八年级数学(下)第十九章《一次函数》同步练习题(含答案)

合集下载

《常考题》初中八年级数学下册第十九章《一次函数》经典练习卷(含答案解析)

《常考题》初中八年级数学下册第十九章《一次函数》经典练习卷(含答案解析)

一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟2.一次函数y=-3x-2的图象和性质,表述正确的是()A.y 随x 的增大而增大B.函数图象不经过第一象限C.在y轴上的截距为2 D.与x轴交于点(-2,0)BC=,动点P沿折线BCD从点B开始运动到点3.如图,在矩形ABCD中,3AB=,4D,设点P运动的路程为x,ADP△的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D .4.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <7.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .38.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线的解析式为( )A .5182y x =+ B .2133y x =+ C .7162y x =+ D .3142y x =+ 10.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-11.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-12.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .无法确定13.函数21y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限14.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6 B .6C .6或3D .6或-615.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量二、填空题16.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.17.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n =+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.18.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.19.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.20.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.21.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.22.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.23.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.26.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:(),x y (),n n (),m n (),n m(),f x ynm n -m n +如:()1,2213f =+=,()2,1211f =-=,()1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________. 三、解答题27.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x 1 2 3 4 温度()y ℃5590125160(1)请直接写出y 与x 之间的关系式______. (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?28.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.29.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF的函数表达式;(2)若点A的坐标为(-6,0),点P(m,n )在线段EF上(不与点E重合)①求△OPA的面积S与m的函数表达式;②求当△OPA的面积为9时,点P的坐标;③求当△OPA的面积与△OPF的面积相等时,点P的坐标.参考答案。

人教版八年级下册数学第十九章一次函数测试题带答案

人教版八年级下册数学第十九章一次函数测试题带答案

人教版八年级下册数学第十九章测试卷一、选择题 (每题 3分,共 30分)1.函数 y=错误!未找到引用源。

+x-2的自变量 x 的取值范围是 ()A. x≥2B. x> 2C.x≠2D.x≤22.某种正方形合金板材的成本 y(元)与它的面积成正比 ,设边长为 x 厘米. 当 x=3 时,y=18,那么当成本为 72 元时,边长为 ( )A.6 厘米B.12 厘米C.24 厘米D.36 厘米3.已知在一次函数 y=-1.5x+3 的图象上 ,有三点(-3,y1),(-1,y2),(2,y3),则 y1,y2,y3 的大小关系为 ( )A.y1>y2>y3B. y1>y3>y 2C.y2>y 1>y 3D.无法确定4.已知一次函数 y=kx+b (k,b是常数,且 k≠0中) x与 y 的部分对应值如下表所示 ,那么不等式 kx+b< 0 的解集是 ( )x -2 -1 0 1 2 3y 3 2 1 0 -1 -2A.x<0B.x>0C.x<1D.x>15.直线 l 1:y=k1x+b与直线 l2:y=k2x在同一平面直角坐标系中的位置如图 , 则关于 x 的不等式 k2x<k1x+b 的解集为 ( )6. 已知一次函数 y=kx+b ,y 随着 x 的增大而减小 ,且 kb>0,则这个函数的7. 如图,过 A 点的一次函数的图象与正比例函数 y= 2x 的图象相交于点B,则这个一次函数的解析式是 ( )A.y=2x+3B.y=x- 3C.y= 2x-3D.y=-x+ 38. 如图,点A 的坐标为(-1,0),点B 在直线 y=x 上运动,当线段 AB 最短时,A.(0,0)B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找 到引用源。

9. 一辆慢车与一辆快车分别从甲、 乙两地同时出发 ,匀速相向而行 ,两车 在途中相遇后分别按原速同时驶往甲地 ,两车A. x<-1B. x>-1C. x>2D. x<2大致图象是(之间的距离 s(km)与慢车行驶时间 t(h)之间的函数图象如图所示 ,下列说法 :①甲、乙两地之间的距离为 560 km;②快车速度是慢车速度的 1.5 倍;③快车到达甲地时 ,慢车距离甲地 60 km;④相遇时,快车距甲地 320 km.其中正确的个数是D.410.如图,在等腰三角形 ABC中,直线 l垂直于底边 BC,现将直线 l沿线段BC从B点匀速平移至 C点,直线 l与△ABC的边相交于 E,F两点,设线段 EF 的长度为 y, 平移时间为 t,则能较好地反映y 与 t 的函数关系的图二、填空题(每题 3分,共 30分)11.函数 y=(m-2)x+m2-4是正比例函数 ,则 m= .12.一次函数 y= 2x-6 的图象与 x轴的交点坐标为 .13.如果直线 y=错误!未找到引用源。

人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案

人教版数学2022-2023学年八年级下册第十九章一次函数同步练习题含答案
(2)当x=6时,求y的值.
(3)当y=19.5时,求x的值.
参考答案:
1.D
【分析】先根据 ,且 判断出k的正负,然后根据一次函数的性质判断即可.
【详解】解:∵ ,且 ,
∴k<0,
∴一次函数图象经过一二四象限.
故先D.
【点睛】本题考查了一次函数的图象与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图象与y轴的正半轴相交,当b<0,图象与y轴的负半轴相交,当b=0,图象经过原点.
(3)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解.
(1)
解:设y=ax.
∵图象过(4,20),
∴4a=20,
∴a=5.
∴y随x变化的函数关系式为y=5x(0≤x≤4);
(2)
解:设y=kx+b.
∵图象过(4,20)、(12,30),
∴ ,解得: ,
∴y与x的函数解析式为y= x+15(4≤x≤12);
12.一次函数y=1-5x经过点(0,______)与点( ),0),y随x的增大而______.
三、解答题
13.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y.单位:L.与时间x.单位:分.之间的关系如图所示:
试题解析:∵函数 的图象过一、二、四象限,
解得-1<m<1.
15.(1)y=14+x(4<x<14)
(2)y=20
(3)x=5.5
【分析】(1)根据三角形的周长公式,可得函数关系式,根据三角形三边的关系,可得自变量的取值范围;

人教版八年级下册数学第十九章 一次函数含答案(有答案)

人教版八年级下册数学第十九章 一次函数含答案(有答案)

人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、在同一坐标系中,函数y=ax2与y=ax﹣a(a≠0)的图象的大致位置可能是()A. B. C.D.2、已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A. x=0B. x=1C. x=﹣2D. x=33、小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q4、以下各点中,在正比例函数y=2x图象上的是()A.(2,1)B.(1,2)C.(—1,2)D.(1,—2)5、若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)6、有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是()A. B. C.D.7、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根8、图中两直线l1, l2的交点坐标可以看作方程组( )的解.A. B. C. D.9、汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C.D.10、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.11、在平面直角坐标系中,一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,设第n(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是()A.y=4nB.y=3nC.y=6nD.y=3n+113、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;② 、两点的距离为5;③ 的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.15、关于x的反比例函数y=(k为常数)的图象如图所示,则一次函数y=kx+2﹣k的图象大致是()A. B. C. D.二、填空题(共10题,共计30分)16、小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距________米.17、如图,直线交坐标轴于两点,则不等式的解是________.18、如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为________.19、若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(﹣4,m)、N (﹣5,n)都在其图象上,则m和n的大小关系是________.20、甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为________.(并写出自变量取值范围)21、函数的图象经过的象限是________.22、如图平面直角坐标系中,直线y=kx+1与x轴交于点A点,与y轴交于B 点,P(a,b)是这条直线上一点,且a、b(a<b)是方程x2﹣6x+8=0的两根.Q是x轴上一动点,N是坐标平面内一点,以点P、B、Q、N四点为顶点的四边形恰好是矩形,则点N的坐标为________或________.23、一次函数y=(m﹣1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=________.24、如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.25、已知平面上四点,,,,直线 y=mx-3m+2 将四边形分成面积相等的两部分,则的值为________.三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、在直角坐标系中直接画出函数y=|x|的图象;若一次函数y=kx+b的图象分别过点A(-1,1),B(2,2),请你依据这两个函数的图象写出方程组的解.28、已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x 轴的交点坐标.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点=27,.D,且S△DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知一次函数的图象经过和(-3,3)两点,求这个一次函数的表达式并画出它的图象.试判断点P(-1,1)是否在这个一次函数的图象上.参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、B5、D6、A7、A8、B9、B10、B11、C12、D13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、30、。

人教版数学八年级下册 第十九章 一次函数 习题练习(附答案)

人教版数学八年级下册 第十九章 一次函数   习题练习(附答案)

人教版数学八年级下册第十九章一次函数习题练习(附答案)一、选择题1.函数y=kx+2经过点(1,3),则y=0时,x=()A.-2 B. 2 C. D. ±22.下列函数的解析式中是一次函数的是()A.y=1−x B.y=15x+1 C.y=x2+1 D.y=√x3.自由下落物体下落的高度h与下落的时间t之间的关系为h=12g t2(g=9.8 m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t4.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x5.园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米 C. 65平方米D. 80平方米6.某地电话拨号入网有两种收费方式:A计时制:每分0.05元;B包月制:每月50元.此外,每一种上网方式都得加收通信费每分钟0.02元.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算?()A.计时制B.包月制 C.两种一样D.不确定7.已知函数y=kx-1,且y随x的增大而减小,则它的图象是()A.B.C.D.8.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量 C.v是变量D.s是常量9.如图,扇形OAB上有一动点P,P从点A出发,沿⌒AB、线段BO、线段OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是 ()A.B.C.D.10.某人准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是()A.①②③④B.①③④C.①②④D.①②③二、填空题11.三角形的面积公式中S=12ah其中底边a保持不变,则常量是________,变量是________.12.下列函数中,是一次函数的是________.①y=8x2,②y=x+1,③y=8x ,④y=2x+1.13.y+2与x+1成正比例,且当x=1时,y=3,则当x=2时,y=______.14.已知关于x的函数y=(m+3)x|m|-3+2n-6是x的正比例函数,则mn=________.15.已知一次函数y=kx+b(k≠0)图象过点(0,2),y随x增大而减小,且与两坐标轴围成的三角形面积为2,则一次函数的解析式为________.16.如图所示,△ABC的底边BC上的高是6 cm,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,常量是__________________.17.已知函数y=2x2a+2b是x的正比例函数,则a+b=________.18.先完成下列填空,再在平面直角坐标系中画出下面函数的图象(不必再列表):正比例函数y=2x过(0,________)和(1,________)19.已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤1,且y随3x的减小而减小,则k的值为________.三、解答题20.设函数y=(m-2)x2-|m|+m-1,当m为何值时,y是x的正比例函数?21.在平面直角坐标系中,直线AB经过A(2,3)、B(-3,-2)两点,求直线AB所对应的函数解析式.22.当k为何值时,函数y=(k2+2k)x k2+k-1是x的正比例函数?.求:23.已知函数y=x−32x+1(1)当x=1和x=-1时的函数值;(2)当x为何值时,函数y分别等于1,-1.24.一辆小汽车在高速公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是什么?(3)当T每增加1秒,V的变化情况相同吗?在哪1秒钟,V的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.答案解析1.【答案】A【解析】先把点的坐标代入函数解析式求出k值,得到函数解析式,再求当y=0时的自变量x的值.根据题意1×k+2=3,解得k=1,故函数解析式为y=x+2,当y=0时,x+2=0,解得x=-2,故选A.2.【答案】B【解析】A.是反比例函数,故此选项错误;B.是一次函数,故此选项正确;C.是二次函数,故此选项错误;D.不是一次函数,故此选项错误;故选B.3.【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h,t,故选A.4.【答案】B【解析】A.设路程是s,则根据题意知,s=xy,时间y和速度x是反比例函数关系.故本选项错误;B.根据题意,知10=2(x+y),即y=-x+5,符合一次函数的定义.故本选项正确;C.根据题意,知y=πx2,这是二次函数,故本选项错误;D.根据题意,知x2+y2=25,这是双曲线方程,故本选项错误,故选B.5.【答案】A【解析】根据图象可得,休息后园林队2小时绿化面积为130-50=80平方米,每小时绿化面积为80÷2=40(平方米).故选A.6.【答案】B【解析】根据题意,设上网时间为x 小时,计时制y =(0.05+0.02)·60x =4.2x ; 包月制y =50+0.02·60x =50+1.2x ; 当x =20时,计时制费用y =4.2×20=84(元); 包月制费用y =50+1.2×20=74(元), 所以一个月内上网的时间为20小时,采用包月制较为合算,故选B.7.【答案】B【解析】∵一次函数y =kx -1,且y 随着x 的增大而减小,∴k <0,又∵b =-1<0,∴此一次函数图形过第二、三、四象限,故选B.8.【答案】A【解析】甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足vt =s ,在这个变化过程中常量是距离s ,变量是时间t 和速度v ,故选A.9.【答案】D【解析】因为①当点P 在弧AB 上运动时,y =OP 为定值,其长为扇形的半径的长;②当P 点由B 向O 点运动时,y =OP 的长逐渐减小为0;③当点P 由点O 开始向点A 运动时,y =OP 的长逐渐增大为扇形的半径的长,所以选项D 符合题意.10.【答案】C【解析】①yB =0.95x +50(1-95%)=0.95x +2.5,正确;②根据题意yA =a +(x -a )×90%=0.9x +0.1a =0.9x +10,所以a =100;③当累计购物大于50时上没封顶,选择乙商场一定优惠显然不对;④当yA <yB 时,即0.9x +10<0.95x +2.5,解得x >150.所以当累计购物超过150元时,选择甲商场一定优惠些,故选C.11.【答案】12,a ;S ,h【解析】根据变量是指在一个变化过程中数值发生改变的量,常量是指在程序的运行过程中数值保持不变的量,可得答案.S =12ah ,其中底边a 保持不变,则常量是12,a ,变量是h 、S ,故答案为12,a ;S ,h .12.【答案】②【解析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数.只有②符合一次函数的定义,所以答案为②.13.【答案】112【解析】根据题意设y +2=k (x +1)(k ≠0),将x =1,y =3代入得:5=2k ,即k =52,∴y +2=52(x +1), 将x =2代入得:y +2=52×3,即y =112. 故答案为112.14.【答案】±12 【解析】依据正比例函数的定义得到2n -6=0,|m |-3=1,然后可求得m 、n 的值,最后依据有理数的乘法法则进行求解即可.∵关于x 的函数y =(m +3)x |m|-3+2n -6是正比例函数,∴{m +3≠0|m|−3=12n −6=0,解得n =3,m =±4.∴mn =±12.故答案为±12. 15.【答案】y =-x +2【解析】∵一次函数y =kx +b (k ≠0)图象过点(0,2),y 随x 增大而减小,且与两坐标轴围成的三角形面积为2,∴12OB ×2=2,∴B (2,0)∵y =kx +b 的图象过点(0,2),(2,0),∴{2k +b =0,b =2,解得{k =−1,b =2,, ∴此一次函数的解析式为y =-x +2.16.【答案】6 cm【解析】直接利用常量与变量的定义分别得出答案.在这个变化过程中,常量是:6 cm.故答案为 6 cm.17.【答案】12【解析】根据正比例函数定义可得2a =1,2b =0,再解可得a 、b 的值,然后可得a +b 的值. 由题意得:2a =1,2b =0,解得a =12,b =0,a +b =12,故答案为12.18.【答案】0 2【解析】当x =0时,y =2x =0,∴正比例函数y =2x 过(0,0);当x =1时,y =2x =1,∴正比例函数y =2x 过(1,2).故正比例函数y =2x 过(0,0)和(1,2).图象为19.【答案】-19【解析】易知k <0时,y 随x 的增大而减小,∴当x =-3时,y =13,代入正比例函数y =kx 得:13=-3k解得k =-19.20.【答案】解 ∵函数y =(m -2)x 2-|m|+m -1是x 的正比例函数,∴{m −2≠02−|m|=1m −1=0,解得m =1.【解析】根据正比例函数的定义列出关于m 的不等式组,求出m 的取值范围即可. 21.【答案】解 设直线AB 解析式为y =kx +b ,把点A (2,3)和点B (-3,-2)代入得{2k +b =3①,−3k +b =−2②, ①-②得5k =5,即k =1,把k =1代入①得b =1,则直线AB 所对应的解析式为y =x +1.【解析】设直线AB 解析式为y =kx +b ,把A 与B 坐标代入求出k 与b 的值,即可确定出直线AB 所对应的函数解析式.22.【答案】解 由题意得:k 2+k -1=1且k 2+2k ≠0,解得k =1.【解析】根据正比例函数的定义可得k 2+k -1=1且k 2+2k ≠0,再解即可.23.【答案】解 (1)x =1时,y =1−32×1+1=-23,x =-1时,y =−1−32×(−1)+1=4;(2)y =1时,x−32x+1=1,解得x =-4,y =-1时,x−32x+1=-1,解得x =23.【解析】(1)把自变量x 的值代入函数关系式进行计算即可得解;(2)把函数值代入函数关系式解方程求解即可得到自变量x 的值.24.【答案】解 (1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用T 表示时间,V 表示速度,那么随着T 的变化,V 的变化趋势是V 随着T 的增大而增大;(3)当T 每增加1秒,V 的变化情况不相同,在第9秒时,V 的增加最大;(4)120×1003600=1003≈33.3米/秒,由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.【解析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出V 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.。

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

人教版初中数学八年级下册第十九章《一次函数》19.2一次函数同步练习题(含答案)

人教版初中数学八年级下册第十九章《一次函数》19.2一次函数同步练习题(含答案)
,解得 ,∴2k+b=﹣6+12=6.
故答案为:﹣3或6.
9.y=﹣x﹣1(答案不唯一)
【解析】试题解析:∵y随x的增大而减小,

设一次函数的解析式为
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,无选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
9.某一次函数的图象经过点(﹣2,1),且y轴随x的增大而减小,则这个函数的表达式可能是_____.(只写一个即可)
10.已知直线 与直线 平行,且截距为5,那么这条直线的解析式为_______.
11.直线y=-8x-6可以由直线y=-8x向___平移___个单位得到.
12.如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
故选B.
7.C
【解析】如图,作点D关于AB的对称点D′,连接CD′交AB于点E,则此时△CDE的周长最小,
∵点B的坐标为(3,4),四边形ABCO是矩形,D是OA的中点,
∴点C的坐标为(0,4),点D的坐标为(1.5,0),点D′的坐标为(4.5,0),点E的横坐标为3,
设直线CE的解析式为:y=kx+b,则有: ,解得 ,
∴直线CE的解析式为: ,
∴当 时, ,
∴点E的坐标为 .
故选C.

八年级数学(下)第十九章《一次函数》同步练习(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是A.B.C.D.【答案】A【解析】A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.2.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图象是A.B.C.D.【答案】A【解析】纵坐标表示的是速度、横坐标表示的是时间,由题意知:小明走路去学校应分为三个阶段:①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项,故选A.3.如图所示的是水滴入一个玻璃容器的示意图(滴水速度保持不变),下列图象能正确反映容器中水的高度(h)与时间(t)之间的关系的是A.B.C.D.【答案】C【解析】由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选C.4.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小【答案】D【解析】A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不超过4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是A.小明中途休息用了20分钟B.小明休息前爬山的速度为每分钟60米C.小明在上述过程中所走路程为7200米D.小明休息前后爬山的平均速度相等【答案】C【解析】A、小明中途休息的时间是:60-40=20分钟,故本选项正确;B、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确;C、小明在上述过程中所走路程为4800米,故本选项错误;D、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确,故选C.6.小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是A.小明家到超市的距离是1000米B.小明在超市的购物时间为30分钟C.小明离开家的时间共55分钟D.小明返回的速度比去时的速度快【答案】D【解析】A.观察图象发现:小明家距离超市1000米,故正确;B.小明在超市逗留了40−10=30分钟,故正确;C.小明离开家的时间共55分钟,故正确;D.小明去时用了10分钟,回时用了15分钟,所以小明从超市返回的速度慢,故错误,故选D.二、填空题:请将答案填在题中横线上.7.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升__________元.【答案】5.22【解析】单价=522÷100=5.22元,故答案为:5.22.8.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是__________.【答案】-1<x<1或x>2【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2,故答案为:-1<x<1或x>2.9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A 地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为__________.【答案】8点40【解析】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40,故答案为:8点40.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.【解析】如图,11.如图所示是某港口从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?【解析】(1)根据函数图象可得:13时港口的水最深,深度约是7.5 m.(2)根据函数图象可得:8时港口的水最浅,深度约是2 m.(3)根据函数图象可得:8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.12.一游泳池长90 m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?【解析】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游了180 s,游泳的速度是90×6÷180=3米/秒.(3)在整个游泳过程中,两个图象共有5个交点,所以甲、乙两人相遇了5次.13.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距__________千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为__________小时;(3)乙从出发起,经过__________小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解析】(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为:1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3.(4)乙骑自行车出故障前的速度与修车后的速度不一样,理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。

相关文档
最新文档