人教版数学八年级下册同步练习(含答案)
2022-2023学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.1勾股定理》同步练习题(附答案)一.选择题1.已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A.5B.25C.D.5或2.△ABC中,AB=20,AC=13,高AD=12,则△ABC的面积为()A.66B.126C.54或44D.126或663.如图,Rt△ABC中,∠BAC=90°,分别以边AB,CA,BC向外作正方形,正方形ABIH 的面积为25,正方形BDEC的面积为169,则正方形ACFG的面积是()A.194B.144C.122D.1104.下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个5.如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为13,则直角三角形较短的直角边a 与较长的直角边b的比的值是()A.B.C.D.6.如图是一正方体的平面展开图,若AB=6,则该正方体A、B两点间的距离为()A.2B.3C.4D.67.如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.28.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14B.13C.14D.149.如图,正方形ABCD的面积为15,Rt△BCE的斜边CE的长为8,则BE的长为()A.17B.10C.6D.710.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1条B.2条C.3条D.4条二.填空题11.把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为.12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为.13.如图,已知OA=13,点A到射线OM的距离为5,点B是射线OM上的一个动点,当△AOB为等腰三角形时,线段OB的长度为.14.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点E,且AC=8,BC=5,则△BEC的周长是.15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,AC=6,则BD的长是.16.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…,依此法继续作下去,得OP2022=.三.解答题17.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.18.已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,△ACQ的面积是△ABC面积的;(3)当点Q在边CA上运动时,t为何值时,PQ将△ABC周长分为23:25两部分.19.如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?20.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做可爱三角形.(1)根据可爱三角形的定义,等边三角形是可爱三角形吗?请说明理由;(2)若某三角形的三边长分别为2、、3,试判断该三角形是否为可爱三角形,请说明理由.21.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?22.已知:在平面直角坐标系中,两点的横向(或纵向)距离可以用两点横坐标(或纵坐标)的差的绝对值来表示.(1)如图,平面内点A坐标为(2,3),点B坐标为(﹣1,﹣1),则AB两点的横向距离BC=,纵向距离AC=,最后,可得AB=;(2)平面内有点M(1,),点N(m,﹣)(m>0),请参考(1)中方法求线段MN的长.(用含m的式子表示)23.如图,在平面直角坐标系中有△ABC,AB=AC=13,BC=10,点C的坐标为(6,0),求A,B两点的坐标.24.如图,在平面直角坐标系中,点B,C的坐标分别为(﹣a,2a)、(3a,2a),其中a>0,点A为BC的中点,若BC=4,解决下列问题:(1)BC所在直线与x轴的位置关系是;(2)求出a的值,并写出点A,C的坐标;(3)在y轴上是否存在一点P,使得△P AC的面积等于5?若存在,求P的坐标;若不存在,请说明理由.25.如图是由边长为1个单位长度的小正方形组成的网格,△ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)△ABC的面积为;(4)点P在y轴上,且△ABP的面积等于△ABC的面积,则点P的坐标为.参考答案一.选择题1.解:当3和4都是直角边时,第三边长为:;当4是斜边长时,第三边长为:.故选:D.2.解:如图1,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=20,AD=12,∴BD===16,又∵AC=13,∴CD===5,∴BC=BD+CD=21,∴△ABC的面积=×21×12=126;如图2,BC=BD﹣CD=11,∴△ABC的面积=×11×12=66;综上所述,△ABC的面积为126或66,故选:D.3.解:在Rt△ABC中,∠BAC=90°,∴AB2+AC2=BC2,∵正方形ABIH的面积为25,正方形BDEC的面积为169,∴AB2=25,BC2=169,∴AC2=BC2﹣AB2=169﹣25=144,∴正方形ACFG的面积=AC2=144,故选:B.4.解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=(a+b)(a+b)=2××ab+c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b﹣)(a+)=ab+c c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.5.解:∵大正方形的面积是13,设边长为c,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.∵小正方形的面积为(b﹣a)2=1,∴b=3,a=2,∴.故选:B.6.解:∵AB=6,∴该正方体的棱长为3=,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,所以该正方体A、B两点间的距离为3,故选:B.7.解:由作图可知,点D在线段AB的垂直平分线上,∴AD=BD=2,故选:D.8.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.9.解:∵正方形ABCD的面积为15,∴BC2=15,∠ABC=90°,∴∠EBC=90°,在Rt△BCE中,由勾股定理得:BE===7,故选:D.10.解:由勾股定理得,a=,b=.c=,d=2,∵无理数有,两个,故选:B.二.填空题11.解:6﹣4=2,2×2=4.故图2中小正方形ABCD的面积为4.故答案为:4.12.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=a2+b2+2ab=25+24=49.故答案为:49.13.解:过A作AN⊥OM于N,则AN=5,∴ON===12,当△AOB为等腰三角形时,分三种情况:①当OA=AB时,如图1所示:∵AN⊥OM,∴ON=BN=12,∴OB=2ON=2×12=24;②OA=OB时,如图2所示:OB=13;③OB=AB时,如图3所示:设OB=AB=x,则BN=ON﹣OB=12﹣x,在Rt△ABN中,由勾股定理得:AN2+BN2=AB2,即52+(12﹣x)2=x2,解得:x=,∴OB=;综上所述,当△AOB为等腰三角形时,线段OB的长度为24或13或,故答案为:24或13或.14.解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案是:13.15.解:作DE⊥AB于E,在Rt△ABC中,由勾股定理得,BC=,∵AD平分∠BAC,AC⊥DC,DE⊥AB,∴CD=DE,∴S△ABC=+=,∴6CD+10CD=48,∴CD=3,∴BD=BC﹣CD=8﹣3=5,故答案为:5.16.解:∵OP=1,OP1=,OP2=,OP3=,∴OP2022=.故答案为:.三.解答题17.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.18.解:(1)当t=2s时,点Q在边BC上运动,则AP=2cm,BQ=2t=4(cm),∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),∴PQ的长为2cm;(2)∵S△ACQ=CQ•AB,S△ABC=BC•AB,点Q在边BC上运动时,△ACQ的面积是△ABC面积的,∴CQ=BC=×6=2(cm),∴BQ=BC﹣CQ=6﹣2=4(cm),∴t==2,∴当点Q在边BC上运动时,t为2时,△ACQ的面积是△ABC面积的;(3)在Rt△ABC中,由勾股定理得:AC===10(cm),当点P达到点B时,t==8,当点Q达到点A时,t=+=,∵当其中一个点到达终点时,另一个点也随之停止,∴0≤t≤8,∵AP=tcm,∴BP=(8﹣t)cm,点Q在CA上运动时,CQ=1.5×(t﹣)=(1.5t﹣4.5)(cm),∴AQ=10﹣(1.5t﹣4.5)=(﹣1.5t+14.5)(cm),∴BP+BC+CQ=8﹣t+6+1.5t﹣4.5=(0.5t+9.5)(cm),AP+AQ=t+(﹣1.5t+14.5)=(﹣0.5t+14.5)(cm),分两种情况:①=,即=,解得:t=4,经检验,t=4是原方程的解,∴t=4;②=,即=,解得:t=6,经检验,t=6是原方程的解,∴t=6;综上所述,当点Q在边CA上运动时,t为4或6时,PQ将△ABC周长分为23:25两部分.19.解:(1)∵∠ACB=90°,∴△ABC是直角三角形,在Rt△ABC中,由勾股定理得:AB===13,∴AB的长为13;(2)当点P在AC上时,CP=CB=5,t=5(s);当点P在AB上时,分三种情况:①当BP=BC=5,如图1所示:则AP=13﹣5=8,t=12+8=20(s);②当CP=CB=5时,过点C作CM⊥AB于M,如图2所示:则BM=PM=BP,∵AC•BC=AB•CM,∴CM===,在Rt△BCM中,由勾股定理得:BM===,∴BP=2BM=,∴AP=13﹣=,∴t=12+=(s);③当PC=PB时,如图3所示:则∠B=∠BCP,∵∠B+∠A=90°,∠BCP+∠ACP=90°,∴∠A=∠ACP,∴AP=PC,∴AP=PB=AB=,∴t=12+=(s);综上所述,当t=5s或20s或s或s时,△BCP为等腰三角形.20.解:(1)等边三角形是可爱三角形,理由:设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形是可爱三角形;(2)该三角形不是可爱三角形,理由:∵22=4,()2=17,32=9,∴22+()2≠2×32,22+32≠2×()2,()2+32≠2×22,∴该三角形不是可爱三角形.21.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.22.解:(1)BC=2﹣(﹣1)=3,AC=3﹣(﹣1)=4,由勾股定理得,AB=,故答案为:3,4,5;(2)∵MN的横向距离为m﹣1,纵向距离为2,∴MN====|m+3|,∵m>0,∴MN=m+3.23.解:过A作AD⊥BC于D,∵AB=AC,∴DC=BD=BC=5,∵点C的坐标为(6,0),∴OC=6,∴OD=1,OB=4,∴B(﹣4,0),在Rt△ADC中,根据勾股定理得AD=12,∴A(1,12);答:A,B两点的坐标分别是(1,12)、(﹣4,0).24.解:(1)平行,∵B与C的纵坐标相同,∴BC∥x轴,故答案为:平行;(2)∵BC=4,∴3a﹣(﹣a)=4,∴a=1,∴B(﹣1,2),C(3,2),∵A为BC的中点,∴A(1,2);(3)存在,设P(0,m),∵AC=2,∴,∴m=﹣3或7,∴P(0,﹣3)或(0,7).25.解:(1)点A的坐标为(3,4),点B的坐标为(0,2);故答案为:(3,4),(0,2);(2)BC==;故答案为:;(3)S△ABC=4×3﹣×2×3﹣×1×4﹣×1×3=5.5;故答案为:5.5;(4)设P(0,m),∵△ABP的面积等于△ABC的面积,∴|m﹣2|×3=5.5,解得:m=或﹣,∴点P的坐标为(0,)或(0,﹣).故答案为:(0,)或(0,﹣).。
人教版八年级数学下册16-3二次根式的加减 同步练习题

人教版八年级数学下册《16-3二次根式的加减》同步练习题(附答案)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.若4与可以合并,则m的值不可以是()A.B.C.D.3.下列运算正确的是()A.=B.+=C.3x3﹣5x3=﹣2D.8x3÷4x=2x34.++…+的整数部分是()A.3B.5C.9D.65.计算(﹣3)2022(+3)2023的值为()A.1B.+3C.﹣3D.36.设x、y都是负数,则等于()A.B.C.D.7.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣58.若x2+y2=1,则的值为()A.0B.1C.2D.39.已知x=﹣2,x4+8x3+16x2的值为()A.B.C.3D.910.若a=2﹣,则代数式2a2﹣8a﹣1的值等()A.1B.﹣1C.4+4D.﹣211.如图,在一个长方形中无重叠的放入面积分别为9cm2和8cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.2+1B.1C.8﹣6D.6﹣812.将一个边长为a的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A.(2﹣2)a2B.a2C.a2D.(3﹣2)a2 13.已知x+y=﹣6,xy=8,求代数式x+y的值.14.已知:,则ab3+a3b的值为.15.已知x=,则x4+2x3+x2+1=.16.已知a+b=3,ab=2,则的值为.17.已知x为奇数,且=,求•的值.18.已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.19.计算:(1)(1﹣π)0+|﹣|﹣+()﹣1;(2)(+﹣)2﹣(﹣+)2.20.(1)已知x=+2,y=﹣2,求下列各式的值:①+;②x2﹣xy+y2;(2)若+=8,求﹣.参考答案1.解:因为=2,=2,=2,=2,所以与是同类二次根式,故选:B.2.解:A、把代入根式分别化简:4=4=,==,故选项不符合题意;B、把代入根式化简:4=4=;==,故选项不合题意;C、把代入根式化简:4=4=1;=,故选项不合题意;D、把代入根式化简:4=4=,==,故符合题意.故选:D.3.解:A,,正确.B,,不正确.C,3x3﹣5x3=﹣2x3,不正确.D,8x3÷4x=2x2,不正确.故选:A.4.解:原式=+…+=++…+=++…+=++…+=﹣1=﹣1+10=9.故选C.5.解:原式=(﹣3)2022(+3)2022×(+3)=[(﹣3)(+3)]2022×(+3)=(10﹣9)2022×(+3)=1×(+3)=+3,故选:B.6.解:∵x、y都是负数,∴=﹣(﹣x+2﹣y)=﹣()2,故选:D.7.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:A.8.解:因为x2+y2=1,所以﹣1≤x≤1,﹣1≤y≤1,因为=,其中y﹣2<0,所以x+1≤0,又因为﹣1≤x≤1,所以x+1=0,x=﹣1,所以y=0,所以原式=+=2+0=2.故选:C.9.解:∵x=﹣2,∴x2=(﹣2)2=()2﹣2××2+22=7﹣4+4=11﹣4,则原式=x2(x2+8x+16)=x2(x+4)2=(11﹣4)(﹣2+4)2=(11﹣4)(2+)2=(11﹣4)(11+4)=112﹣(4)2=121﹣112=9,故选:D.10.解:∵a=2﹣,∴2a2﹣8a﹣1=2(a﹣2)2﹣9=2(2﹣﹣2)2﹣9=2×5﹣9=1.故选:A.11.解:如图.由题意知:(cm2),.∴HC=3(cm),LM=LF=MF=.∴S空白部分=S矩形HLFG+S矩形MCDE=HL•LF+MC•ME=HL•LF+MC•LF=(HL+MC)•LF=(HC﹣LM)•LF=(3﹣)×=(cm2).故选:D.12.解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为x,即正八边形的边长为x,依题意得x+2x=a,则x==,∴正八边形的面积=a2﹣4××=(2﹣2)a2.故选:A.13.解:∵x+y=﹣6,xy=8,∴x<0,y<0,∴x+y=﹣﹣=﹣2=﹣2=﹣4.故答案为:﹣4.14.解:∵,∴a+b=+=,ab=×==,则原式=ab(a2+b2)=ab[(a+b)2﹣2ab]=×(3﹣2×)=×=,故答案为:.15.解:∵x=,∴x4+2x3+x2+1=x2(x2+2x+1)+1=x2(x+1)2+1=()2×(+1)2+1=×+1=+1=+1=1+1=2,故答案为:2.16.解:===,∵a+b=3,ab=2,∴a>0,b>0,∴原式===,故答案为:.17.解:∵=,∴.解得:7≤x<9.∵x为奇数,∴x=7.∵•==(x+1)•,∴原式=(7+1)×=8×4=32.18.解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.19.解:(1)原式=1+﹣﹣2+=1﹣;(2)原式=(+﹣+﹣+)(+﹣﹣+﹣)=2×(2﹣2)=4﹣4=4﹣8.20.解:(1)①+=,∵x=+2,y=﹣2,∴x+y=2,xy=3,当x+y=2,xy=3时,原式=;②x2﹣xy+y2=(x+y)2﹣3xy,∵x=+2,y=﹣2,∴x+y=2,xy=3,当x+y=2,xy=3时,原式=(2)2﹣3×3=19;(2)设=x,=y,则39﹣a2=x2,5+a2=y2,∴x2+y2=44,∵+=8,∴(x+y)2=64,∴x2+2xy+y2=64,∴2xy=64﹣(x2+y2)=64﹣44=20,∴(x﹣y)2=x2﹣2xy+y2=44﹣20=24,∴x﹣y=±2,即﹣=±2,故答案为:±2.。
人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案

(3)当y=19.5时,求x的值.
参考答案:
1.D
【分析】先根据 ,且 判断出k的正负,然后根据一次函数的性质判断即可.
【详解】解:∵ ,且 ,
∴k<0,
∴一次函数图象经过一二四象限.
故先D.
【点睛】本题考查了一次函数的图象与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图象与y轴的正半轴相交,当b<0,图象与y轴的负半轴相交,当b=0,图象经过原点.
(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.
(1)
解:设y=ax.
∵图象过(4,20),
∴4a=20,
∴a=5.
∴y随x变化的函数关系式为y=5x(0≤x≤4);
(2)
解:设y=kx+b.
∵图象过(4,20)、(12,30),
∴ ,解得: ,
∴y与x的函数解析式为y= x+15(4≤x≤12);
12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.
三、解答题
13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:
试题解析:∵函数 的图象过一、二、四象限,
解得-1<m<1.
15.(1)y=14+x(4<x<14)
(2)y=20
(3)x=5.5
【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;
19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.1.2 函数的图象基础过关全练知识点1 函数的图象1.【主题教育·中华优秀传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片:用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③立夏和立秋,白昼时长大致相等;④立春是一年中白昼时长最短的节气.其中正确的结论有( )A.1个B.2个C.3个D.4个2.【新独家原创】疫情期间,为保障学校师生安全,某校每天进行全员核酸检测,小邦下课后从教室去160米的检测点做核酸检测,他用了2分钟到达检测点,扫码检测共用了2分钟,做完核酸检测后,他及时回教室,用了2.5分钟.下列图象能正确表示小邦离教室的距离与时间关系的是( )A B C D3.【主题教育·革命文化】为“传承红色基因,共筑中国梦”,八年级的师生开展了共赴井冈山红色革命根据地红色研学之旅,下图描述了汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )A.汽车在0~1小时的平均速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车行驶的平均速度为60千米/时D.汽车在0.5~1.5小时的速度是80千米/时4.【跨学科·化学】实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为镭的放射规律的函数图象,据此可计算32 mg镭缩减为1 mg所用的时间大约是 年.5.【教材变式·P83T9变式】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.如图所示的是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答问题:(1)小明家到学校的路程是多少米?小明在书店停留了多少分钟?(2)本次上学途中,小明一共骑行了多少米?(3)当骑单车的速度超过300米/分时就超过了安全限度.问:在整个上学途中,哪个时间段小明的骑车速度最快?速度在安全限度内吗? (4)小明出发多长时间离家1 200米?知识点2 函数图象的画法6.画出函数y=2x-1的图象.(1)列表:x…-2-10123…y……(2)在如图所示的坐标系中描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上;(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.知识点3 函数的三种表示方法7.【跨学科·物理】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+128.甲、乙两人分别从相距18 km的A、B两地同时相向而行,甲以4 km/h 的平均速度步行,乙以比甲快1 km/h的平均速度步行,相遇而止. (1)求甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式;(2)求出函数图象与x轴、y轴的交点坐标,画出函数的图象,并求出自变量x的取值范围.9.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…123579…y…1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整.(1)如图,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 ;②该函数的一条性质: .能力提升全练10.【主题教育·革命文化】(2022湖南永州中考,10,★☆☆)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A B C D11.(2021安徽合肥四十五中模拟,6,★★☆)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为( )A B C D12.【主题教育·生命安全与健康】(2022山西太原期末,9,★★☆)骑行是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.下图是骑行爱好者小李某日骑自行车行驶路程(km)与时间(h)的图象,观察图象得到下列信息,其中正确的是( )A.小李实际骑行时间为6 hB.点P表示出发6 h,小李共骑行80 kmC.3~6 h小李的骑行速度比0~2 h慢D.0~3 h小李的平均速度是15 km/h13.(2022山东临沂中考,12,★★☆)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示.下列说法中不正确的是( )A.甲车行驶到距A城240 km处,被乙车追上B.A城与B城的距离是300 kmC.乙车的平均速度是80 km/hD.甲车比乙车早到B城14.(2021黑龙江牡丹江中考,7,★★☆)春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是 天.素养探究全练15.【创新意识】(2022浙江舟山中考)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论;(3)数学应用:根据研究,当潮水高度超过260 cm时,货轮能够安全进出该港口,请问当天什么时间段适合货轮进出此港口?答案全解全析基础过关全练1.B 由题图可知,从立春到大寒,白昼时长先增大再减小后增大,∴结论①不正确;夏至时白昼时长最长,∴结论②正确;立夏和立秋,白昼时长大致相等,∴结论③正确;冬至是一年中白昼时长最短的节气,∴结论④不正确.故选B.2.C 去做核酸检测时用了2分钟,距离随时间的增加而增大;扫码检测共用了2分钟,离教室的距离没有发生变化;回教室用了2.5分钟,距离随时间的增加而减小.故选C.3.D 汽车在0~0.5小时的速度是30÷0.5=60千米/时,0.5~1.5小时的速度为(110-30)÷(1.5-0.5)=80千米/时,所以0~1小时的平均速度为(60+80)÷2=70千米/时,故A说法错误,不符合题意;汽车在2~3小时的速度为(150-110)÷(3-2)=40千米/时,所以汽车在2~3小时的速度比0~0.5小时的速度慢,故B说法错误,不符合题意;汽车行驶的平均速度为150÷3=50千米/时,故C说法错误,不符合题意;汽车在0.5~1.5小时的速度是80千米/时,故D说法正确,符合题意.故选D.4.答案 8 100解析 由题图可知,经过1 620年时,镭质量缩减为原来的12,经过1 620×2=3 240年时,镭质量缩减为原来的14=122,经过1 620×3=4 860年时,镭质量缩减为原来的18=123,经过1 620×4=6 480年时,镭质量缩减为原来的116=124,∴经过1 620×5=8 100年时,镭质量缩减为原来的125=132,∵32×132=1(mg),∴32 mg镭缩减为1 mg所用的时间大约是8 100年.故答案为8 100.5.解析 (1)根据题图可知,小明家到学校的路程是1 500米,小明在书店停留了12-8=4分钟.(2)1 500+(1 200-600)×2=2 700(米).故本次上学途中,小明一共骑行了2 700米.(3)根据题图可知,从12分钟至14分钟小明的骑车速度最快,这个过程中,骑车速度为(1 500-600)÷(14-12)=450(米/分钟),∵450>300,∴在12分钟至14分钟时,小明的骑车速度超过了安全限度.(4)设小明出发t分钟时,离家1 200米,①根据题图可知,当t=6时,小明离家1 200米;②根据题意,得600+450(t-12)=1 200,解得t=403.∴小明出发6分钟或403分钟时离家1 200米.6.解析 (1)列表:x…-2-10123…y…-5-3-1135…(2)描点并连线,画出函数图象如图所示.(3)把x=-3代入y=2x-1,得y=-7≠-5,把x=2代入y=2x-1,得y=3≠-3,把x=3代入y=2x-1,得y=5,所以点C在函数y=2x-1的图象上,点A和B不在函数y=2x-1的图象上.(4)∵点P(m,9)在函数y=2x-1的图象上,∴9=2m-1,解得m=5.7.A 由题表数据可得出弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为y=0.5x+12.8.解析 (1)y=18-(5x+4x)=-9x+18,故甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式为y=-9x+18.(2)当x=0时,y=18,当y=0时,-9x+18=0,解得x=2,故函数图象与x轴、y 轴的交点坐标分别为(2,0)、(0,18).列表:x/h02y/km180描点、连线,画出的函数图象如图.自变量x的取值范围为0≤x≤2.9.解析 本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)如图.(2)①1.98.②当x>2时,y随x的增大而减小.能力提升全练10.A 由题意易知,当0≤x<30时,y随x的增大而增大,当30≤x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是选项A中的图象.11.B 将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小水杯,因而这段时间h不变,当大容器中的水面的高度与小水杯的高度齐平时,开始向小水杯内流水,h随t的增大而增大,当水注满小水杯后,小水杯内水面的高度h不再变化.故选B.12.B A.小李实际骑行时间为5 h,故本选项不合题意;B.点P表示出发6 h,小李共骑行80 km,故本选项符合题意;(km/h),0~2 h小李的骑行C.3~6 h小李的骑行速度为(80-30)÷(6-3)=503=15(km/h),速度为302>15,所以3~6 h小李的骑行速度比0~2 h快,故本选项不合题意;因为503=10(km/h),故本选项不合题意.D.3 h内,小李的平均速度是303故选B.13.D 由题图可知,A城与B城的距离是300 km,故选项B说法正确;甲车的平均速度是300÷5=60(km/h),所以甲车4小时行驶60×4=240 km,即甲车行驶到距A城240 km处,被乙车追上,故选项A说法正确;乙车的平均速度是240÷(4-1)=80(km/h),故选项C说法正确;由题图可知,乙车比甲车早到B城,故选项D说法不正确.故选D.14.答案 10解析 调进化肥的速度是30÷6=5(吨/天),由题图知在第6天时,库存物资有30吨,在第8天时库存物资有20吨,=10(吨/天),所以销售化肥的速度是30―20+5×22所以剩余的20吨化肥完全售出需要20÷10=2(天),故该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是8+2=10(天).故答案为10.素养探究全练15.解析 (1)①补全图象如图:②观察函数图象,当x=4时,y=200,当y的值最大时,x=21.(2)(答案不唯一)该函数的两条性质如下:①当2≤x≤7时,y随x的增大而增大;②当x=14时,y取得最小值,为80.(3)由图象可知,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,适合货轮进出此港口.。
2021年人教版数学八年级下册18.1.2 《平行四边形的判定》同步练习(含答案)

人教版数学八年级下册18.1.2 《平行四边形的判定》同步练习一、选择题1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD.从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=AD2.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,还不能判定四边形ABCD为平行四边形,若想使四边形ABCD为平行四边形,要添加一个条件:①BC=AD;②∠BAD=∠BCD;③OA=OC;④∠ABD=∠CAB.这个条件可以是( )A.①或②B.②或③C.①或③或④D.②或③或④3.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是()①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形.②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.A.①②B.①③④C.②③D.②③④4.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )A.∠A=∠BB.∠C=∠DC.∠B=∠DD.AB=CD5.下列说法正确的是( )A.对角线相等的四边形是平行四边形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直且相等的四边形是平行四边形6.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC7.如图,在四边形ABCD中,点E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE8.点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任意选两个,能使四边形ABCD是平行四边形的有( )A.3种B.4种C.5种D.6种9.已知四边形ABCD是平行四边形,再从:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④10.在如图所示的网格中,以格点A,B,C,D,E,F中的4个点为顶点,你能画出平行四边形的个数为( )A.2B.3C.4D.5二、填空题11.如图,已知AB∥DC,要使四边形ABCD是平行四边形,还需增加条件.(只填写一个条件即可,不再在图形中添加其它线段).12.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有_____(添序列号即可).13.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.14.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).15.如图,AC是□ABCD的对角线,点E、F在AC上,要使四边形BFDE是平行四边形,还需要增加的一个条件是 (只要填写一种情况).三、解答题16.如图,点E,F在□ABCD的边BC,AD上,BC=3BE,AD=3DF,连接BF,DE.求证:四边形BEDF是平行四边形.17.在△ABC中,D是AB边上任意一点,E是BC边的中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若DF=8,BC=6,DB=5,求▱CDBF的面积.参考答案1.答案为:C2.答案为:B3.答案为:C4.答案为:C5.答案为:B6.答案为:C7.答案为:D8.答案为:B9.答案为:B10.答案为:B.11.答案为:AB=DC或AD∥BC12.答案为:①②③.13.答案为:BE=DF或BF=DE或∠BAE=∠DCF14.答案为:AB=CD或AD∥BC15.答案为:AE=CF16.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=3BE,AD=3DF,∴BE=FD,∴四边形BEDF是平行四边形.17.(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形;(2)解:∵四边形CDBF是平行四边形,∴BE=0.5BC=3,DE=0.5DF=4,∴∠BED=90°,∴BC⊥DE,∴四边形CDBF是菱形,∴S=0.5BC•DF=0.5×6×8=24.。
2020—2021人教版八年级数学下册19.1--19.3同步练 习含答案

19.1 函数一、选择题1. 某影院每张电影票的售价为元,某日共售出张票,票房收入为元,下列说法正确的是( )A.、是常量,是变量B.是常量,、是变量C.、、都是变量D.、、都是常量2. 当时,函数的函数值为()A. B. C. D.3. 已知变量与之间的关系满足如图,那么能反映与之间函数关系的解析式是A. B.C. D.4. 如图,在下列的四个图象中,不能表示是的函数图象的是()A. B.C. D.5. 长方形的周长为,其中一边长为面积为,则与的关系式为A. B.C. D.6. 在函数中,自变量的取值范围是()A. B.C. D.7. 函数的自变量的取值范围是()A. B.C. D.且8. 实践证明分钟跳绳测验的最佳状态是前秒速度匀速增加,后秒冲刺,中间速度保持不变,则跳绳速度(个/秒)与时间(秒)之间的函数图象大致为( )A. B.C. D.二、填空题9. 如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第秒时的速度为米/秒;③乙车前秒行驶的总路程为米.其中正确的是________.(填序号)10. 某水果店五一期间开展促销活动,卖出苹果数量(千克)与售价(千克/元)的关系如下表:…数量(千克)…售价(千克/元)则售价(千克/元)与数量(千克)之间的关系式是________.11. 如图,圆柱的高是厘米,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量为________,因变量为________;(2)如果圆柱底面半径为(厘米),那么圆柱的体积(厘米)与的关系式为________.12. 根据如图所示的程序计算函数的值,若输入的值是或时,输出的值相等,则等于________.三、解答题13. 已知函数,当时,,求的值.14. 为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:汽车行驶时间(小时)…油箱剩余油量(升)…(2)根据上表可知,该车油箱的大小为______升,每小时耗油____升;(3)请求出两个变量之间的关系式(用来表示)15. 成外“龟兔赛跑”的故事同学们都非常熟悉,图中的线段和折线表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题:(1)折线表示赛跑过程中________的路程与时间的关系,线段表示赛跑过程中________的路程与时间的关系.赛跑的全程是________米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以千米时的速度跑向终点,结果还是比乌龟晚到了分钟,请你算一算,兔子中间停下睡觉用了多少分钟?参考答案19.1 函数同步习题1一、选择题1.【答案】B2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】C二、填空题9.【答案】②③10.【答案】=11.【答案】(1)底面半径,,体积;(2)12.【答案】三、解答题13.【答案】解:把,代入得,整理得,解得,.14.【答案】(1);(2),;(3)15.【答案】 (1)兔子,乌龟,(2)兔子在起初每分钟跑米;(3)乌龟每分钟爬米.(4)分钟、分钟19.2一次函数一、单选题1.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( ) A .-1B .3C .1D .-1 或 32.如果实数,k b 满足0kb <且不等式kx b <的解集是bx k>,那么函数y kx b =+的图象只可能是( )A .B .C .D .3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k <B .2k >C .0k >D .k 0<4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<326.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个A .1B .2C .3D .47.函数y=2x ﹣5的图象经过( ) A .第一、三、四象限 B .第一、二、四象限 C .第二、三、四象限D .第一、二、三象限8.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A .向左平移3个单位 B .向右平移3个单位 C .向下平移3个单位 D .向上平移3个单位二、填空题9.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).10.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图象信息,下列说法:①两人相遇前,甲速度一直小于乙速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的说法是_________(填序号).11.直线32y x =-与y 轴交点的坐标是_________ .12.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.13.如图,在平面直角坐标系中,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n C n 均为等腰直角三角形,且∠C 1=∠C 2=∠C 3=…=∠C n =90°,点A 1,A 2,A 3,…,A n 和点B 1,B 2,B 3,…,B n分别在正比例函数y =12x 和y =﹣x 的图象上,且点A 1,A 2,A 3,…,A n 的横坐标分别为1,2,3…n ,线段A 1B 1,A 2B 2,A 3B 3,…,A n B n 均与y 轴平行.按照图中所反映的规律,则△A n B n C n 的顶点C n 的坐标是____.(其中n 为正整数)14.(A 2+B 2≠0)在平画直角坐标系xy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By c A B+++例如,P (1,3)到直线4x +3y ﹣3=0的距离为:d =2243+=2.若点M (1,0)到直线x +y +C =0的距离为2,则实数C 的值为_____.三、解答题15.已知:一次函数y=kx +b 的图象经过M (0,2),(1,3)两点. ⑴求k ,b 的值;⑵若一次函数y=kx +b 的图象与x 轴交点为A (a ,0),求a 的值.16.如图,直线l 是一次函数y kx b =+的图象,若点()3,A m 在直线l 上,求m 的值.17.(1)已知函数y x =+m+1.是正比例函数,求m 的值; (2)已知函数24y (5)m m x -=+m+1是一次函数,求m 的值.18.若y -2与x+1成正比例.当x=2时,y=11. (1)求y 与x 的函数关系式; (2)求当x=0时,y 的值; (3)求当y=0时,x 的值.19.在平面直角坐标系中,直线AB 经过()1,1、()3,5-两点. (1)求直线AB 所对应的函数解析式: (2)若点(),2P a -在直线AB 上,求a 的值.20.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x 的取值范围; (3)求MOP △的面积.21.全民健身的今天,散步运动是大众喜欢的活动项目。
人教版八年级下册数学 18.2.2菱形 同步练习(含解析)

∴AC⊥BD,OA=OC= AC= ×4=2,∠BAC= ∠BAD= ×120°=60°,
∴AC=4,∠AOB=90°, ∴∠ABO=30°, ∴AB=2OA=4,OB=2 , ∴BD=2OB=4 ,
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴该菱形的面积是: AC•BD= ×4×4
点睛:此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注 意先先连接 BD,BF,这是解答本题的突破口. 6.B 【解析】根据菱形四条边相等的性质可得 AB=AD,OB=OD,根据等腰三角形三线合一的性质 可得 AO⊥BD,即可得 AC⊥BD,所以正确的顺序为③→④→①→②,故选 B. 7.A 【解析】∵四边形 ABCD 是菱形,
点,将△AMN 沿 MN 所在的直线翻折得到△A′MN,连接 A′C,则线段 A′C 长度的最小值是
______.
12.如图,正△AEF 的边长与菱形 ABCD 的边长相等,点 E、F 分别在 BC、CD 上,则∠B 的度 数是_____.
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 24
B. 26
C. 30
D. 48
8.如图,四边形 ABCD 是菱形,对角线 AC,BD 相交于点 O,DH⊥AB 于 H,连接 OH,∠DHO=20°,
则∠CAD 的度数是( )
2 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 20° B. 25° C. 30° D. 40° 9.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到 第二个矩形,按照此方法继续下去.已知第一个矩形的面积为 1,则第 n 个矩形的面积为 ()
人教版数学八年级下册同步练习(含答案)

16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简222m n m mn-+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+ 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、扩大4倍 C 、缩小2倍 D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
三、解答题(共分)1、(分)2、(分)已知22221111x x xy xx x x+++=÷-+--。
试说明不论x为何值,y的值不变.3、(分)都化为整数.4、(分)16.1分式同步测试题B一、选择题(每题3分,共30分)1、为任意实数,分式一定有意义的是()A、B、C、D、2、当时,值为()A、B、3、已知:,则:则表示的代数式为( )A 、B 、C 、D 、4、(2008无锡)计算22()ab ab 的结果为( ) A.b B .a C.1 D.1b二、填空题(每题3分,共18分)1、是____.2、-9293,19921993,9192,19911992---四个数的大小关系是__. 3、当x=______时,分式145422-+-x x x 的值为零. 4、甲、乙两人做某种机器零件。