)恒成立. ∴m ≤x 2+4x =x +4x 对任意x ∈(0,3)恒成立.∵x +4x≥2x ·4x=4,当且仅当x =2时,等号成立,∴m ≤4. 能力提升9.无穷等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n (n ∈N *),则“a 1+d >0”是“{S n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】若{S n }为递增数列,则对于n ≥2且n ∈N *,恒有a n >0,可得a 2=a 1+d >0.若a 1+d >0,则只能推得a 2>0,不能推得{S n }是递增数列.所以“a 1+d >0”是“{S n }为递增数列”的必要不充分条件.10.(多选题)下列各选项中, p 是q 的充要条件的是( )A.p :m <-2或m >6,q :y =x 2+mx +m +3有两个不同的零点B.p :f (-x )f (x )=1,q :y =f (x )为偶函数C.p :cos α=cos β,q :tan α=tan βD.p :A ∩B =A ,q :【答案】AD【解析】对于A ,q :y =x 2+mx +m +3有两个不同的零点q :Δ=m 2-4(m +3)>0q :m <-2或m >6p .对于B ,当f (x )=0时,qp .对于C ,若α,β=k π+π2(k ∈Z ),则有cosα=cos β,但没有tan α=tan β,pq .对于D ,p :A ∩B =Ap :ABq :11.下列命题:①“x >2且y >3”是“x +y >5”的充分不必要条件;②已知a ≠0,“b 2-4ac <0”是“一元二次不等式ax 2+bx +c <0解集为R ”的充要条件; ③“a =2”是“直线ax +2y =0平行于直线x +y =1”的充分不必要条件; ④“xy =1”是“lg x +lg y =0”的必要不充分条件. 其中真命题的序号为________. 【答案】①④【解析】①当x >2且y >3时,x +y >5成立,反之,不一定,如x =0,y =6.所以“x >2且y >3”是“x +y >5”的充分不必要条件.②不等式解集为R 的充要条件是a <0且b 2-4ac <0,故②为假命题.③当a =2时,两直线平行,反之,若两直线平行,则a 1=21,∴a =2.因此,“a=2”是“两直线平行”的充要条件.④lg x +lg y =lg(xy )=0,∴xy =1且x >0,y >0.所以“lg x +lg y =0”成立,xy =1必成立,反之不然,因此“xy =1”是“lg x +lg y =0”的必要不充分条件.综上可知真命题是①④.12.设函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3x-1的定义域为集合B .已知α:x ∈A ∩B ,β:x 满足2x +p <0,α是β的充分条件,求实数p 的取值范围.解:A ={x |x 2-x -2>0}=(-∞,-1)∪(2,+∞),B =⎩⎨⎧x ⎪⎪⎭⎬⎫3x-1≥0=(0,3],∴A ∩B =(2,3]. 设集合C ={x |2x +p <0}=⎝⎛⎭⎫-∞,-p2,∵α是β的充分条件,∴A ∩B ⊆C . ∴3<-p2.解得p <-6.∴实数p 的取值范围是(-∞,-6).。
高中数学人教A版选修2-1 第一章 常用逻辑用语 1.1.2、1.1.3 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.“f(x)在其定义域内是减函数”的否定是“f(x)在其定义域内不是减函数”,不能误认为是“f(x)在其定义域内是增函数”.【答案】 A2.(2016·济宁高二检测)命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题与逆否命题中,假命题的个数是()A.0B.1C.2D.3【解析】逆命题“已知a,b都是实数,若a,b不全为0,则a +b>0”为假命题,其否命题与逆命题等价,所以否命题为假命题.逆否命题“已知a,b都是实数,若a,b全为0,则a+b≤0”为真命题,故选C.【答案】 C3.(2016·南宁高二检测)已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是()A.原命题为真命题,否命题:“若ab>0,则a>0或b>0”B.原命题为真命题,否命题:“若ab>0,则a>0且b>0”C.原命题为假命题,否命题:“若ab>0,则a>0或b>0”D.原命题为假命题,否命题:“若ab>0,则a>0且b>0”【解析】逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab >0,则a>0且b>0”,故选B.【答案】 B4.(2016·潍坊高二期末)命题“若x=3,则x2-2x-3=0”的逆否命题是()A.若x≠3,则x2-2x-3≠0B.若x=3,则x2-2x-3≠0C.若x2-2x-3≠0,则x≠3D.若x2-2x-3≠0,则x=3【解析】其逆否命题为“若x2-2x-3≠0,则x≠3”.故选C.【答案】 C5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3【答案】 A二、填空题6.(2016·三门峡高二期中)命题“若x>2,则x2>4”的逆命题是____________. 【导学号:18490009】【解析】原命题的逆命题为“若x2>4,则x>2”.【答案】若x2>4,则x>27.命题“若a>b,则2a>2b-1”的否命题是________.【解析】否定条件与结论,得否命题“若a≤b,则2a≤2b-1”.【答案】若a≤b,则2a≤2b-18.在空间中,给出下列两个命题:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.其中逆命题为真命题的是________.【解析】①的逆命题:若空间四点中任何三点都不共线,则这四点不共面,是假命题;②的逆命题:若两条直线是异面直线,则这两条直线没有公共点,是真命题.【答案】②三、解答题9.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.【解】逆命题:已知a,b∈R,若a>b,则a2>b2;否命题:已知a,b∈R,若a2≤b2,则a≤b;逆否命题:已知a,b∈R,若a≤b,则a2≤b2.原命题是假命题.逆否命题也是假命题.逆命题是假命题.否命题也是假命题.10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c =0有实根”.(2)命题p的否命题是真命题.证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.[能力提升]1.与命题“若a·b=0,则a⊥b”等价的命题是()A.若a·b≠0,则a不垂直于bB.若a⊥b,则a·b=0C.若a不垂直于b,则a·b≠0D.若a·b≠0,则a⊥b【解析】原命题与其逆否命题为等价命题.【答案】 C2.(2016·福州期末)命题“若x+y是偶数,则x,y都是偶数”的逆否命题是()A.若x,y都不是偶数,则x+y不是偶数B.若x,y不都是偶数,则x+y是偶数C.若x,y不都是偶数,则x+y不是偶数D.若x,y都不是偶数,则x+y是偶数【解析】“x,y都是偶数”的否定为“x,y不都是偶数”,“x +y是偶数”的否定是“x+y不是偶数”.故选C.【答案】 C3.下列命题中________为真命题(填上所有正确命题的序号).①若A∩B=A,则A B;②“若x=y=0,则x2+y2=0”的逆命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【解析】①错误,若A∩B=A,则A⊆B;②正确,它的逆命题为“若x2+y2=0,则x=y=0”为真命题;③错误,它的逆命题为“相似三角形是全等三角形”为假命题;④正确,因为原命题为真命题,故逆否命题也为真命题.【答案】②④4.写出下列命题的逆命题、否命题、逆否命题,然后判断真假. 【导学号:18490010】(1)等高的两个三角形是全等三角形;(2)弦的垂直平分线平分弦所对的弧.【解】(1)逆命题:若两个三角形全等,则这两个三角形等高,是真命题;否命题:若两个三角形不等高,则这两个三角形不全等,是真命题;逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题;否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题;逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.。
高中数学人教A版选修2-1习题:第一章1.3简单的逻辑联结词 Word版含答案

第一章常用逻辑用语1.3 简单的逻辑联结词A级基础巩固一、选择题1.已知命题p:3≥3,q:3>4,则下列判断正确的是( )A. p∨q为真,p∧q为真,綈p为假B.p∨q为真,p∧q为假,綈p为真C.p∨q为假,p∧q为假假,綈p为假D.p∨q为真,p∧q为假,綈p为假解析:因为p为真命题,q为假命题,所以p∨q为真,p∧q为假,綈p为假,应选D。
答案:D2.已知p,q为两个命题,则“p∨q是假命题”是“綈p为真命题”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“p∨q”为假,则p与q均是假命题,綈 p为真命题,又因为綈p为真命题,则p为假命题.但若q为真命题,则推不出p∨q是假命题.答案:A3.已知p:∅⊆{0},q:{1}∈{1,2}.由它们构成的新命题“p∧q”“p∨q”“綈p”中,真命题有( )A.1个B.2个C.3个D.4个解析:容易判断命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题.p∨q是真命题,綈p是假命题.答案:A4.已知命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是( )A.“p∨q”为真B.“p∧q”为真C.“綈p”为假D.“綈q”为真解析:显然p假q真,故“p∨q”为真,“p∧q”为假,“綈p”为真,“綈q”为假.答案:A5.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是( ) A.a>0 B.a≥0C.a>1 D.a≥1解析:命题p:“方程x2+2x+a=0有实数根”的充要条件为Δ=4-4a≥0,即a≤1,则綈p:a>1;命题q:“函数f(x)=(a2-a)x是增函数”的充要条件为a2-a>0,即a<0或a>1,则綈q:0≤a≤1.由“p∧q”为假命题,“p∨q”为真命题,得p,q一真一假;若p真q假,则0≤a≤1;若p假q真,则a>1.所以实数a的取值范围是a≥0.答案:B二、填空题6.命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为________________.解析:方向相同的两个向量共线或方向相反的两个向量共线,即“方向相同或相反的两个向量共线”.答案:方向相同或相反的两个向量共线7.命题“若a<b,则2a<2b”的否命题为________________,命题的否定为________________.解析:命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题的否定为“若a<b,则2a≥2b”.答案:若a≥b,则2a≥2b若a<b,则2a≥2b8.对于函数:①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2)有命题p:f(x+2)是偶函数;命题q:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数.能使p∧q为真命题的所有函数的序号是________.答案:②三、解答题9.已知p:x2-x≥6,q:x∈Z,若p∧q和綈q都是假命题,求x的取值集合.解:因为綈q是假命题,所以q为真命题.又p∧q为假命题,所以p为假命题.因此x2-x<6且x∈Z,解之得-2<x<3且x∈Z,故x=-1,0,1,2,所以x的取值集合是{-1,0,1,2}.10.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0, 又a >0,所以a <x <3a .当a =1时,1<x <3,即p 为真时,实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得2<x ≤3, 则q 为真时实数x 的取值范围是2<x ≤3. 若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是2<x <3.(2)綈p 是綈q 的充分不必要条件, 即綈p ⇒綈q , 且綈q綈p .设A ={x |綈p },B ={x |綈q },则A B ,又A ={x |綈p }={x |x ≤a 或x ≥3a },B ={x |綈q }={x ≤2或x >3},则0<a ≤2,且3a >3,所以实数a 的取值范围是1<a ≤2.B 级 能力提升1.已知命题:p 1:函数y =2x-2-x在R 上为增函数;p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4答案:C2.已知命题p :x 2+2x -3>0;命题q :13-x>1,若綈q 且p 为真,则x 的取值范围是____________________________________.解析:因为綈q 且p 为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 假时有x ≥3或x ≤2.p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3.由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3. 所以x 的取值范围是x ≥3或1<x ≤2或x <-3. 答案:(-∞,-3)∪(1,2]∪[3,+∞)3.已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p 或q ”与“非q ”同时为真命题,求实数a 的取值范围.解:命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于 ⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0,⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-2,2-2a >0,解得a ≤-1. 命题q :关于x 的不等式ax2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.即⎩⎪⎨⎪⎧a >0,a 2-4a <0. 因为“p 或q ”与“非q ”同时为真命题,即p 真且q 假, 所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1], 由于⎩⎪⎨⎪⎧a >0,Δ<0,⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,所以0≤a <4.。
高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.3 Word版含答案

1.1.3四种命题间的相互关系【课时目标】 1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)(2)①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p不正确,则q不正确”的逆命题的等价命题是()A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确2.下列说法中正确的是()A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是()A.能被2整除的整数,一定能被6整除B.不能被6整除的整数,一定不能被2整除C.不能被6整除的整数,不一定能被2整除D.不能被2整除的整数,一定不能被6整除4.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是()A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是________________________________________,它是______命题.(填“真”“假”)8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”、“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.12.若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【能力提升】13.给出下列三个命题:①若a ≥b >-1,则a 1+a ≥b 1+b; ②若正整数m 和n 满足m ≤n ,则m (n -m )≤n 2; ③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( )A .0B .1C .2D .314.a 、b 、c 为三个人,命题A :“如果b 的年龄不是最大的,那么a 的年龄最小”和命题B :“如果c 的年龄不是最小的,那么a 的年龄最大”都是真命题,则a 、b 、c 的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.]2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.证明若a,b,c都是奇数,则a2,b2,c2都是奇数.得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,即原命题的逆否命题为真,故原命题也为真命题.所以a,b,c不可能都是奇数.13.B [①用“分部分式”判断,具体:a 1+a ≥b 1+b ⇔1-11+a ≥1-11+b ⇔11+a ≤11+b,又a ≥b >-1⇔a +1≥b +1>0知本命题为真命题.②用基本不等式:2xy ≤x 2+y 2 (x >0,y >0),取x =m ,y =n -m ,知本命题为真. ③圆O 1上存在两个点A 、B 满足弦AB =1,所以P 、O 2可能都在圆O 1上,当O 2在圆O 1上时,圆O 1与圆O 2相交.故本命题为假命题.]14.解 能确定.理由如下:显然命题A 和B 的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A 为真可知,当b 不是最大时,则a 是最小的,即若c 最大,则a 最小,所以c >b >a ;而它的逆否命题也为真,即“a 不是最小,则b 是最大”为真,所以b >a >c .总之由命题A 为真可知:c >b >a 或b >a >c .②同理由命题B 为真可知a >c >b 或b >a >c .从而可知,b >a >c .所以三个人年龄的大小顺序为b 最大,a 次之,c 最小.。
高中数学人教A版选修2-1同步练习 第一章 常用逻辑用语 1.4.1、1.4.2、1.4.3 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列命题为特称命题的是( )A .奇函数的图象关于原点对称B .正四棱柱都是平行六面体C .棱锥仅有一个底面D .存在大于等于3的实数x ,使x 2-2x -3≥0【解析】 A ,B ,C 中命题都省略了全称量词“所有”,所以A ,B ,C 都是全称命题;D 中命题含有存在量词“存在”,所以D 是特称命题,故选D.【答案】 D2.下列命题为真命题的是( )A .∀x ∈R ,cos x <2B .∃x ∈Z ,log 2(3x -1)<0C .∀x >0,3x >3D .∃x ∈Q ,方程2x -2=0有解【解析】 A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∉Q ,所以D 是假命题.故选A.【答案】 A3.下列命题的否定是真命题的是( )A .存在向量m ,使得在△ABC 中,m ∥AB→且m ∥AC → B .所有正实数x ,都有x +1x ≥2C .所有第四象限的角α,都有sin α<0D .有的幂函数的图象不经过点(1,1)【解析】 A 中,当m =0时,满足m ∥AB→且m ∥AC →,所以A 是真命题,其否定是假命题;B 中,由于x >0,所以x +1x ≥2x ·1x =2,当且仅当x =1x 即x =1时等号成立,所以B 是真命题,其否定是假命题;C 中,由于第四象限角的正弦值是负数,所以C 是真命题,其否定是假命题;D 中,对于幂函数f (x )=x α,均有f (1)=1,所以幂函数的图象均经过点(1,1),所以D 是假命题,其否定是真命题,故选D.【答案】 D4.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)【解析】 f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0),∵2ax0+b=0,∴x0=-b2a,当x=x0时,函数f(x)取得最小值,∴∀x∈R,f(x)≥f(x0),从而A,B,D为真命题,C为假命题.【答案】 C5.对下列命题的否定说法错误的是()A.p:能被2整除的数是偶数;綈p:存在一个能被2整除的数不是偶数B.p:有些矩形是正方形;綈p:所有的矩形都不是正方形C.p:有的三角形为正三角形;綈p:所有的三角形不都是正三角形D.p:∃n∈N,2n≤100;綈p:∀n∈N,2n>100【答案】 C二、填空题6.命题“偶函数的图象关于y轴对称”的否定是_____________.【解析】题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图象关于y轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y轴对称”改为“关于y轴不对称”,所以该命题的否定是“有些偶函数的图象关于y轴不对称”.【答案】有些偶函数的图象关于y轴不对称7.已知命题:“∃x0∈[1,2],使x20+2x0+a≥0”为真命题,则实数a的取值范围是__________.【解析】当x∈[1,2]时,x2+2x=(x+1)2-1是增函数,所以3≤x2+2x≤8,由题意有a+8≥0,∴a≥-8.【答案】[-8,+∞)8.下列命题:①存在x<0,使|x|>x;②对于一切x<0,都有|x|>x;③已知a n=2n,b n=3n,对于任意n∈N*,都有a n≠b n;④已知A={a|a=2n},B={b|b=3n},对于任意n∈N*,都有A∩B =∅.其中,所有正确命题的序号为________.【解析】命题①②显然为真命题;③由于a n-b n=2n-3n=-n<0,对于∀n∈N*,都有a n<b n,即a n≠b n,故为真命题;④已知A={a|a=2n},B={b|b=3n},如n=1,2,3时,A∩B={6},故为假命题.【答案】①②③三、解答题9.写出下列命题的否定:(1)p:一切分数都是有理数;(2)q:有些三角形是锐角三角形;(3)r:∃x0∈R,x20+x0=x0+2;(4)s:∀x∈R,2x+4≥0.【解】(1)綈p:有些分数不是有理数.(2)綈q :所有的三角形都不是锐角三角形.(3)綈r :∀x ∈R ,x 2+x ≠x +2.(4)綈s :∃x 0∈R ,2x 0+4<0.10.若x ∈[-2,2],关于x 的不等式x 2+ax +3≥a 恒成立,求a 的取值范围.【解】 设f (x )=x 2+ax +3-a ,则此问题转化为当x ∈[-2,2]时,f (x )min ≥0即可.①当-a 2<-2,即a >4时,f (x )在[-2,2]上单调递增,f (x )min =f (-2)=7-3a ≥0,解得a ≤73.又因为a >4,所以a 不存在.②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=12-4a -a 24≥0,解得-6≤a ≤2.又因为-4≤a ≤4,所以-4≤a ≤2.③当-a 2>2,即a <-4时,f (x )在[-2,2]上单调递减,f (x )min =f (2)=7+a ≥0,解得a ≥-7.又因为a <-4,所以-7≤a <-4.综上所述,a 的取值范围是{a |-7≤a ≤2}.[能力提升]1.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0,命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )【解析】 当x 0<0时,2x 0>3x 0,∴不存在x 0∈(-∞,0)使得2x 0<3x 0成立,即p 为假命题,显然∀x ∈⎝⎛⎭⎪⎫0,π2,恒有0<cos x <1,∴命题q 为真,∴(綈p )∧q 是真命题. 【答案】 C2.(2013·四川高考)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .綈p :∃x ∈A ,2x ∈BB .綈p :∃x ∉A ,2x ∈BC .綈p :∃x ∈A ,2x ∉BD .綈p :∀x ∉A ,2x ∉B【解析】 命题p 是全称命题: ∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.【答案】 C3.已知函数f (x )=x 2+m ,g (x )=⎝ ⎛⎭⎪⎫12x ,若对任意x 1∈[-1,3],存在x 2∈[0,2],使f (x 1)≥g (x 2),则实数m 的取值范围是________.【解析】 因为对任意x 1∈[-1,3],f (x 1)∈[m ,9+m ],即f (x )min =m .存在x 2∈[0,2],使f (x 1)≥g (x 2)成立,只要满足g (x )min ≤m 即可,而g (x )是单调递减函数,故g (x )min =g (2)=⎝ ⎛⎭⎪⎫122=14,得m ≥14.【答案】 ⎣⎢⎡⎭⎪⎫14,+∞ 4.已知a >12且a ≠1,条件p :函数f (x )=log (2a -1)x 在其定义域上是减函数;条件q :函数g (x )=x +|x -a |-2的定义域为R ,如果p ∨q 为真,试求a 的取值范围.【解】 若p 为真,则0<2a -1<1,得12<a <1.若q 为真,则x +|x -a |-2≥0对∀x ∈R 恒成立.记f (x )=x +|x -a |-2,则f (x )=⎩⎪⎨⎪⎧2x -a -2,x ≥a ,a -2,x <a ,所以f (x )的最小值为a -2,即q 为真时,a -2≥0,即a ≥2.于是p ∨q 为真时,得12<a <1或a ≥2,故a 的取值范围为⎝ ⎛⎭⎪⎫12,1∪[2,+∞).。
【专业资料】新版高中数学人教A版选修2-1习题:第一章常用逻辑用语 1.1.2-1.1.3 含解析

1.1.2四种命题1.1.3四种命题间的相互关系课时过关·能力提升基础巩固1命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是()A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab2命题“若一个数是负数,则它的平方是正数”的逆命题是()A.若一个数是负数,则它的平方不是正数B.若一个数的平方是正数,则它是负数C.若一个数不是负数,则它的平方不是正数D.若一个数的平方不是正数,则它不是负数3命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数.4命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊈B,则A∩B≠AD.若A⊇B,则A∩B≠A”的否命题是()5已知a,b∈R,命题“若a+b=1,则a2+b2≥12A.若a 2+b 2<12,则a+b ≠1B.若a+b=1,则a 2+b 2<12C.若a+b ≠1,则a 2+b 2<12D.若a 2+b 2≥12,则a+b=16命题“若A ∪B=B ,则A ⊆B ”的逆命题是 .A ⊆B ,则A ∪B=B7“若sin α=12,则α=π6”的逆否命题是 ,逆否命题是 命题.(填“真”或“假”)α≠π6,则sin α≠12 假8已知p 3+q 3=2,求证:p+q ≤2.,我们考虑是否能够比较容易地证明命题的逆否命题:如果p+q>2,那么p 3+q 3≠2.p+q>2,则q>2-p ,根据幂函数y=x 3的单调性,得q 3>(2-p )3,即q 3>8-12p+6p 2-p 3,p 3+q 3>8-12p+6p 2=6[(p -1)2+13]≥2,故p 3+q 3>2.因此p 3+q 3≠2.这与题设p 3+q 3=2矛盾,从而假设不成立.故p+q ≤2成立.9写出命题“若a ,b 都是奇数,则a+b 是偶数”的逆命题、否命题及逆否命题,并判断它们的真假.:若a+b 是偶数,则a ,b 都是奇数,是假命题.否命题:若a ,b 不都是奇数,则a+b 不是偶数,是假命题.逆否命题:若a+b 不是偶数,则a ,b 不都是奇数,是真命题. 能力提升1命题“对顶角相等”与它的逆命题、否命题、逆否命题中,是真命题的是( )A.上述四个命题B.原命题与逆命题C.原命题与逆否命题D.逆命题与否命题.2命题“若α=π4,则tan α=1”的逆否命题是()A.若α≠π4,则tan α≠1B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3互为逆否命题的两个命题具有相同的真假性.我们用“↔”表示同真或同假,把它叫做“连连看”.下面让我们领略“连连看”的风采:已知命题p的否命题是r,命题r的逆命题为s,命题p的逆命题是t,则下列同真同假的“连连看”中,正确的一组是()A.p↔r,s↔tB.p↔t,s↔rC.p↔s,r↔tD.p↔r,s↔rp的否命题是r,命题r的逆命题为s,所以命题p与s互为逆否命题,故有p↔s;又由于命题p的否命题是r,命题p的逆命题是t,故命题r,t也是互为逆否命题,即r↔t.4有下列四个命题:①命题“若xy=1,则x,y互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆否命题.其中是真命题的是.(填上你认为正确的所有命题的序号)中原命题的逆命题为“若x,y互为倒数,则xy=1”,真命题;②中原命题的逆命题为“若两个三角形全等,则它们的面积相等”.由逆命题与否命题互为逆否命题,可知否命题为真命题;③中原命题的Δ=4-4m,由于m≤1,则方程有实根,为真命题.故其逆否命题为真命题;④中因为原命题为假命题,所以其逆否命题也为假命题.5在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 .(填序号)中的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体ABCD-A 1B 1C 1D 1做模型来观察:上底面A 1B 1C 1D 1的顶点中任何三点都不共线,但A 1,B 1,C 1,D 1四点共面,所以①中的逆命题不是真命题.②中的逆命题是:若两条直线是异面直线,则两条直线没有公共点.由异面直线的定义可知,异面直线没有公共点.所以②中的逆命题是真命题.6写出下列命题的逆命题、否命题、逆否命题:(1)若x 2+y 2=0,则x ,y 全为0;(2)若(x-3)(x-7)=0,则x=3或x=7.都”的否定词是“不都”,“全”的否定词是“不全”,另外,原命题中的“或”,在否命题中要改为“且”.要认真体会它们的区别.逆命题:若x ,y 全为0,则x 2+y 2=0;否命题:若x 2+y 2≠0,则x ,y 不全为0;逆否命题:若x ,y 不全为0,则x 2+y 2≠0.(2)逆命题:若x=3或x=7,则(x-3)(x-7)=0;否命题:若(x-3)(x-7)≠0,则x ≠3,且x ≠7;逆否命题:若x ≠3,且x ≠7,则(x-3)(x-7)≠0.★7三个方程x 2+4ax-4a+3=0,x 2+(a-1)x+a 2=0,x 2+2ax-2a=0中,至少有一个方程有实根,求实数a 的取值范围.:(1)三个方程都无实根(2)只有一个方程有实根(3)只有两个方程有实根(4)三个方程都有实根}至少有一个方程有实根,若按分类讨论,则需分三种情况,且(2)(3)又分多种情况,显然运算量太大,若注意到(2)(3)(4)可合并为至少有一个方程有实根,利用“补集”的思想,问题即可等价转化.,则{Δ1=(4a )2+4(4a -3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2+8a <0,即{-32<a <12,a >13或a <-1,-2<a <0.解得-32<a<-1.故三个方程中至少有一个方程有实根,则a 的取值范围是a ≥-1或a ≤-32.。
高中数学(人教版A版选修2-1)配套课时作业第一章 常用逻辑用语 1.3 Word版含答案

§简单的逻辑联结词【课时目标】.了解逻辑联结词“或”、“且”、“非”的含义.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假..用逻辑联结词构成新命题()用联结词“且”把命题和命题联结起来,就得到一个新命题,记作,读作.()用联结词“或”把命题和命题联结起来,就得到一个新命题,记作,读作.()对一个命题全盘否定,就得到一个新命题,记作,读作或..含有逻辑联结词的命题的真假判断∨∧綈真真真真假真假真假假假真真假真假假假假真一、选择题.已知:+=;:>,则下列判断错误的是().“∨”为真,“綈”为假.“∧”为假,“綈”为真.“∧”为假,“綈”为假.“∨”为真,“綈”为真.已知:∅{},:{}∈{}.由它们构成的新命题“綈”,“綈”,“∧”,“∨”中,真命题有().个.个.个.个.下列命题:①年月日既是春节,又是情人节;②的倍数一定是的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有().个.个.个.个.设、是两个命题,则新命题“綈(∨)为假,∧为假”的充要条件是().、中至少有一个为真.、中至少有一个为假.、中有且只有一个为假.为真,为假.命题:在△中,∠>∠是 > 的充分不必要条件;命题:>是>的充分不必要条件.则().假真.真假.∨为假.∧为真.下列命题中既是∧形式的命题,又是真命题的是().或是的倍数.方程--=的两根是-和.方程+=没有实数根.有两个角为°的三角形是等腰直角三角形题号答案二、填空题.“≤”中的逻辑联结词是,它是命题.(填“真”,“假”).若“∈[]或∈{<或>}”是假命题,则的范围是..已知、∈,设:+>+,:函数=-+在(,+∞)上是增函数,那么命题:∨、∧、綈中的真命题是.三、解答题。
高中数学第一章常用逻辑用语1.3.1“且”与“或”学案(含解析)新人教A版选修2-1

1。
3。
1 “且”与“或”自主预习·探新知情景引入要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你能运用“或”“且”的方法解决吗?新知导学1.逻辑联结词“或”“非"构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就__p∧q____p且q__得到一个新命题用联结词“或”把命题p和命题q联结起来,__p∨q____p或q__就得到一个新命题p q p∧q p∨q真真__真____真__真假__假____真__假真__假____真__假假__假____假__预习自测1.“xy≠0"是指( A )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0 D.不都是0[解析]xy≠0当且仅当x≠0且y≠0.2.p:点P在直线y=2x-3上;q:点P在曲线y=-x2上,则使“p∧q"为真命题的一个点P(x,y)是( C )A.(0,-3)B.(1,2)C.(1,-1)D.(-1,1)[解析]点P(x,y)满足错误!,解得P(1,-1)或P(-3,-9),故选C.3.下列判断正确的是( B )A.命题p为真命题,命题“p或q”不一定是真命题B.命题“p且q”是真命题时,命题p一定是真命题C.命题“p且q”是假命题,命题p一定是假命题D.命题p是假命题,命题“p且q”不一定是假命题[解析] 因为p、q都为真命题时,“p且q”为真命题.4.由下列各组命题构成的新命题“p或q"“p且q”都为真命题的是( B )A.p:4+4=9,q:7〉4B.p:a∈{a,b,c},q:{a}{a,b,c}C.p:15是质数,q:8是12的约数D.p:2是偶数,q:2不是质数[解析] “p或q"“p且q”都为真,则p真q真,故选B.5.给出下列条件:(1)“p成立,q不成立”;(2)“p不成立,q成立”;(3)“p与q都成立”;(4)“p与q都不成立”.其中能使“p或q"成立的条件是__(1)(2)(3)__(填序号).互动探究·攻重难互动探究解疑命题方向❶命题的构成形式典例1 分别指出下列命题的构成形式及构成它的简单命题.(1)小李是老师,小赵也是老师;(2)1是合数或质数;(3)他是运动员兼教练员;(4)这些文学作品不仅艺术上有缺点,而且政治上有错误;(5)要么周长相等的两个三角形全等,要么面积相等的两个三角形全等.[规范解答](1)这个命题是“p∧q"的形式,其中,p:小李是老师;q:小赵是老师.(2)这个命题是“p∨q”的形式,其中,p:1是合数;q:1是质数.(3)这个命题是“p∧q”的形式,其中,p:他是运动员;q:他是教练员.(4)这个命题是“p∧q"的形式,其中,p:这些文学作品艺术上有缺点;q:这些文学作品政治上有错误.(5)这个命题是p∨q形式,其中p:周长相等的两个三角形全等,q:面积相等的两个三角形全等.『规律总结』1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.3简单的逻辑联结词
【课时目标】 1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.
1.用逻辑联结词构成新命题
(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.
(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.
(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作__________或__________.
2.含有逻辑联结词的命题的真假判断
一、选择题
1.已知p:2+2=5;q:3>2,则下列判断错误的是( )
A.“p∨q”为真,“綈q”为假
B.“p∧q”为假,“綈p”为真
C.“p∧q”为假,“綈p”为假
D.“p∨q”为真,“綈p”为真
2.已知p:∅{0},q:{2}∈{1,2,3}.由它们构成的新命题“綈p”,“綈
q”,“p∧q”,“p∨q”中,真命题有( )
A.1个B.2个C.3个D.4个
3.下列命题:
①2010年2月14日既是春节,又是情人节;
②10的倍数一定是5的倍数;
③梯形不是矩形.
其中使用逻辑联结词的命题有( )
A.0个B.1个 C.2个D.3个
4.设p、q是两个命题,则新命题“綈(p∨q)为假,p∧q为假”的充要条件是( )
A.p、q中至少有一个为真
B.p、q中至少有一个为假
C.p、q中有且只有一个为假
D.p为真,q为假
5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:
a>b是ac2>bc2的充分不必要条件.则( )
A.p假q真B.p真q假
C.p∨q为假D.p∧q为真
6.下列命题中既是p∧q形式的命题,又是真命题的是( )
A.10或15是5的倍数
B.方程x2-3x-4=0的两根是-4和1
C.方程x2+1=0没有实数根
D.有两个角为45°的三角形是等腰直角三角形
二、填空题
7.“2≤3”中的逻辑联结词是________,它是________命题.(填“真”,“假”)
8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.
9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、綈p中的真命题是________.
三、解答题
10.分别指出由下列各组命题构成的“p∨q”“p∧q”“綈p”形式的复合命题的真假.
(1)p:4+3=7,q:5<4;
(2)p:9是质数,q:8是12的约数;
(3)p:1∈{1,2};q:∅{1,2};
(4)p:∅={0},q:∅⊆∅.
11.写出由下列各组命题构成的“p或q”、“p且q”、“綈p”形式的复合
命题,并判断真假.
(1)p:1是质数;q:1是方程x2+2x-3=0的根;
(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;
(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;
(4)p:5≤5;q:27不是质数.
12.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x +1=0无实根,若p或q为真,p且q为假,求m的取值范围.
【能力提升】
13.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=|x-1|-2的定义域是(-∞,-1]∪[3,+∞),则( ) A.“p或q”为假 B.“p且q”为真
C.p真q假D.p假q真
14.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.
1.从集合的角度理解“且”“或”“非”.
设命题p:x∈A.命题q:x∈B.则p∧q⇔x∈A且x∈B⇔x∈A∩B;p∨q⇔x∈A 或x∈B⇔x∈A∪B;綈p⇔x∉A⇔x∈∁U A.
2.对有逻辑联结词的命题真假性的判断
当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;綈p与p 的真假性相反且一定有一个为真.
3.含有逻辑联结词的命题否定
“或”“且”联结词的否定形式:“p或q”的否定形式“綈p且綈q”,“p 且q”的否定形式是“綈p或綈q”,它类似于集合中的“∁U(A∪B)=(∁
U A)∩(∁
U
B),∁
U
(A∩B)=(∁U A)∪(∁U B)”.
§1.3简单的逻辑联结词
知识梳理
1.(1)p∧q“p且q”(2)p∨q“p或q”(3)綈p“非p”“p的
否定”
作业设计
1.C [p假q真,根据真值表判断“p∧q”为假,“綈p”为真.]
2.B [∵p真,q假,∴綈q真,p∨q真.]
3.C [①③命题使用逻辑联结词,其中,①使用“且”,③使用“非”.] 4.C [因为命题“綈(p∨q)”为假命题,所以p∨q为真命题.所以p、q一真一假或都是真命题.又因为p∧q为假,所以p、q一真一假或都是假命题,所以p、q中有且只有一个为假.]
5.C [命题p、q均为假命题,∴p∨q为假.]
6.D [A中的命题是p∨q型命题,B中的命题是假命题,C中的命题是綈p 的形式,D中的命题为p∧q型,且为真命题.]
7.或真
8.[1,2)
解析x∈[2,5]或x∈(-∞,1)∪(4,+∞),
即x∈(-∞,1)∪[2,+∞),由于命题是假命题,
所以1≤x<2,即x∈[1,2).
9.綈p
解析对于p,当a>0,b>0时,|a|+|b|=|a+b|,故p假,綈p为真;对
于q,抛物线y=x2-x+1的对称轴为x=1
2
,故q假,所以p∨q假,p∧q假.这
里綈p应理解成|a|+|b|>|a+b|不恒成立,而不是|a|+|b|≤|a+b|.
10.解(1)因为p真q假,所以“p∨q”为真,“p∧q”为假,“綈p”为假.
(2)因为p假q假,所以“p∨q”为假,“p∧q”为假,“綈p”为真.
(3)因为p真q真,所以“p∨q”为真,“p∧q”为真,“綈p”为假.
(4)因为p假q真,所以“p∨q”为真,“p∧q”为假,“綈p”为真.
11.解(1)p为假命题,q为真命题.
p或q:1是质数或是方程x2+2x-3=0的根.真命题.
p且q:1既是质数又是方程x2+2x-3=0的根.假命题.
綈p :1不是质数.真命题. (2)p 为假命题,q 为假命题.
p 或q :平行四边形的对角线相等或互相垂直.假命题. p 且q :平行四边形的对角线相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题. (3)∵0∉∅,∴p 为假命题,
又∵x 2
-3x -5<0,∴3-292<x <3+29
2
,
∴{x |x 2-3x -5<0}=⎩⎨⎧⎭⎬⎫
x |3-292<x <
3+292⊆R 成立. ∴q 为真命题.
∴p 或q :0∈∅或{x |x 2
-3x -5<0}⊆R ,真命题,
p 且q :0∈∅且{x |x 2-3x -5<0}⊆R ,假命题, 綈p :0∉∅,真命题.
(4)显然p :5≤5为真命题,q :27不是质数为真命题, ∴p 或q :5≤5或27不是质数,真命题,
p 且q :5≤5且27不是质数,真命题, 綈p :5>5,假命题.
12.解 若方程x 2+mx +1=0有两个不等的负根, 则⎩⎨
⎧
Δ=m 2
-4>0,
-m <0,
解得m >2,即p :m >2.
若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3,即q :1<m <3.
因p 或q 为真,所以p 、q 至少有一个为真. 又p 且q 为假,所以p 、q 至少有一个为假.
因此,p 、q 两命题应一真一假,即p 为真,q 为假,或p 为假,q 为真.所以⎩⎨
⎧
m >2,m ≤1或m ≥3,
或⎩⎨
⎧
m ≤2,1<m <3.
解得m ≥3或1<m ≤2.
13.D [当a =-2,b =2时,从|a |+|b |>1不能推出|a +b |>1,所以p 假,
q显然为真.]
14.解对于p:因为不等式x2-(a+1)x+1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0.
解不等式得:-3<a<1.
对于q:f(x)=(a+1)x在定义域内是增函数,
则有a+1>1,所以a>0.
又p∧q为假命题,p∨q为真命题,
所以p、q必是一真一假.
当p真q假时有-3<a≤0,当p假q真时有a≥1.
综上所述,a的取值范围是(-3,0]∪[1,+∞).。