正交各向异性介质平面问题的基本解
复合材料力学 第三章 各向异性弹性力学基础

S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:
五、各向同性(2个弹性常数)
E,
S11 S 12 S12 0 0 0 S12 S11 S12 0 0 0
S12 S 22
S13 S 23 S 33
0 0 0 S 44
0 0 0 0 S 55
对
称
0 0 0 0 0 S 66
由此可得:1)当采用材料主轴来描述正交异性体时,没有任 何拉剪耦合现象; 2)在非材料主轴系里,正交异性材料仍有耦合
现象。 纤维在横截面内按矩形排
列的单向纤维复合材料,宏观 而言则是一正交异性体。 共有9个弹性常数:
E1 , E2 , E3 , 12 , 31 , 23 , G23 , G31 , G12
1轴沿纤维方向,并有
ij ji
ij
没有对称性。
,而是
ij
Sij
ji
Ei
即
可展开为:
四、横观同性(5个弹性常数)
第三章 各向异性弹性力学基础
§3-1 各向异性弹性力学基本方程
基本未知量:
位移分量:u, v, w 应变分量: x , y , z , yz , zx , xy 应力分量: x , y , z , yz , zx , xy
基本方程:
1、平衡方程
ij, j f i 0
其中Sij为柔度系数,4、5和6即为剪应力23、31和12。 可见各向异性体一般具有耦合现象:正应力引起剪应变,剪 应力也可以引起正应变;反之亦然。
正交各向异性弹性力学平面问题的样条虚边界元法

界积分 方程或 直接得 到 一个线 性代数 方程 组 , 而完全避 开 了边界 奇异积 分 的计算 , 从 并能有 效 地克服边 界层 效应 问题 , 提高边 界及其 附近 区域 上解 的精 度 .这 种 方法 在 发 展 的过 程 中有 多 种名静 , 很不统 一 , 缺 乏较系统 的评 述 .作者把 这类 方法统称 为域 外奇 点法 .与 常规边 界元 且 法 一样 , 域外奇点 法 也有 直接法 和问接 法 之分 , 间接法 又可分 为连续 型 和离散 型两 种 .直接 而 域外 奇点 法是对 常规 直接边 界元法 的修 正 , 有些 文献 也静 之 为正 则边 界 元 法 .该 方法 同样 可 以采用加权 余量 法或 功 的互 等定 理等导 出以真实边 界上真 实物 理量 为基本未 知 量 的边界积 分
学、 高层建筑结构 、 桥粱结 构 .
40 0
维普资讯
苏
成
韩
大
建
力学 问题 - 薄板 弯 曲问题 [ J弹性力 学平 面 问题 _ 二维 波 动 问题 … 的 分 析 中 .至 于 、 、 l和 。 等 间接方 法 . 连续 型 间接域 外奇 点法 是对 常规 间接边 界元法 的修 正 .该法在 域外 虚 拟边界 ( 或域 外 某一 线段 ) 上连 续地 分布 一些 未知虚 拟量 , 然后 利用 基 本 解 的叠 加去 满 足 问题 的 边 界条 件 , 从 而建立 起相 应 的非 奇异虚 边 界积 分 方程 .它 们需通 过 数 值 方法 求解 , 一般 采 用类 似于 常规 边界 元法 的做 法 , 虚 拟边 界离 散 为若 干 虚边 界 元 , 积 分 方 程转 化 为线 性代 数 方 程 组来 求 把 将
第四章_各向异性介质中的光波详解

4.1.1 偏振光与自然光
光的传播与偏振
想一想
椭圆偏振光?
椭圆偏振光
4.1.1 偏振光与自然光
完全偏振光 线偏振光 圆偏振光 椭圆偏振光
自然光
在垂直光传播方向的平面上,所有方向均 有横振动,各个方向的振动幅度均相等,形成 如图所示的轴对称振幅分布。
4.1.1 偏振光与自然光
部分偏振光:自然光+完全偏振光
晶体光学与各向同性的光学: 相同:以麦克斯韦方程和物质方程为基础; 唯一不同:
D与E的关系。
晶体的介电张量
各向同性介质: D E 0r E 为常数
各向异性介质
D ij E 0 (r )ij E
xx yx
xy yy
xz yz
极化(偏振)与各向异性(双折射)
极化(偏振)与各向异性(双折射)
外加电场下,介质分子的极化与物质本身结构有关
无极分子
l
正负电荷被拉开距离
有极分子
重新排列
电荷=束缚电荷+自由电荷
E
/0
f
P 0
P 束缚电荷,与介质极化有关
偶极子
产 均匀
生 剩
介质
余
界面上 产生剩 余电荷
电 荷 非均 内部产
匀介 生剩余
量)
Dx Dy
0
xx yx
xy yy
xz yz
Ex Ey
Dz
zx zy zz Ez
0
xx yx
xy yy
xz yz
zx zy zz
J与E的关系
J J
x y
xx yx
xy yy
xz yz
Ex
Байду номын сангаас
正交各向异性薄板理论的新正交关系及其变分原理

中国科学G辑物理学力学天文学 2005, 35(1): 79~86 79正交各向异性薄板理论的新正交关系及其变分原理*罗建辉①**龙驭球②刘光栋①(①湖南大学土木工程学院, 长沙 410082; ②清华大学土木系, 北京 100084)摘要利用平面弹性问题与板弯曲问题的相似性理论, 将弹性力学新正交关系中构造对偶向量的思路推广到正交各向异性薄板弹性弯曲问题. 由混合变量求解法直接得到对偶微分方程. 所导出的对偶微分矩阵具有主对角子矩阵为零矩阵的特点. 发现了2个独立的、对称的正交关系. 利用正交各向异性薄板弹性弯曲理论的积分形式证明了这种正交关系. 在恰当选择对偶向量后, 弹性力学的新正交关系可以推广到正交各向异性薄板弹性弯曲理论. 利用积分形式导出了与微分形式对应的变分原理并提出了一个完整的泛函表达式.关键词弹性力学薄板理论对偶向量正交关系正交各向异性变分原理将Hamilton体系导入弹性力学求解, 钟万勰建立了弹性力学求解辛体系并提出了辛正交关系[1,2]. 对于二维弹性力学问题, 罗建辉等将原来的对偶向量[1]进行重新排序后, 提出了一种新的对偶向量和对偶微分矩阵[3]. 对于各向同性材料, 发现辛正交关系可以分解为2个独立的、对称的子正交关系, 新的正交关系包含辛正交关系[3]. 罗建辉等将新正交关系推广到各向同性三维弹性力学[4]和有一个方向材料正交的各向异性三维弹性力学[5]. 在弹性力学的求解体系中, 薄板和厚板弯曲理论的求解体系的研究也一直受到关注. 姚伟岸等研究了Reissner板弯曲的辛求解体系并提出了辛正交关系[6]. 罗建辉等采用与文献[6]排序不同的对偶变量, 导出了厚板弯曲的对偶求解体系[7]. 新正交关系被推广到厚板弯曲理论, 并从厚板势能原理出发, 采用换元乘子法导出了厚板Hamilton变分原理的能量泛2004-07-01收稿, 2004-12-20收修改稿*国家自然科学基金(批准号: 10272063)、教育部高等学校博士点基金(批准号: 20020003044)、清华大学基础研究基金(批准号: JC2002003)、高等学校全国优秀博士论文作者专项基金(批准号: 200242)资助项目** E-mali: luojianhui@80 中国科学 G 辑 物理学 力学 天文学 第35卷函.按照一般的思路, 厚板理论的子正交关系退化到薄板理论, 可以导出薄板理论的新正交关系. 但经过我们的研究发现, 直接退化的薄板理论正交关系并不成立. 产生这个结论的原因是显而易见的. 因为当厚板理论的对偶向量退化到薄板理论后, 对偶向量中的横向剪力不是独立的变量. 所以有必要对薄板理论对偶向量的选择和正交关系等问题进行研究. 钟万勰等提出了弯矩函数的概念, 建立了平面弹性问题与板弯曲问题的相似性理论, 构造了与传统对偶变量不同的对偶向量, 研究了各向同性薄板弯曲的求解辛体系并提出了辛正交关系[8]. 岑松等采用与文献[8]不同的对偶变量, 避免了相似性原理, 建立了薄板弯曲的对偶微分方程以及相应的变分原理泛函表达式[9]. 姚伟岸等基于相似性原理, 研究了正交各向异性薄板弯曲求解辛体系并提出了辛正交关系[10]. 但文献[10]建立的泛函表达式不完整, 没有包含与边界条件有关的项. 利用平面弹性问题与板弯曲问题的相似性理论, 罗建辉等将弹性力学的新正交关系推广到各向同性薄板弹性弯曲理论[11], 薄板弯曲的辛正交关系[8]分解为2个独立的、对称的子正交关系.本文将文献[3]构造对偶向量的思路应用于正交各向异性薄板弹性弯曲问题, 对文献[8]提出的对偶向量重新排序后, 提出了新的对偶向量, 建立了对应的对偶微分方程. 对偶微分矩阵的主对角子矩阵是零矩阵. 由于对偶微分矩阵的这一特点, 发现了辛正交关系[10]可以分解为2个独立的、对称的子正交关系. 文中从弹性力学求解体系的积分形式[12]出发, 证明了新正交关系的成立. 利用一种建立变分原理的新方法[12], 基于对偶微分方程和边界条件, 推导了对应的变分原理, 提出了一个包含边界条件的完整泛函表达式. 本文的研究表明, 在恰当选择对偶向量后, 弹性力学的新正交关系可以推广到正交各向异性薄板弹性弯曲理论.1 对偶向量和对偶微分方程矩形薄板的坐标如图1所示. 为了便于与文献[10]进行对比, 下文中有关的符号定义见文献[10, 13].曲率——挠度的关系是22222, ,.x y xy w w w x y x y∂∂∂===−∂∂∂∂κκκ (1)平衡微分方程为2222220xy y x M M M q x yxy∂∂∂−++=∂∂∂∂. (2)横向荷载q 的作用可以通过特解得到处理. 所以这里只考虑当q = 0时图1 矩形薄板第1期 罗建辉等: 正交各向异性薄板理论的新正交关系及其变分原理 81(2)式的齐次方程.正交各向异性板的物理方程为1112122266,,2y y x x y x xy xy M D D M D D M D =+=+=κκκκκ.(3)引用弯矩函数[10] ψx 和ψy , 弯矩与弯矩函数的关系为,,2y yx x y x xy M M M x y y x∂∂∂∂===+∂∂∂∂ψψψψ. (4) 容易看出(2)式的齐次方程已被满足. 若以对偶变量[10]T []x y y xy =νψψκκ (5)为基本变量, 则要由(1)式消去w 得变形协调方程为0,0y xy xy xxyxy∂∂∂∂+=+=∂∂∂∂κκκκ. (6) 将(4)代入(3)式可得 2121211662222,y y x x y xy D D D D x D y D x y∂∂⎛⎞∂∂=+−+=⎜⎟⎜⎟∂∂∂∂⎝⎠ψψψψκκ, (7)1222221y x y D D y D ∂=−∂ψκκ. (8)按文献[3]选取对偶向量的原则, 令新的对偶向量为 TT T[],b d =ννν (9)T T [],[].b x xy d y y ==ψκκψνν (10)由(6), (7)式得对偶微分方程为,=v Lv (11)式中,x⎡⎤∂==⎢⎥∂⎣⎦0B νL νD 0&, (12)2121211222221266222220,1D D D D D y y D D y D yD y ⎡⎤∂∂⎡⎤−−⎢⎥⎢⎥∂∂⎢⎥⎢⎥==⎢⎥∂⎢⎥∂∂−⎢⎥−⎢⎥∂∂⎣⎦∂⎢⎥⎣⎦B D . (13) 其他变量可由(1), (4)和(8)式得到. v b , v b 的分量以混合形式出现. 与文献[10]的H 矩阵比较, 由新对偶向量导出的L 矩阵的特点是其主对角子矩阵为零矩阵. 利用L 矩阵的这一特点, (11)式可以表示为,b d d b ==&&v Bv vDv . (14) 采用分离变量法求解, 设82 中国科学 G 辑 物理学 力学 天文学 第35卷()exp()y x =λv ψ, (15)式中λ是特征值, ψ是特征函数向量. 对应于新对偶向量, T T T[]b d =ψψψ. 由(14)式得,d b b d ==λλB ψψD ψψ. (16)2 一种新的正交关系定义11001⎡⎤=⎢⎥−⎣⎦J . (17) 对于任意的对偶变量v 和v *, 可以验证(18)~(21)式为恒等式.T1()*y***x d byxy xy y x x x∂∂∂=+−∂∂∂ψψκκκψv J v &, (18)2T1212111112222221+ 1 (),*y y ***d dy y y y *y y *x y D D D D D D y y D y y y⎛⎞∂∂⎛⎞⎜⎟=−+⎜⎟⎜⎟⎜⎟∂∂⎝⎠⎝⎠∂∂∂−+∂∂∂ψψκκκκψψκψv J Bv(19)T 1()*y ***xb dy xy y x x x x∂∂∂=−−+∂∂∂ψψκκκψv J v &, (20)T166()*****xx b bxyxy xy xy xy x D y y y∂∂∂=+−−∂∂∂ψψκκκκκψv J Dv . (21) 考虑图1所示矩形薄板, 在边界y = 0和y = b 处, 满足下列边界条件0x =κ或0y =ψ, (22)=0xy κ或0x =ψ. (23)由(19)和(21)式得T T 11()()****d d d d x y x y y y ∂∂−=−∂∂κψκψv J Bv v J Bv , (24)T T 11()+()****b b b b xy x xy x y y∂∂−=−∂∂κψκψv J Dv v J Dv . (25) 对(24)和(25)式积分得T T 110()()()bb b****d d d d x y x y dy −=−∫κψκψv J Bv v J Bv , (26)T T 11000()()()bb b****b b b b xy x xy x dy −=−∫κψκψv J Dv v J Dv . (27)第1期 罗建辉等: 正交各向异性薄板理论的新正交关系及其变分原理 83利用(14)和(22), (23)式, 由(26), (27)式分别得T T 11,,,,**d b d b 〈〉=〈〉v J v v J v &&, (28)T T 11,,,,**b d b d 〈〉=〈〉v J v v J v &&. (29)其中定义了运算110,,d by 〈〉=∫v J u vJ u . (30)由(15)式得,b b d d ==λλ&&vv vv , (31)******,b b d d ==λλ&&v v v v .(32)将(31), (32)式代入(28), (29)式得 T T11, , , , 0***d b d b 〈〉−〈〉=λλv J v v J v , (33)T T 11, , , , 0***d b d b −〈〉+〈〉=λλv J v v J v . (34)对于特征根λ和λ*, 若λ2−λ∗2 ⎯0, 由(33)和(34)式得T T11, , 0,, , 0**d b d b 〈〉=〈〉=v J v v J v . (35)以(15)代入(35)式得()T()T11e , ,0,e , ,0**x*x*d b d b λλλλ++〈〉=〈〉=ψJ ψψJ ψ. (36)由()e 0*x+≠λλ得新的正交关系TT11, ,0,, , 0**d b d b 〈〉=〈〉=ψJ ψψJ ψ. (37)由(37)式可得辛正交关系[10]T T11, , , , **d b d b J J 〈〉=〈〉ψψψψ. (38)对于正交各向异性薄板弯曲问题, 新的正交关系(37)式包含辛正交关系(38)式.3 混合变分原理对于对偶微分方程(14), 建立相应的变分原理是必要的. 下面将从微分形式出发, 利用积分形式[12]导出了与微分形式对应的变分原理.对于一般的曲线边界S , 边界条件为=0, 0s s n n −−=ψψψψ(在边界S ψ上), (39)=0, 0ns ns s s −−=κκκκ(在边界S κ上).(40)设对偶变量v *为任意对偶变量, 若对偶变量v 满足对偶微分方程(14)和边界条件(39), (40), 则()0*F ,=v v , (41)84 中国科学 G 辑 物理学 力学 天文学 第35卷T T11()[()()]d d [()()]d [()()]d .***d b d b d b A**n n s s s ns S **s ns ns n s s S F ,x y s s =−−−−−+−−−+−∫∫∫∫ψκψψκψψκψκκψκκv v v J v Bv v J v Dv &&(42)将(18)~(21)式代入(42)式得211121122122222()[ 1(+)21 +2**y y *****x xy y xy xy y y y y A***y yy y y y*y yD D F ,x x x x D D D D y y D y y y y ψψψψκκκκκκκκψψψψψψκκ∂∂⎛⎞∂∂=+++−−⎜⎟⎜⎟∂∂∂∂⎝⎠⎛⎞⎛⎞∂∂∂∂∂∂⎜⎟⎜⎟−++⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∫∫v v66()2()()]d d [()()]d [()()]d .****x xxy xy xy xy xy xy ****xy y y x x y xy x **n n ss s ns S **s ns ns n s s S D y y x yx y ss ψκψψκκκκκκκψκψκψκψψψκψψκψκκψκκ∂∂−+++∂∂∂∂−+−+∂∂−−+−−−+−∫∫ (43)为简单起见, 限定边界为直线段. 利用Green 公式, 得()+()d d [()()]d()d .****xy y y x x y xy x A ****xy y y x x y xy x S**n s s ns Sx y x y l m ss κψκψκψκψκψκψκψκψψκψκ⎡⎤∂∂++⎢⎥∂∂⎣⎦=+++=+∫∫∫∫(44)利用(44), (43)式化为12222661112112222()[+1(+)()221]2***y y y y ****x x y y xy xy y yA ****y y y y xy xy xy xy ***y y y y *x xxy xy D F ,x x x x D y y D D D D D D y yy y y y ψψψψψψκκκκκκκκκκκκκκψψψψψψκκ⎛⎞∂∂∂∂∂∂⎜⎟=+++−⎜⎟∂∂∂∂∂∂⎝⎠⎛⎞−−−+⎜⎟⎜⎟⎝⎠⎛⎞∂∂∂∂∂∂⎜⎟++++⎜⎟∂∂∂∂∂∂⎝⎠∫∫v v d d [()()]d ******n s n s n s s ns s ns s ns S x y s ψψκψκψκψκψκψκ−+−++−∫第1期 罗建辉等: 正交各向异性薄板理论的新正交关系及其变分原理 85()d .**s ns n s S s κψκψκ−+∫(45) 因为v 也包含在v *之中, 由(41)式得()0.F ,=v v (46)引入变分δ v = v *−v , 由(41)减(46)式得()()0*F ,F ,−=v v v v ,即21112121122226622 1(+)+21 ()22y y x x y y xy xy A y y y y y y y y y y y yxy xy xy xy x x x x D D D D D D y y D D y yy y ψδψψδψδκκδκκψδψδκκκδκδκκδψψψδψδκκκδκ∂∂∂∂⎡+++⎢∂∂∂∂⎣∂∂⎛⎞⎛⎞−−−⎜⎟⎜⎟⎜⎟∂∂⎝⎠⎝⎠∂∂∂∂⎛⎞++−+⎜⎟∂∂∂∂⎝⎠∫∫d d ()d [()()]d 0.x x xyxys ns n s Sn s n s n s s ns s ns s ns S x y s y y s κψψδψδκκδψκδψκδψκψδκψδκδψκψδκψδκ∂∂⎤++−+⎥∂∂⎦−+−++−=∫∫(47)对(47)式进行变分的逆运算, 得混合变分原理的变分表达式为0,=δΠ (48)22111211222266122222121 d d 22 ()d [()()]d ,y x xy y y Ay y x y xy xy s ns n s s n n ns s s S S D D D D D D x yD y D y y s s κψΠκψκψκψψψκκκψκψκκψψκψψ⎛⎞⎡=+−−⎜⎟⎣⎜⎟⎝⎠∂⎛⎞∂⎤−+−+⎜⎟⎥∂∂∂⎦⎝⎠−+−−+−∫∫∫∫&&(49)式中Π 的表达式包含文献[8, 10]的泛函表达式. 文献[8]对于各向同性薄板提出了一个完整的泛函表达式. 文献[10]的泛函表达式未包含有关边界条件的项. 本文提出了正交各向异性薄板完整的泛函表达式. 本文建立变分原理的方法是一种理性方法. 对(49)式进行变分, 可以推导出对偶微分方程(14)和边界条件(39),(40).4 结论对于基于新对偶变量的正交各向异性薄板求解体系, 本文得出了3点结果:(ⅰ) 建立了正交各向异性薄板对偶微分方程; (ⅱ) 导出了相应的薄板能量泛函;86 中国科学 G 辑 物理学 力学 天文学 第35卷(ⅲ) 提出了薄板两个子正交关系, 弹性力学的新正交关系已推广到正交各向异性薄板的弯曲问题.新的正交关系不但包含辛正交关系, 而且比其简洁. 新的正交关系成立的条件是220*−≠λλ. 这个条件的物理意义是对偶微分方程的基本解系关于x 坐标对称性. 对于一般的各向异性材料, 这一对称性将不成立, 所以新正交关系也不成立. 可以推测, 辛正交关系对于最一般的各向异性材料仍成立. 薄板求解体系的研究成果将为研究薄板的解析解和有限元解提供新的有效工具. 希望本文的工作对正交各向异性薄板弯曲问题特征函数展开直接解法的研究有所帮助.参 考 文 献1 钟万勰. 弹性力学求解新体系. 大连: 大连理工大学出版社, 19952 钟万勰. 互等定理与共轭辛正交关系. 力学学报, 1992, 24(4): 432~4373 罗建辉, 刘光栋. 各向同性平面弹性力学求解新体系正交关系的研究. 计算力学学报, 2003, 20(2): 199~2034 罗建辉, 刘光栋, 尚守平. 各向同性弹性力学求解新体系正交关系的研究. 固体力学学报, 2004, 25(1): 98~1005 罗建辉, 刘光栋. 弹性力学的一种正交关系. 力学学报, 2003, 35(4): 489~4936 姚伟岸, 隋永枫. Reissner 板弯曲的辛求解体系. 应用数学和力学, 2004, 25(2): 159~1657 罗建辉, 岑松, 龙志飞, 等. 厚板Hamilton 求解体系及其变分原理与正交关系. 工程力学, 2004, 31(2): 34~398 钟万勰, 姚伟岸. 板弯曲求解新体系及其应用. 力学学报, 1999, 31(2): 173~1849 岑松, 龙志飞, 罗建辉, 等. 薄板Hamilton 求解体系及其变分原理. 工程力学, 2004, 21(3): 1~6 10 姚伟岸, 苏滨, 钟万勰. 基于相似性原理的正交各向异性板弯曲 Hamilton 体系. 中国科学, E 辑, 2001, 31(4): 342~34711 罗建辉, 龙驭球, 刘光栋. 薄板理论的正交关系及其变分原理. 力学学报, 2004, 36(5): 527~532 12 Luo J H, Liu G D, Shang S P. Research on a systematic methodology for theory of elasticity. Applied Mathematics and Mechanics, 2003, 24(7): 853~86213姚伟岸, 钟万勰. 辛弹性力学. 北京: 高等教育出版社, 2002。
正交各向异性介质反射系数精确解

2020年10月第55卷 第5期 *北京市海淀区学院路29号中国地质大学(北京)地球物理与信息技术学院,100083。
Email:lujun615@163.com本文于2020年1月2日收到,最终修改稿于同年6月24日收到。
本项研究受国家自然科学基金项目“六分量地震波场的模拟与观测”(U1839208)、“沁水盆地高煤阶煤层气井产能控制因素与增产机理研究”(U1910205)及中国石化股份公司研发项目“三维三分量VSP关键处理技术研发与应用”(P18070-5)联合资助。
·综合研究·文章编号:1000-7210(2020)05-1060-13正交各向异性介质反射系数精确解张雪莹① 孙鹏远② 马学军③ 芦 俊*④ 李梦琦④(①中国地质大学(北京)能源学院,北京100083;②东方地球物理公司物探技术研究中心,河北涿州072751;③中国石化西北油田分公司勘探开发研究院,乌鲁木齐830011;④中国地质大学(北京)地球物理与信息技术学院,北京100083)张雪莹,孙鹏远,马学军,芦俊,李梦琦.正交各向异性介质反射系数精确解.石油地球物理勘探,2020,55(5):1060-1072.摘要 中国陆相沉积岩大多具有薄互层特征,当受到构造运动的影响时,会发育垂向或近似垂向的高角度裂缝,呈现出典型的正交各向异性,可看作是VTI和HTI各向异性的叠置。
研究正交各向异性介质的AVO响应特征对裂缝型储层的精细刻画有重要的意义。
针对VTI背景介质中发育的一组直立裂缝诱导的正交各向异性,采用Tsvankin提出的各向异性参数构建刚度系数矩阵,再根据Christoffel方程和边界条件推导了精确反射系数和透射系数的计算方法。
理论模型试算表明:①若P波从低阻抗各向同性介质入射至高阻抗正交各向异性介质,背景介质VTI各向异性强度的增大会导致PP波反射系数增大、PS1波和PS2波的反射系数减小;而随着裂缝弱度的增强会导致PP波反射系数的减小、PS1波和PS2波的反射系数的增大。
平面正交各向异性体材料参数识别算法及软件设计

如 果选ቤተ መጻሕፍቲ ባይዱ取结 构 的位 移 为 目标 变 量 , 目标 函数 则
可 以表示 为 :
Fs ( ):∑ s,s ≥q () ) ∈R, 2 P
其 中 , 测量 位 移 的数 量 ; 识别 材 料 参 数 p为 q为 的数 量 。 方程 ( ) 函数 () 义为 : 2中 s定
出的参数识 别方法是 有效的。
关键词 :平面正交各 向异性体 ;边界元 法;参数识 别
中图分 类号 :T 3 1 P 1 文献标识码 :A 文章编号 :10 0 9 (0 0 0 0 3 0 0 3— 99 2 1 )5— 0 5— 5
1 引 言
正交 各 向异 性材 料 ( 特别 是 先 进 复 合 材 料 ) 在 现代 工程结 构 中得 到 了广 泛 的应 用 , 准确 的材 料 其 参数 对工程 设计 与评 价具 有很 重要 的作 用 。融 合 测 量技术 、 数值 分析 方 法 和 优 化技 术 的参 数 识别 技 术 是获取 这 些 材 料 参 数 的 有 效 途 径 … 。材 料 参 数 识
r; () ts分别 为 边界 上 的位移 和 面 力 ; 1 s和 () ,
平 面正交 各 向异 性 体 在 荷 载作 用 下 , 以根 据 可
日() G s影 响矩 阵 。 s和 () 方程 ( ) 解产 生 的位移 1和应力 , 是边 界元 法 1求 1 , 这 求 解 正 问题 过 程 。另 一 方 面 , 根据 测 量 位 移 反求 材 料 参数 s即材 料 参数 识 别 问题 , 是 基 于 边界 元 , 这 法 求解 反 问题过 程 。材料参 数 识别 问题 可 以转 化成
2 平 面正交各 向异性体参数识别的数 学模 型
10_各向异性介质中的平面波

Ay Bx y0 x 0 Ay B y y0 y0 Ay B z y 0 z 0
称C
Az B x z 0 x 0 Az B y z 0 y0 Az B z z 0 z 0
为 并矢 。所以在三维空 间,标量用一个元素表示,矢量用三 个元素
其运算法则是夹在中间两个单 位矢量按 标积运算。 并矢的一次标积 A B , 并矢的二次标积 A : B ,其运算法则是夹在中间的两个单位矢量先按标积
// (1 )k x k z // (1 )k y k z 0 2 k 2 2 2 // z // kx ky
k
2 2
// 2 k k k z 2 //
波方程
寻常波解
k 2 2
2 k 2 0 0
0 k 2 2 0
,由此得到
vp / k 1/
E 0 x // (1 )k y k z E 0 y 0 2 E 0 z // k z 2 2 2 // kx ky z // 1 k x k z
D x xx D y yx D z zx
B x xx B y yx B z zx
xy xz E x yy yz E y E zy zz z
k E0 k x E0x k y E0y k z E0z ( 1 ε // )k z E0z ε
0 0
0
【doc】正交各向异性材料弹性本构关系分析

正交各向异性材料弹性本构关系分析一1997拒航空发动机第1期正交各向异性材料弹性本构关系分析张晓霞(沈阳建西孬,11OO15)32}3周柏卓(沈阳航空发罚罚面,110015)要:首先给出了正穸各向异性对科在材科主轱坐标最中弹性萃构关系.并由此导出了材科不同方向的弹性毫教之间的关系关键词0匪銮鱼里星嗡讨料三堕笪黾材料单晶材料..查塑苎量壁堡曼泊橙比剪切模量II1引言符号表正应力分量剪应力分量正应变分量剪应变分量方向弹性模量坐标轴问的剪切模量i:Y向作用拉(压)应力引起j方向缩(伸)的泊松比对于各向同性材料,正应力只产生正应变:剪应力分量只产生相应的剪应变分量.与各向同性材料不同,各向异性材料的正应力不仅产生正应变,而且也产生剪应变;同样,剪应力除了产生剪应变外,还要产生正应变;剪应力分量除了产生与之对应的剪应变分量外,还要产生其它的剪应变分量.这种耦合效应是由各向异性材料的物理特性所决定的. 完全各向异性材料的物理特性需要由21个独立的弹性常数来描述.在航空发动机上,用于制造涡轮叶片等高温构件的定向结品材料和单晶材料是正交各向异性的.正交各向异性材料是指通过这种材料的任意一点都存在三个相互垂直的对称面,垂直_丁对称面的方向称为弹性主方向. 在弹性主方向上,材料的弹性特性是相同的. 平行于弹性主方向的坐标轴为弹性主轴或材料主轴,用l_2和3表示这三个材料主轴.2弹性本构方程在正交各向异性材料的材料主轴坐标系中表示应力分量和应变分量或它们的增量. 应力分量与应变分量是不耦合的,其弹性应力应变关系由广义虎克定律确定".=【Cl{…………………?(1))=【c1扣}=【D】{£) (2)其中:㈦【"£,,;}=【l_O-"r"f2r"r;lDL=lc_L..;收稿日期:1996—06—27一/,n,=三EG1997征航空发动机第1期一(3)其中由于弹性矩阵的对称性有:£.u】I=u¨.E2n:£】",ElI,=£",因此,(3)式12个常数中只有9个是独立的求(3)式的逆矩阵.即可得到(2)式中的弹性系数与工程常数之间的关系为=:等鳇鲁每=G,d,^=G11d=G.……(4)其中:逝嚣3应力和应变坐标变换由弹性力学可知,一点的应力状态可由该点的三个相互垂直方向的3个正应力分量和6个剪应力分量表示.由剪应力互等定理可知,这6个剪应力分量中只有3个是独立的这9-t"应力分量组成一个二阶对称的应力张量: 同理,一点的9个应变分量组成一个二阶对称的应变张量,用矩阵分别记为fO-fr][]=l,flrJ通常.总体坐标系与材辩坐标系并不重合在总体坐标系中,正应力分量和剪应力分量之问,剪应力分量和剪应力分量之阅相互耦台.其应力应变关系可通过材料坐标系下应力应变关系的旋转变换得到设[fm,n,].[Zmn]和[Z:mss]分别为总体坐标轴x.Y和Z在材料坐标系中的方向余弦.则坐标变换矩阵H]为『,,用]【'mlL,3m】",J若材料坐标系中的应力张量和应变张量分别记为[]和[£].则应力张量和应变张量的转轴公式分别为【]=】[L【】 (5)]=【【州【棚 (6)[0]:】L】………………………?-(7)【.】=【[】【】…….展开(5)式,并写成矩阵的形式变换矩阵.则{}=【丁1,{}……………….同理展开(6).(7)和(8)式,得:{}=[{}……………{0}:[{…………………{0}:[,{…………………一其中变换矩阵………(8)令[列为….(9)…(IO)…fl1)…(12)2I22■,222'2'2rain,2^^'+'mn''+'+ram2^+''州+(J,It1nJ,+n,/. …………………………(131211,●●●●●●●●●j ,,Z,l一"r●_11l00000上o000上0..0.一0.E一E上B...一.一一...上'一一.00,...—.........—.........—,................,. .一晶~""f+●l~1997年航空发动机第1期I2lf,2¨2222n,n~22_'+''+''',l|^+,l|'''+月'c+rd.分别将(1)式和(10)式代人(11)式,(2)式和(12)式代人(9)式得总体坐标系下正交各向异性材料的应力应变关系矩阵为:【c1=【【c]【…………………-(15)【D]=[.【D】_[ (16)4定向结晶材料弹性常数定向结晶材料具有横观各向同性性质即如果取结晶轴为材料坐标轴3,则在与3轴垂直的平面内材料性能相同.这种材料的独立的弹性系数降为5个.若用工程常数表示. 井考虑到弹性模量E=E..泊松比==s,=a,,剪切模量G=G,则应应变关系矩阵(3)式变为:一000一—,all000占0000}00【J_200一0【J"000士"(3a)=.=:=i1d=Gld=d=G..J在(3a)式中,剪切模量G是不独立的,可用1—2平面内的弹性模量E和泊松比.表示.通过绕结晶轴旋转变换得:G.:!"2(1)剪切摸量G.的直接测量较困难,通常测量与结晶轴成45.夹角方向的拉伸弹性模量E 并由此导出剪切摸量G使总体坐标轴x与材料坐标轴1重合,z轴与3轴成45.夹角,则z轴方向的弹性模量即为E将其方向余弦代人总体坐标系的应力应变关系(15)式中得:1G=毒E一击E一亡E+E……J】"J^J6单晶材料弹性常数在单晶材料的三个材料主轴方向上.材料的弹性特性分别相等,令三个方向的弹性模量E=E=E.=E泊松比.===2=u==.剪切摸量,G=G=G=G,则在材料主轴坐标系中,单晶材料的应力应变关系矩阵(3)式变为:一穹耋堂爹晶材料的弹性系数与[Cl:工程常数之间的关系为: ..=:=ii:;;.(1一.)E.E,d'—(I-,u,~)E—,-2,un2E.锋(4a)一坐一一u000£££一兰一一u000£££一一一1000.EEE,1000_l_00l.....l.o.o.石1(3b)由(4)式可得单晶树科的弹性系数为^吼f,●ir●●l一.一E一'0o.一一上一一£.....一一r●●●●●●●●Jr.●●●11997拒航空发动机第1期.==:1=:=G(45)在总体坐标系中,单晶材料的弹性常数是总体坐标系方向的函数,用表示坐标轴3与轴z的夹角;表示轴1与轴x,z平面的夹角.则坐标变换矩阵[]为:lCOStZCOcosasinfl—sinal【—s|nCO0f (I9)IsiNa~osinasinflc0I将(19)式代人总体坐标系下的应力应变关系矩阵(15)式可得到总体坐标系下的弹性系数:Ez,.G盯,Grz和Gzx.:一f三一(COS~a+SEE\EGJ. ……………………………….……………"(20)u一(2+2一£G)sinco(1一sinos所i面…………………………………………………? (2I)u一(2+2一E/G)s~nasia肛os卢.一I-(2+2,u-E'G)sin=a(cos~a+sin=asin:flcos2f1) ….…………….-….…..….…一…………? (22,:¨l_+4f一n,pco~p…(23)GG.EG,一_L:+4f等一1sin2asc…(24)G,G£G…+4f一1.n~acoc0).G—G\£G,'单晶材料有三个独立的弹性常数.这三个常数可由材料主轴方向的弹性模量E.泊松比"和剪切模量G组成.对单品材料,通常给出在[100],[110]和[111]方向的弹性模量E, E.和E,而不直接测量剪切模量G.将=45.,=O代人(20)式得剪切模量与[110]方向的弹性模量之间的关系为:j42—2一GElj,,一—i (26)将=54.7356..F=45.代人(2O)式得剪切模量与[111]方向的弹性模量之闸妁关系为l31—2"一Gi一彳 (27)由(26)种(27)式可得单品材料[100].[110]和[111]方向的弹性模量之间的关系为:141.一3E一………'(.)用(28)式预测了俄罗斯某单晶材料和美国单晶材料PW A1480[110]方向的弹性模量.其结果见表1和表2由表1可见.俄罗斯的这种单晶材料对f28)式符合得很好,其最大误差只有一2.07%;而单晶材料PW A1480对(28)式符合得较差,当温度较低时.误差是负的.当温度较高时.误差是正的.其虽大误差达到19.6.袁1某单晶材料弹性横■E(GPa)温度I:℃)实测值硬测值误差()20226.2225.1—0.48800184.2182.7—086900174.5174.3—0.1210001653161.9—2.07图1表示单晶材料PW A1480在=90..54.7356.和45.时.弹性模量E随转角的变化规律当=45.时,E达到最大值.图2表示在=54.7356.时.弹性模量E.E和E随转角的变化规律.图3表示单品材料PW A1480在一90.,54.7356.和45.时,泊松比随转角的变化规律.当fl=45.时,达到最小值图4表示在一90.时,泊松比和随1997伍航空发动机第l期最2单晶材料PW A]480弹性模量(GPa) 温度(_f)宴制填预测值误差() 42722131876—1524760174.416O.9—77587l149615644.58 9821331147310701093917109.7l960-.ff一,~,卜』./I\L:}_015如456D75舶'^咄.fReqd~,c')图1弹性横量EJ--a=90'一口=54.7'\l—a=45.O如朽种7j^'kRoI-师')转角的变化规律.当:45.时,zx选到晶大值,达到最小值从罔4可以看出.泊松比柏最小值小于零.这表示在z方向单向拉伸时,在Y方向不是收缩,而是膨胀;此时zx达到最大值,值达到0.8左右.+表示横截面积的收缩情况.图5表示单品材料PW A1480在一90.,54.7356.和45.时,剪切模量G随转角口的变化规律当一45.时,G达到最小值网6表示在a=54.7356.时,剪切模量GG和G随转角的变化规律._I/\},,/i\—.,/,7.,r,}一/1]a=54l:备广O巧舯.j鲫^ⅡgkRotlfl~川'】图2弹性模量E,EriEz}}}一.._一Lvj,【lL———J0I530印75钟AagtcorR~Jiaa'I图3泊松=r?国4泊松比村和20}一言0^昌na鲁.,廿0_,∞;一暑u呈∞言t¨¨0o名2善吣¨00目H.q口01997拄航空发动机第1期小结号:宅=i三^ⅡeRJttati~.图5剪切模置G1)E,和G是单晶材料最基本的3个独立的弹性常数,如果用(26)式和(27)式决定G,可能得到不同的结果.2)单品材料只有两个方向的弹性模量是独立的,任何第三个方向的弹性模量都可由这两个方向的弹性模量表示.[100]方向的弹性模量和泊松比以及与这个轴不平行也不垂直方向的弹性模量构成单品材料三个独立的弹性常数.3)单品材料PwA148O对(28)式符合得较In7.1'j,.-l/~-i!--GxY/GI一0l5舯'5∞90^n山.fRoI-衄'J母6剪切模置GG和GⅡ差.最大误差达到19.6%.4)单品材料的剪切模量对方向很敏感如果方向偏差10.,剪切模量的偏差可达20%.参考文献1张允真一曹富新弹性力学及其有限元法中国铁道山版社,19832GA.Swanson.I.LiaskD.M.NissleyLife PredictionandConstitutiveModelsF0tEngine HotSectionAnisortoplcMaterialsPrpgram,NASA——CR——1749521{'.虏暑_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交各向异性介质平面问题的基本解
正交各向异性介质体的平面问题,首先要明确的是其存在的基本物理规律,即紫外线在介质内的传播路线是依照光的折射率在各向异的方向而变化的。
考虑的基本问题就是在介质内可以得到哪些类型的波导解,以及这些解的性质如何。
从经典电磁理论出发,介质上波导解的性质完全由折射率所决定,即折射率(ε)、内在电容(μ)和外空气电容(ε0)。
在正交各向异性介质中,折射率是在横向和纵向上存在不同变体的,因此得到的波导解会存在一定的各向异性。
针对这个问题,可以采用电磁场积分的方法,解得一维正交各向异性介质的基本解,包括TE型和TM型的解。
TE型波导中,场线状态呈圆柱形分布,且其各向异性特性体现在横向和纵向受强度的不同程度。
TM型波导将电场和磁场的分布呈球体的分布状态,并且在横向和纵向上磁畴和电畴都是有差别的。
基于上述推导,我们可以得出结论:一维正交各向异性介质上,存在TE型和TM型的基本波导解,其横向和纵向的磁畴和电畴存在不同程度的强度差别。
而这种差别就是正交各向异性介质的特性。