课题锐角三角函数余弦2

合集下载

九年级下册数学锐角三角函数 正弦、余弦

九年级下册数学锐角三角函数 正弦、余弦

200
AC 200
BC 2000.6 120.

A
B
挑战:请你求出cosA,tanA,sinC,cosC和tanC的值。
如图:在Rt△ABC中,∠C=900,AC=10, cos A 12 .
求:AB,sinB.
13
解 :cos A AC 10 12 . AB AB 13
提示:过点A作AD垂直于BC,垂足为D.
B
┌ D
C
8.在梯形ABCD中 AD//BC,AB=DC=13,AD=8,BC=18 A 求:sinB,cosB,tanB.
┌ BE
D
┌ FC
提示:梯形的高是梯形的常用辅助线,借助它可以转化为直角 三角形.
• 定义中应该注意的几个问题:
1.sinA,cosA,tanA是在直角三角形中定义的,∠A是锐 角(注意数形结合,构造直角三角形).
5.如图,分别根据图(1)和图(2)求∠A的三
个三角函数值.
B
B
3
43
4┌

A
CA
C
(1)
(2)
6பைடு நூலகம்在Rt△ABC中,∠C=90°, AC=3,AB=6, 求sinA和cosB.
提示:求锐角三角函数时,勾股定理的运用是很重要的.
7.在等腰△ABC,AB=AC=13,BC=10,
A
求sinB,cosB.
B
┌ 6D
C
2.在Rt△ABC中,∠C=90°,BC=20,sin A 4 .
求:△ABC的周长和面积.
5B

C
A
运用新知
1.如图,在Rt△ABC中,锐角A的对边和邻边同时扩

北师大版数学九年级下册1.1 锐角三角函数(第2课时)教案

北师大版数学九年级下册1.1  锐角三角函数(第2课时)教案

1.1 锐角三角函数第2课时教学目标1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.教学重难点【教学重点】1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 【教学难点】用函数的观点理解正弦、余弦和正切.学习方法探索——交流法.教学过程一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2) 211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt △ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______.DB ACBA C2、在Rt △ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______. 3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____. 4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA=34 B.cosA=35 C.tanA=34 D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BCAC等于( )A.34B.43C.35D.456、Rt △ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135 B .1312 C .125 D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( )A.tan α<tan βB.sin α<sin β;C.cos α<cos βD.cos α>cos β9、如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CDCB10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )mA.100sin βB.100sin βC.100cos β D. 100cos β11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin ∠ACD,cos ∠ACD 和tan ∠ACD.14、在Rt△ABC中,∠C=90°,sinA和cosB有什么关系?15、如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=45.求:s△ABD:s△BCD§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:BDAC一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°; (3) 22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21 (C )cm 43 (D )cm 236、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33(C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). (A )21 (B )22(C )23 (D )1 8、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元9、计算:⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒︒15020米30米⑸、045cos 360sin 2+ ⑹、 130sin 560cos 30-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 2210、请设计一种方案计算tan15°的值。

第七章 锐角三角函数 第3课时 正弦、余弦(二)

第七章 锐角三角函数 第3课时 正弦、余弦(二)

第3课时 正弦、余弦(二)一、填空题1.在Rt △ABC 中,∠C =90°,a 、b 是锐角A 、B 所对的直角边,c 为斜边,则sin A =_______,cos A =_______,sin B =_______,cos B =_______.由此可见,sin A =cos_______,cos A =sin_______.2.若cos 35°21'18"≈0.8156,则sin 54°38'42"≈_______.3.在Rt △ABC 中,∠C =90°,cosA =13,则sinB =_______.4.用“<”号连接sin 25°、cos 67°与sin 46°:______________.5.如图,在△ABC 中,AB =AC =5,cos B =35.如果⊙O,且经过点B 、C ,那么AO 的长为_______.6.(2010.中山)如图,在Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =_____.第5题 第6题二、选择题7.(2011.茂名)如图,已知: 9045<<A ,则下列各式成立的是 ( )A .sinA=cosAB .sinA>cosAC .sinA>tanAD .sinA<cosA8.(2011.陕西)在△ABC 中,若三边满足BC :CA :AB =5:12:13,则cos B 的值为( )A .512 B .125 C .513 D .12139.在△ABC 中,∠C =90°,sinA =45,则tanB 的值为 ( ) A .43 B .34 C .35 D .45 10.如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的半圆O 交AB 于点'D .若BD=2,AD =6,则cos ∠BAC 的值是 ( )A .13B .3C .12D第7题三、解答题11.(1)在Rt△ABC中,∠C=90°,斜边上的中线长是5,且AC=8,求最小角的余弦值.(2)已知等腰三角形的周长为14,一边长为4,求底角的余弦值.12.如图,在△ABC中,AD是BC边上的高,E为AC的中点,BC=14,AD=12,sinB=45,求:(1) DC的长.(2) tan∠EDC的值.13.(2011.邵阳)良山成功列入世界自然遗产名录后,景区管理部门决定在八角寨设计旅游索道,设计人员为了计算索道AB(索道起点为山脚B处,终点为山顶A处)的长度,采取了如图所示的测量方法.在B处测得山顶A的仰角为16°,查阅相关资料得山高AC=325米,求索道AB的长度(精确到1米,sin16°≈0.28).14.(2011.南充)如图,E是矩形ABCD中CD边上的一点,△BCE沿BE折叠为△BFE,点F落在AD边上.(1)求证:△ABF∽△DFE.(2)若sin∠DFE=13,求tan∠EBC的值.参考答案1.a c b c b c a c B B 2.0.8156 3.134.cos 67°<sin 25°<sin 46° 5.3或5 6.57.B 8.C 9.B 10.D11.(1) 45 12.(1)DC =5 (2)13.≈1161(米)14.(1) 略 (2)。

25.2.2锐角三角函数(2)余弦

25.2.2锐角三角函数(2)余弦
华师大版九年级数学(上册)第二十五章
§25.1 锐角三角函数(2)
——余弦
1、了解锐角三角函数的意义,掌握余弦 的有关概念; 2、会计算直角三角形中,锐角的余弦值。
复习
如图:在Rt △ABC中,∠C=90°, B 则
1.角:∠A+ ∠B =90°
A
┌ C
2.勾股定理(三边关系) AC2 + BC2 = AB2
BC 8k 8 sin A , AB 17 k 17
八仙过海,尽显才能
3 在Rt△ABC中,∠C=90°,AB=15,sinA= 5 ,
A
B
C
求AC和BC.
A
在等腰△ABC中 ,AB=AC=13,BC=10, 求sinB,cosB.
C D 老师提示: 过点A作AD垂直于BC于点D. 求锐角三角函数时,勾股定理的运用是很重要的. B ┌
在梯形ABCD中 ,AD//BC,AB=DC=13,AD=8,BC=18. 求:sinB,cosB.
┌ E
C
D
B
┌ F
C
老师提示: 作梯形的高是梯形的常用辅助,借助它可以转 化为直角三角形.
小结
回顾
在Rt△ABC中
A的对边 = sinA= A的斜边
A的邻边 = cosA= A的斜边
C
2 30.0 2
45.0 3 60.0
cos45°=
2 2
A

1
C
C
1
1 cos60°= 2
特殊值法
控制变量法
自主探究
探究发现:当锐角α越来越大时, 它的余弦值cosα越来越小 且 0<cosA <1
如图,在Rt△ABC中, ∠C=90°,求cosA和cosB的值.

28.1锐角三角函数(2) 余弦、正切学案

28.1锐角三角函数(2) 余弦、正切学案

斜边c对边abC B A28.1锐角三角函数(2) 余弦、正切学案一.知识巩固。

(每个题目5分,合计20分)1、在Rt △ABC 中,∠C=90°,当锐角A 确定时, ∠A 的对边与斜边的比是 ,2、 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。

已知AC= 5 ,BC=2,那么sin ∠ACD =( )A .53B .23C .255D .523、 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.4、在 90,=∠∆C ABC Rt 中,若将各边长度都扩大为原来的2倍,则 ∠A 的正弦值 ( ) A .扩大2倍 B .缩小2倍 C .扩大4倍 D .不变二.新知探究。

(每个题目10分,合计100分)1、类似于正弦的情况, 如图在Rt △BC 中,∠C=90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是 .我们 把∠A 的邻边与斜边的比叫做∠A 的 ,记作 ;把∠A 的对边与邻边的比叫做∠A 的 ,记作 。

2、当∠A=30°时,我们有cosA=cos30°=; 当∠A=45°时,我们有tanA=tan45°= .(1)CB A436CB A判断题 4、cos x =21=60°. ( )5、α是锐角,且sin α=23,则α=30°. ( )6、cos45°-cos15°=cos30°=23. ( )7、若α为锐角,则2)1(cos -α=cos α-1.( ) 8、若A 为锐角则0<sin A <1,0<cos A <1. ( ) 9、 若a 为锐角,则sin a +cos a >1. ( ) 10、已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A.3B.6C.9D.12三.运用提高。

初中数学教学课例《锐角三角函数(第二课时正弦与余弦)》教学设计及总结反思

初中数学教学课例《锐角三角函数(第二课时正弦与余弦)》教学设计及总结反思

据三角形中已知的边和角求出未知的边和角。
1.知识与技能:理解正弦与余弦的概念,能用 sin、
cos 表示直角三角形中的两边之比,并能解决三角函数
相关问题。
2.过程与方法:通过引导法、自主探究法和交流法,
教学目标 让学生自己动脑动手去猜想去发现,然后通过讨论交流
得出结论。
3.性感态度价值观:积极参与数学活动,对数学产
生好奇心和求知欲,形成合作交流的意识以及独立思考
的习惯。
学生学习能
学生必须主动思考,在教师的引导下及时地进行相
力分析 关操作,比如在教师在板书时自己也应该很快地在草稿
纸上画出相应的直角三角形,并且标出各顶点、各角; 在得到明确指令后要迅速思考、交流,能有条理地、清 晰地阐述自己的观点,最重要的一点是再次提醒学生目 前所讲的三角函数是在直角三角形中进行讨论的
教师通过课件展示后提出问题:如图,(1)直角 教学过程
三角形 AB1C1 和直角三角形 AB2C2 有什么关系?(2) AC1B1A 和 AC2B2A 有什么关系 B1C1B1A 和 B2C2B2A 呢? (3)如果改变 AB 倾斜角大小呢?由此可以得出什么结
论,请同学们讨论会回答。学生们开始在自己的草稿纸 上画出教师所展示图形的草图,借以学习正切时的方 法,逐一解决教师提出的问题。首先是探索两个三角形 的关系,经过简单的思考不难发现两个三角形是相似 的,那么就有同学会回答这两个三角形是相似的,教师 便继续引导:既然是相似三角形,那么赶快回顾一下相 似三角形都具有什么性质,学生回忆:相似三角形对应 角相等,对应边成比例、相似三角形的周长比等于相似 比、相似三角形的面积比等于相似比的平方等,教师继 续提问:既然这样,那么第(2)小问中的比值有什么 样的关系,学生可以很快得出答案:相等。教师立马板 书出来,并且在板书过程中要求学生共同书写,最后一 问:如果改变倾斜角大小,以上结论还成立吗?学生又 开始讨论,很快有学生回答:改变倾斜角大小,两个三 角形仍然是相似三角形。教师追问:那倾斜角对边与斜 边的比值有变化吗?学生又开始计算、讨论,回答:倾 斜角变化,倾斜角的对边与斜边的比值也会随之变化。 教师继续引导:如果刚才你是用图中小三角形来计算的 比值,那么现在计算一下大三角形的比值,反之亦然。 学生在引导下又进行计算,然后发现比值居然一样,积 极讨论,随后教师带领学生归纳总结:只要倾斜角确定, 倾斜角的对边与斜边的角有关,而与直角

九年级数学下册《锐角三角函数》第2课时教学设计

九年级数学下册《锐角三角函数》第2课时教学设计

九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。

本设计是第二课时。

本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。

从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。

二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。

本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。

学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。

三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。

本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。

2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。

过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。

2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。

情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。

教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。

北师大版九年级下册数学1.1锐角三角函数第2课时课件

北师大版九年级下册数学1.1锐角三角函数第2课时课件
函数转移或构建到特殊的直角三角形中,再借助数形结合求解.
合作探究
1.在△ABC中,∠C=90°,AC=BC,则sin A=
A=
1 .


,tan
合作探究
2.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,
MN⊥AB于点N,AN=3,AM=4,求cos B的值.
合作探究
解:在Rt△AMN中,由勾股定理可得MN= − = ,
则sin∠ABC等于

.
合作探究
B等于(
A.
已知在Rt△ABC中,∠C=90°,若sin A=B )B. NhomakorabeaC.

,则sin

D.1
方法归纳交流 通常已知边的比值,不能直接求三角函数
值,可采用设辅助未知数“k”来解决.
合作探究
如图,在菱形ABCD中,AE⊥BC于点E,EC=1,sin

B= ,求菱形的边长.
是(
A )
A.
B.
C.
D.
2.在△ABC中,∠C=90°,cos
8 .

A= ,AB=10,则BC=

合作探究



在△ABC中,∠C=90°,AC=3,AB=5,则cos B
.
如图,P是∠α的边OA上一点,且P点坐标为(3,4),
则sin α=


,cos α=


.
合作探究
变式训练
如图,△ABC的顶点都在正方形网格中的格点上,
∴cos


∠AMN= = ,


∵∠A+∠B=90°,∠A+∠AMN=90°,
∴∠B=∠AMN,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
C B A 课题 28.1.1 锐角三角函数
课型:新 授 审核:张峰 时间:2013.3
主备:李璠琼 班级 姓名
【教学目标】
⑴ 感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一
事实。

⑵逐步培养学生观察、比较、分析、概括的思维能力。

【教学重点】理解余弦、正切的概念。

【教学难点】熟练运用锐角三角函数的概念进行有关计算。

【教学过程】 一、复习引入
1、我们是怎样定义直角三角形中一个锐角的正弦的?
2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。

已知AC= 5 ,BC=2,那么sin ∠ACD =( )
A .
53
B .23
C .2
55
D .
52
3、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,
且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .
4、•在Rt △ABC 中,∠C=90°,当锐角A 确定时, ∠A 的对边与斜边的比是 ,
二、合作交流:
探究:一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?
如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠B=∠B`=α,
那么与有什么关系?
三、教师点拨:
类似于正弦的情况,如图在Rt △ABC 中,∠C=90°,当锐角A 的大小确定时,∠A 的
邻边与斜边的比、∠A 的对边与邻边的比确定吗?
把∠A 的邻边与斜边的比叫做∠A 的 ,记作 ,即cosA=A ∠的邻边斜边=a
c

把∠A 的对边与邻边的比叫做∠A 的 ,记作 ,即tanA=A A ∠∠的对边的邻边=a b
. 例如,当∠A=30°时,我们有cosA=cos30°=

当∠A=45°时,我们有tanA=tan45°= .
结论: 锐角A 的 、 、 都叫做∠A 的锐角三角函数.
对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数.同样地,cosA ,tanA 也是A 的函数
例1 如图,在Rt △ABC 中,∠C=90°,BC=•6,sinA=3
5
,求cosA 、tanB 的值.
【随堂练习】
1、如图,在Rt △ABC 中,锐角A 的邻边和斜边同时扩大100倍,tanA 的值( ) A.扩大100倍 B.缩小100倍 C.不变 D.不能确定
A
B
C
D E
O
A A
bbb
C D
· ∠A的邻边b
∠A的对边a 斜边c C
B
A
A B C D
2、在Rt △ABC 中,∠C =90°,求∠A 的三角函数值。

① a=9 b=12 ② a=9 b=12
3、已知∠A 为锐角,sinA =17
15
,求cosA 、tanA 的值。

4、如图,在Rt △ABC 中,∠C=90°,AC=8,
tanA=43
,求sinA ,cosB 的值。

【课堂小结】
定义中应该注意的几个问题:
1、sinA 、cosA 、tanA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。

2、sinA 、 cosA 、tanA 是一个比值(数值)。

3、sinA 、 cosA 、tanA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。

【随堂检测】 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有(

A .
B .
C .
D .
2. 在中,∠C =90°,如果cos A=4
5 ,求
的值。

3、如图:P 是∠
的边OA 上一点,且P
点的坐标为(3,4), 求cos α的值
学习笔记·板书设计
学·教后记。

相关文档
最新文档