2022-2023学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

合集下载

人教版初中数学八年级下册第十七章《勾股定理》17.1勾股定理同步练习题(含答案)

人教版初中数学八年级下册第十七章《勾股定理》17.1勾股定理同步练习题(含答案)

人教版初中数学八年级下册第十七章《勾股定理》17.1勾股定理同步练习题(含答案)1 / 6 《17.1勾股定理》同步练习题一、选择题(每小题只有一个正确答案)1.如图,每个小正方形的边长为 ,在 中,点 为 的中点,则线段 的长为( ).A. B. C. D.2.2.如图是一张探宝图,根据图中的尺寸,起点A 与起点B 的距离是( )A. B. 8 C. 9 D. 103.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A. 60海里B. 45海里C. 20 海里D. 30 海里4.如图,有一块直角三角形纸片,两直角边AB =6,BC =8,将△ABC 折叠,使AB 落在斜边AC 上,折痕为AD ,则BD 的长为( )A. 3B. 4C. 5D. 65.如图1,一架梯子AB 长为 ,斜靠在一面墙上,梯子底端B 离墙 ,若梯子的顶端A 下滑了 (如图2),则梯子的底端在水平方向上滑动的距离 为( )A. B. 大于C. 介于和之间D. 介于和之间6.如图,,且,,,则线段AE的长为().A. B. C. D.7.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A. 2k B. k+1 C. k2-1 D. k2+1二、填空题8.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.9.如图,D为ABC的边BC上一点,已知AB = 13,AD = 12,AC =15,BD=5,则BC的长为________.10.若三角形的三个内角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是______,另外一边的平方是______.11.如图,点A、C都在直线l上,AE⊥AB且AE=AB,BC⊥CD且BC=CD,点E、B、D 到直线l的距离分别是6,3,4,计算图中由线段AB、BC、CD、DE、EA所围成的图形的面积是____.12.如图,长方体的长、宽、高分别为6cm,4cm,2cm,现有一只蚂蚁点A出发,沿长方体表面达到B处,则所走的最短路径是__________ cm。

2021-2022学年人教版八年级数学下册《第17章勾股定理》同步达标测试题(附答案)

2021-2022学年人教版八年级数学下册《第17章勾股定理》同步达标测试题(附答案)

2021-2022学年人教版八年级数学下册《第17章勾股定理》同步达标测试题(附答案)一.选择题(共8小题,满分24分)1.下列条件:①b2=c2﹣a2;②∠C=∠A﹣∠B;③a:b:c=::;④∠A:∠B:∠C=3:4:5,能判定△ABC是直角三角形的有()A.4个B.3个C.2个D.1个2.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形网格中不是直角三角形的是()A.B.C.D.3.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是()A.①②B.②③C.③④D.①④4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米5.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x26.如图,分别以Rt△ABC的三边为斜边向外作等腰直角三角形,若斜边AB=6,则图中阴影部分的面积为()A.6B.12C.16D.187.如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m8.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm二.填空题(共10小题,满分40分)9.如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.(1)开始时,船距岸A的距离是m;(2)若淇淇收绳5m后,船到达D处,则船向岸A移动m.10.如图,一架秋千静止时,踏板离地的垂直高度DE=0.5m,将它往前推送1.5m(水平距离BC=1.5m)时,秋千的踏板离地的垂直高度BF=1m,秋千的绳索始终拉直,则绳索AD的长是m.11.有一个三角形的两边长是1和,要使这个三角形成为直角三角形,则第三边边长的平方是.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD:DC=3:2,若P为直线AB上一动点,连接DP,则线段DP的最小值是.13.如图,某学校(A点)到公路(直线l)的距离为300米,到公交车站(D点)的距离为500米,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,则商店C与车站D之间的距离是米.14.如图,点C是线段AB上一点,以AC、BC为边向两边作正方形ACDE和BCFG,已知AB=10,两正方形的面积和S1+S2=60,则图中阴影部分的面积为.15.如图,OA1=A1A2=A2A3=A3A4=A4A5=1,∠OA1A2=∠OA2A3=∠OA3A4=∠OA4A5=90°,则OA5的长是.16.如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B出发沿射线BA以2cm/s的速度运动.则当运动时间t=s时,△BPC为直角三角形.17.如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.如图是房山某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=30米,BC=40米,他们踩坏了米的草坪,只为少走米的路.18.如图,在四边形ABCD中,∠ABC=150°,BD平分∠ABC,过A点作AE∥BC交BD于点E,EF⊥BC于点F.若AB=6,则EF的长为.三.解答题(共7小题,满分56分)19.在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,CE平分∠ACB,AB=20,AC=15(1)求AD的长;(2)求证:△AEF是等腰三角形.20.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.21.为推进乡村振兴,把家乡建设成为生态宜居、交通便利的美丽家园,某地大力修建崭新的公路.如图所示,现从A地分别向C、D、B三地修了三条笔直的公路AC、AD和AB,C地、D地、B地在同一笔直公路上,公路AC和公路CB互相垂直,又从D地修了一条笔直的公路DH与公路AB在H处连接,且公路DH和公路AB互相垂直,已知AC=9千米,AB=15千米,BD=5千米.(1)求公路CD的长度;(2)若修公路DH每千米的费用是2000万元,请求出修建公路DH的总费用.22.如图,△ABC中,AB=AC=BC=20厘米,如果点M从点C出发,点N从点B出发,沿着三角形三边以4厘米/秒的速度运动,当点N第一次到达C点时,M,N两点同时停止运动.运动时间为t(秒).(1)当0<t<5且△BMN为直角三角形时,求t的值;(2)当t为何值,△BMN为等边三角形.23.如图,一个长为5米的梯子斜靠在墙上,梯子的顶端到地面的垂直距离为4米,梯子的顶端下滑2米时,底端是不是也滑动了2米?如果是,为什么?如果不是,底端滑动了多少米?24.如图,学校操场边有一块四边形空地ABCD,其中AB⊥AC,AB=8m,BC=17m,CD =9m,AD=12m.为了美化校园环境,创建绿色校园,学校计划将这块四边形空地进行绿化整理.(1)求需要绿化的空地ABCD的面积;(2)为方便师生出入,设计了过点A的小路AE,且AE⊥BC于点E,试求小路AE的长.25.如图,四边形ABCD为某街心公园的平面图,经测量AC=BC=AD=80米,BD=80米,且∠C=90°.(1)求∠DAC的度数;(2)若直线CA为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D 处安装一个监控装置来监控道路CA的车辆通行情况,已知摄像头能监控的最大距离为80米,求被监控到的道路长度为多少米?参考答案一.选择题(共8小题,满分24分)1.解:∵b2=c2﹣a2,∴a2+b2=c2,∴△ABC是直角三角形,故①能判断是直角三角形,∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故②能判断是直角三角形,∵a:b:c=::,∴可以假设,a=20k,b=15k,c=12k,∴a2≠b2+c2,∴△ABC不是直角三角形,故③不能判断是直角三角形,∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=()°>90°,故④不能判断是直角三角形故选:C.2.解:设网格中每个小正方形的边长是1.图A中各边长为2、4、2,22+42=(2)2,故该三角形为直角三角形;图B中各边长、2、,()2+(2)2=()2,故该三角形为直角三角形;图C中三角形各边长为、、,()2+()2=()2,故该三角形为钝角三角形;图D中各边长为、2、5,()2+(2)2=52,故该三角形为直角三角形.即A、B、D是直角三角形,C不是直角三角形.故选:C.3.解:①由于0.32+0.42=0.52,所以以0.3,0.4,0.5为边长的三角形是直角三角形,但是0.3,0.4,0.5不是整数,所以0.3,0.4,0.5不是勾股数,故①说法错误;②虽然以0.5,1.2,1.3为边长的三角形是直角三角形,但是0.5,1.2,1.3不是整数,所以0.5,1.2,1.3不是勾股数,故②说法错误;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2,故③说法正确;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,故④说法正确.故选:C.4.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.5.解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.6.解:在Rt△AHC中,AC2=AH2+HC2,AH=HC,∴AC2=2AH2,∴HC=AH=,同理:CF=BF=,BE=AE=,在Rt△ABC中,AB2=AC2+BC2,AB=6,S阴影=S△AHC+S△BFC+S△AEB=HC•AH+CF•BF+AE•BE,=×()2+×()2+()2=(AC2+BC2+AB2)=(AB2+AB2)=×2AB2=AB2=×62=18.故选:D.7.解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴大树的高度为5+5=10(m),故选:D.8.解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),所以18﹣15=3(cm),18﹣12=6(cm).则这只铅笔在笔筒外面部分长度在3cm~6cm之间.观察选项,只有选项D符合题意.故选:D.二.填空题(共10小题,满分40分)9.解:(1)在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),故答案为:12;(2)∵淇淇收绳5m后,船到达D处,∴CD=5(m),∴AD=(m),∴BD=AB﹣AD=(12﹣)m.故答案为:(12﹣).10.解:∵BF⊥EF,AE⊥EF,BC⊥AE,∴四边形BCEF是矩形,△ACB是直角三角形,∴CE=BF=1m,∴CD=CE﹣DE=1﹣0.5=0.5(m),设绳索AD的长为xm,则AB=AD=xm,AC=AD﹣CD=(x﹣0.5)m,在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即(x﹣0.5)2+1.52=x2,解得:x=2.5(m),即绳索AD的长是2.5m,故答案为:2.5.11.解:当第三边是斜边时,第三边边长的平方是:12+()2=3;当第三边是直角边时,第三边边长的平方是:()2﹣12=1;故答案是:1或3.12.解:当线段DP取最小值时,DP⊥AB.如图,过点D作DP⊥AB于P,∵BC=15,且BD:DC=3:2,∴CD=6.∵∠C=90°,AD平分∠BAC交BC于D,∴DP=CD=6.故答案是:6.13.解:过点A作AB⊥l于B,则AB=300m,AD=500m.∴BD==400m,设CD=xm,则CB=(400﹣x)m,根据勾股定理得:x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5.答:商店与车站之间的距离为312.5米,故答案为:312.5.14.解:设AC=m,BC=n,则S1=m2,S2=n2,S1+S2=m2+n2=60,因为AB=10,即m+n=10,所以(m+n)2=100,m2+n2+2mn=100,2mn=100﹣60=40,mn=20,所以S△BCD=mn==10.故图中阴影部分的面积为10.故答案为:10.15.解:在Rt△OA1A2中,OA1=A1A2,由勾股定理得:OA2===,同理:OA3=,……则OA5=,故答案为:.16.解:在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,∴AB===50(cm).如图,作AB边上的高CD.∵S△ABC=AB•CD=AC•BC,∴CD===24(cm).①当∠BCP为直角时,点P与点A重合,BP=BA=50cm,∴t=50÷2=25(秒).②当∠BPC为直角时,P与D重合,BP=2tcm,CP=24cm,BC=40cm,在Rt△BCP中,∵BP2+CP2=BC2,∴(2t)2+242=402,解得t=16.综上,当t=25或16秒时,△BPC为直角三角形.故答案为:25或16.17.解:在Rt△ABC中,∵AB=30米,BC=40米,∴AC==50,30+40﹣50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故答案为:50,20.18.解:∵AE∥BC,∴∠AEB=∠FBE,∵BD平分∠ABC,∠ABC=150°,∴∠ABE=,∴∠BAE=30°,AB=AE=6,如图,过点E作EG⊥AB于G,∵∠GAE=30°,∴GE=,∵BD是∠ABC的平分线,EG⊥AB,EF⊥BC,∴EF=EG=3,故答案为:3.三.解答题(共7小题,满分56分)19.(1)解:由勾股定理得:BC==25,根据三角形面积计算公式,解得:;(2)证明:∵∠BAC=90°,∴∠AEC+∠ACE=90°,∵AD⊥BC,∴∠ADC=90°,∴∠DCF+∠DFC=90°,∵CE平分∠ACB,∴∠DCF=∠ACE,∵∠DFC=∠AFE(对顶角相等),∠AEF=∠AFE,∴AE=AF,∴△AEF是等腰三角形.20.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.21.解:(1)∵∠C=90°,AC=9千米,AB=15千米,∴BC===12(千米),∵BD=5千米,∴CD=12﹣5=7(千米),答:公路CD的长度为7千米;(2)∵AC=9千米,CD=7千米,∴AD==(千米),∵DH⊥AB,∴AD2﹣AH2=BD2﹣BH2,∴130﹣(15﹣BH)2=52﹣BH2,∴BH=4,∴DH==3,∴修建公路DH的总费用为3×2000=6000(万元).22.解:(1)当0<t<5时,点M在BC上,点N在AB上,BN=4t,MB=20﹣4t,△BMN为直角三角形,则∠BNM=90°或∠NMB=90°,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°,∴BM=2BN,∴20﹣4t=2×4t,解得:t=;②当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°,∴BN=2BM,∴4t=2(20﹣4t),解得:t=.③点M在AC上,点N在AB上,AN=CM=40﹣4t,(80﹣8t)+(40﹣4t)=20,t=(不合题意舍去),综上,当t=或时,△BMN为直角三角形;(2)点N第一次到达C点时,M,N两点同时停止运动,则0<t≤10,①当0<t≤5时,当MB=BN时,△BMN为等边三角形,此时,4t=20﹣4t,解得:t=;②当5<t≤10时,△BMN为等边三角形,只能点M与点A重合,点N与点C重合,此时,t=10,综上,t=或t=10时,△BMN为等边三角形.23.解:底端不是滑动了2米.理由:由题意可得:AB=CD=5米AO=4米AC=2米,在Rt△AOB中,AB=5米,AO=4米,∴OB===3(米),在Rt△COD中,∠0=90°,CD=AB=5米,AC=2米,∴OC=AO﹣AC=4﹣2=2米,∴OD===(米),∴BD=OD﹣OB=(﹣3)米,答:底端滑动不是2米,底部滑动了(﹣3)米.24.解:(1)∵AB⊥AC,∴∠BAC=90°,∴AC===15(m),∵CD=9m,AD=12m,∴AD2+CD2=122+92=225=AC2,∴△ACD是直角三角形,∠D=90°,∴需要绿化的空地ABCD的面积=S△ABC+S△ACD=AB×AC+AD×CD=×8×15+×12×9=114(m2);(2)∵∠BAC=90°,AE⊥BC,∴S△ABC=BC×AE=AB•AC,∴17×AE=8×15,解得:AE=(m),即小路AE的长为m.25.解:(1)∵AC=BC=AD=80米,BD=80米,∠C=90°.∴△ABC是等腰直角三角形,∴AB===80(米),∠CAB=∠ABC=45°,∵BD=80米,在△ABD中,有AD2+AB2=802+(80)2=(80)2=BD2,∴△ABD是直角三角形,∴∠BAD=90°,∴∠DAC=90°+45°=135°;(2)过点D作DE⊥AC,交CA的延长线于E,作点A关于DE的对称点F,连接DF,如图:由轴对称的性质,得:DF=DA=80,AE=EF,由(1)知,∠CAD=135°,∴∠DAE=45°,∴△ADE是等腰直角三角形,即AE=DE,在Rt△ADE中,有AE2+DE2=802,解得:AE=40(米),∴AF=80(米),∴被监控到的道路长度为80米.。

2021-2022学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2021-2022学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2021-2022学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)1.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形的个数有()A.1B.2C.3D.42.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm23.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或104.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.5.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm26.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个7.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.8.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.309.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于()A.2B.4C.6D.810.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB =8,则BF=.13.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.14.如图,正方形ABCD是由四个全等的直角三角形围成的,若CF=5,AB=13,则EF 的长为.15.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若AE=6,正方形ODCE的边长为2,则BD等于.16.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.17.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.18.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求AE的长.19.如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.20.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.21.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积.22.如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连接BE、DE,DE的延长线交AB于F,已知DE=AB,∠CAD=45°.(1)求证:DF⊥AB;(2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.参考答案1.解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3的图形有4个.故选:D.2.解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.3.解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选:C.4.解:图中的直角三角形的两直角边为1和2,∴斜边长为:=,∴﹣1到A的距离是,那么点A所表示的数为:﹣1.故选:C.5.解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.6.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:C.7.解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.8.解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.9.解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故选:C.10.解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.11.解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.12.解:由折叠的性质知:AD=AF,DE=EF=8﹣3=5;在Rt△CEF中,EF=DE=5,CE=3,由勾股定理可得:CF=4,若设AD=AF=x,则BC=x,BF=x﹣4;在Rt△ABF中,由勾股定理可得:82+(x﹣4)2=x2,解得x=10,故BF=x﹣4=6.故答案为:6.13.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32故答案是:42或32.14.解:如图,∵正方形ABCD是由四个全等的直角三角形围成的,∴AH=BE=CG=DF,AE=BG=CF=DH,∴EG=GF=GH=HE,∴四边形EGFH为菱形,∵△ABE为直角三角形,∴∠AEB=∠GEH=90°,∴四边形EGFH为正方形,∵四边形ABCD为正方形,∴CD=AB=13,在Rt△CDF中,∠DFC=90°,CF=5,根据勾股定理得,DF=12,∴GF=DF﹣DH=GC﹣FC=7,在△GEF中,GE=GF=7,∠EGF=90°,根据勾股定理得,EF==7.故答案为:7.15.解:设正方形ODCE的边长为2,则CD=CE=2,设BD=x,∵△AFO≌△AEO,△BDO≌△BFO,∴AF=AE,BF=BD,∴AB=x+6,AC=6+2=8,BC=x+2,∵AC2+BC2=AB2,∴(x+2)2+82=(x+6)2,∴x=4,故答案为:4.16.(1)证明:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB.∵∠B=30°,∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高,∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED,又AC=2,∴CD=2,ED=1.∴.∴△CDE的周长=.17.证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.18.解:如图,延长AE交BC于F.∵AB⊥BC,AB⊥AD,∴AD∥BC∴∠D=∠C,∠DAE=∠CFE,又∵点E是CD的中点,∴DE=CE.∵在△AED与△FEC中,,∴△AED≌△FEC(AAS),∴AE=FE,AD=FC.∵AD=5,BC=10.∴BF=5在Rt△ABF中,,∴AE=AF=6.5.19.(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD===12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.20.(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴∠CFD=90°,∠CEB=90°(垂线的意义)CE=CF(角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)解:由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x,∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.21.解:由折叠可知△ADE和△AFE关于AE成轴对称,故AF=AD,EF=DE=DC﹣CE=8﹣3=5.所以CF=4,设BF=xcm,则AF=AD=BC=x+4.在Rt△ABF中,由勾股定理,得82+x2=(x+4)2.解得x=6,故BC=10.所以阴影部分的面积为:10×8﹣2S△ADE=80﹣50=30(cm2).22.解:(1)∵AC⊥BD,∠CAD=45°,∴AC=DC,∠ACB=∠DCE=90°,在Rt△ABC与Rt△DEC中,,∴Rt△ABC≌Rt△DEC(HL),∴∠BAC=∠EDC,∵∠EDC+∠CED=90°,∠CED=∠AEF,∴∠AEF+∠BAC=90°,∴∠AFE=90°,∴DF⊥AB.(2)∵S△BCE+S△ACD=S△ABD﹣S△ABE,∴a2+b2=•c•DF﹣•c•EF=•c•(DF﹣EF)=•c•DE=c2,∴a2+b2=c2.。

2021-2022学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2021-2022学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2021-2022学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)1.如图,分别以直角三角形三边为边向外作正方形,面积分别是S1,S2,S3;分别以直角三角形三边长为直径向外作半圆,面积分别是S4,S5,S6,其中S1=1,S2=3,S5=2,S6=4,则S3+S4=()A.7B.8C.9D.102.如图,在四边形ABCD中,∠B=∠D=90°,分别以四边向外作正方形甲、乙、丙、丁,若用S甲、S乙、S丙、S丁来表示它们的面积,那么下列结论正确的是()A.S甲=S丁B.S乙=S丙C.S甲+S乙=S丙+S丁D.S甲﹣S乙=S丙﹣S丁3.《几何原本》关于毕达哥拉斯定理,欧几里德用图给出证明.如图,Rt△ABC中,∠ACB =90°,以AC,BC,AB为边分别向外作正方形,连结CD,CE,过C作CF⊥DE,△ADC的面积为S1,△BCE的面积为S2,若S2=9S1,CF=13,则正方形BCGH的边长()A.2B.2C.3D.34.如图,在4×4的网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则下列结论错误的是()A.AB=2B.∠BAC=90°C.△ABC的面积为10D.点A到直线BC的距离是25.设一个直角三角形的两直角边分别是a,b,斜边是c.若用一把最大刻度是20cm的直尺,可一次直接测得c的长度,则a,b的长可能是()A.a=12,b=16B.a=11,b=17C.a=10,b=18D.a=9,b=19 6.有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.2022B.2021C.2020D.17.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两个正方形按图2的方式放入最大的正方形内,若图2中阴影部分的面积为4,且AC+BC=7,则AB的长为()A.5B.9C.D.8.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=5.BE=12,则阴影部分的面积是()A.39B.69C.139D.1699.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,a+b=17,c=13,则Rt△ABC 的面积为()A.30B.60C.110.5D.16910.已知一个直角三角形的两条边长分别为1和2,则第三条边长的平方是.11.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为.12.将四个图1中的直角三角形,分别拼成如图2,图3所示的正方形,则图2中阴影部分的面积为.13.在△ABC中,AB=AC=10,BD是AC边上的高,BD=6,则CD=.14.在△ABC中,AB=AC,AD平分∠BAC交BC于点D,若AD=5,CD=2,则△ABC 的面积为.15.如图所示,我国汉代数学家赵爽,为了证明勾股定理创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3.若正方形EFGH的边长为4,则S1+S2+S3=.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,AD=13m,∠B=∠ACD=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?18.定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1在△ABC中,若AB2+AC2﹣AB•AC=BC2,则△ABC是“和谐三角形”.(1)等边三角形一定是“和谐三角形”,是命题(填“真”或“假”).(2)若Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若△ABC是“和谐三角形”,求a:b:c.19.如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以4cm/s 的速度沿AC﹣CB﹣BA运动设运动时间为t秒(t>0).(1)若点P在AC上运动,当t的值为多少时,P A=PB.(2)若点P恰好在∠BAC的平分线上,求t的值.20.【知识生成】通过不同的方法表示同一图形的面积,可以探求相应的等式,两个边长分别为a,b的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的梯形,请用两种方法计算梯形面积.(1)方法一可表示为;方法二可表示为;(2)根据方法一和方法二,你能得出a,b,c之间的数量关系是(等式的两边需写成最简形式);(3)由上可知,一直角三角形的两条直角边长为6和8,则其斜边长为.【知识迁移】通过不同的方法表示同一几何体的体积,也可以探求相应的等式.如图2是边长为a+b的正方体,被如图所示的分割线分成8块.(4)用不同方法计算这个正方体体积,就可以得到一个等式,这个等式可以为.(等号两边需化为最简形式)(5)已知2m﹣n=4,mn=2,利用上面的规律求8m3﹣n3的值.21.我们根据图形的移、拼、补可以简单直观地推理验证数学规律和公式,这种方法称之为“无字证明”,它比严谨的数学证明更为优雅与有条理.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“无字证明”图形(如图1).其中四个直角三角形较长的直角边长都为a,较短的直角边长都为b,斜边长都为c,大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,由此推导出一个重要的定理.(1)此图可以推导出你学过的什么定理?请写出定理的内容;(2)图②为美国第二十任总统伽菲尔德创造的“无字证明”图形,请你利用图②推导(1)中的定理.(3)根据(1)中的定理,解决下面的问题:如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,且CH⊥AB.测得CH =1.2千米,HB=0.9千米,求新路CH比原路CA少多少千米?参考答案1.解:如题干图所示,设面积分别为S1,S2,S3的正方形的边长分别为a,b,c,∵S1=a2,S2=b2,S3=c2,a2+b2=c2,∴S1+S2=S3,同理可得,S5+S6=S4,∵S1=1,S2=3,S5=2,S6=4,∴S3+S4=(1+3)+(2+4)=4+6=10,故选:D.2.解:连接AC,由勾股定理得AB2+BC2=AC2,AD2+CD2=AC2,∴甲的面积+乙的面积=丙的面积+丁的面积,故选:C.3.解:∵S1=×AD×DF,S2=×BE×EF,且S2=9S1,∴9DF=EF,设正方形ABED的边长为10x,则DF=x,EF=9x,△ABC的高为h,∴h=13﹣10x,由勾股定理得:AC2=x2+h2,BC2=81x2+h2,∴x2+h2+81x2+h2=100x2,∴82x2+2(13﹣10x)2=100x2,整理得182x2﹣520x+338=0,即7x2﹣20x+13=0,解得x1=1,x2=(舍),∴BC=3.故选:C.4.解:A、∵AB2=22+42=20,∴AB=2,本选项结论正确,不符合题意;B、∵AC2=12+22=5,AB2=22+42=20,BC2=32+42=25,∴AC2+AB2=BC2,∴∠BAC=90°,本选项结论正确,不符合题意;C、S△ABC=4×4﹣×3×4﹣×1×2﹣×2×4=5,本选项结论错误,符合题意;D、设点A到直线BC的距离为h,∵BC2=32+42=25,∴BC=5,则×5×h=5,解得,h=2,即点A到直线BC的距离是2,本选项结论正确,不符合题意;故选:C.5.解:∵a=12,b=16,∴斜边c===20,∵a=11,b=17,∴斜边c===>20,∵a=10,b=18,∴斜边c===>20,∵a=9,b=19,∴斜边c===>20,∵最大刻度是20cm的直尺,可一次直接测得c的长度,∴a=12,b=16,故选:A.6.解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2021次后形成的图形中所有的正方形的面积和为2022.故选:A.7.解:设AC=b,AB=c,BC=a,则a+b=7,c2=a2+b2,HG=c﹣b,DG=c﹣a,则阴影部分的面积S=HG•DG=(a﹣c+b)(b﹣c+a)=4,∴(7﹣c)2=4,∴c=9(舍弃)或5,故选:A.8.解:∵在Rt△AEB中,∠AEB=90°,AE=5,BE=12,由勾股定理得:AB=13,∴正方形的面积是13×13=169,∵△AEB的面积是AE×BE=×5×12=30,∴阴影部分的面积是169﹣30=139,故选:C.9.解:∵Rt△ABC中,∠C=90°,a+b=17,c=13,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=169,∴289﹣2ab=169,即ab=60,则Rt△ABC的面积为ab=30.故选:A.10.解:当2是直角边长时,由勾股定理得:第三边的平方为:12+22=5;当2为斜边长时,由勾股定理得:第三边的平方为:22﹣12=3.故答案为:5或3.11.解:由勾股定理得,斜边长为=10,故答案是:10.12.解:由题意知图2中阴影部分为正方形,设图1中直角三角形较短的直角边为a,较长的直角边为b,则由图2得:a+b=5,①由图3得:b﹣a=1,②联立①②得:,∴阴影部分的边长为,∴,故答案为13.13.解:情况一:如图一,在△ABD中,由BD是AC边上的高,则AD===8∵AB=AC=10,∴CD=2;情况二:如图二,在△ABD中,由BD是AC边上的高,则AD===6,∵AB=AC=10,∴CD=10+8=18,综上所述,CD=2或18,故答案为:2或18.14.解:在△ABC中,AB=AC,AD平分∠BAC交BC于点D,∴AD⊥BC,BD=DC,∵AD=5,CD=2,∴BC=4,∴△ABC的面积=,故答案为:10.15.解:在Rt△CFG中,由勾股定理得:CG2+CF2=GF2,∵八个直角三角形全等,四边形ABCD,四边形EFGH,四边形MNKT是正方形,∴CG=KG=FN,CF=DG=KF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=CG2+CF2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(KF﹣NF)2,=KF2+NF2﹣2KF•NF=KF2+KG2﹣2DG•CG=FG2﹣2CG•DG,∵正方形EFGH的边长为4,∴GF2=16,∴S1+S2+S3=GF2+2CG•DG+GF2+FG2﹣2CG•DG=3GF2=48,故答案为:48.16.解:①如图1,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中,AB=15,AD=12,由勾股定理得,BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中,AC=13,AD=12,由勾股定理得,CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;②如图2,钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得,BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得,CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD﹣CD=9﹣5=4.故BC的长为14或4.17.解:∵∠ACD=90°,∴AC2+DC2=AD2,由勾股定理得AC=5m,∴DC===12m,这块草坪的面积=S Rt△ABC+S Rt△ACD=AB•BC+AC•DC=(3×4+5×12)=36m2.故需要的费用为36×100=3600元.答:铺满这块空地共需花费3600元.18.解:(1)当△ABC为等边三角形时,AB=AC=BC,∴AB2+AC2﹣AB•AC=BC2+BC2﹣BC•BC=BC2,∴等边三角形一定是“和谐三角形“,故答案为:真;(2)∵∠C=90°,AB=c,AC=b,BC=a,∴a2+b2=c2,当a2+b2﹣ab=c2时,则﹣ab=0(舍去),当a2+c2﹣ac=b2时,则a2+c2﹣ac=c2﹣a2,∴ac=2a2,∴c=2a,∴b2=3a2,∴b=a,∴a:b:c=1::2.19.解:(1)如图1,连接BP,在Rt△ABC中,AB=10cm,BC=6cm,∴AC===8(cm),则PC=8﹣P A,由勾股定理得,PB2=PC2+BC2,当P A=PB时,P A2=(8﹣P A)2+62,解得,P A=,则t=÷4=;(2)如图2,作PG⊥AB于G,∵点P恰好在∠BAC的角平分线上,∠C=90°,PG⊥AB,∴CP=GP,∴Rt△ACP≌Rt△AGP(HL),∴AG=AC=8(cm),∴BG=10﹣8=2(cm),设CP=xcm,则BP=(6﹣x)cm,PG=xcm,∴Rt△BGP中,BG2+PG2=BP2,即22+x2=(6﹣x)2解得,x=,∴AC+CP=(cm),∴t=÷4=,当点P沿折线A﹣C﹣B﹣A运动到点A时,点P也在∠BAC的角平分线上,此时,t=(10+8+6)÷4=6,综上所述,若点P恰好在∠BAC的角平分线上,t的值为或6;20.解:(1)方法一可表示为:ab+ab+c2;方法二可表示为:(a+b)2.故答案为:ab+ab+c2;(a+b)2.(2)∵ab+ab+c2=(2ab+c2),(a+b)2=(2ab+a2+b2),∴(2ab+c2)=(2ab+a2+b2),∴c2=a2+b2.故答案为:c2=a2+b2.(3)∵c2=a2+b2=82+62=100,∴c=10.故答案为:10.(4)方法一可表示为:(a+b)3;方法二可表示为:a3+3a2b+3ab2+b3.∴等式为:(a+b)3=a3+3a2b+3ab2+b3.故答案为:(a+b)3=a3+3a2b+3ab2+b3.(5)由(4)可得:(2m﹣n)3=8m3﹣12m2n+6mn2﹣n3=8m3﹣n3﹣6mn(2m﹣n),∵2m﹣n=4,mn=2,∴64=8m3﹣n3﹣6×2×4,∴8m3﹣n3=64+48=112.21.解:(1)推导出勾股定理,内容为:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2;(2)梯形ABCD的面积为(a+b)(a+b)=a2+ab+b2,也可以表示为ab+ab+c2,∴ab+ab+c2=a2+ab+b2,即a2+b2=c2;(3)设CA=x,∵AB=AC,∴AH=x﹣0.9,在Rt△ACH中,CA2=CH2+AH2,即x2=1.22+(x﹣0.9)2,解得x=1.25,即CA=1.25,CA﹣CH=1.25﹣1.2=0.05(千米),答:新路CH比原路CA少0.05千米.。

2022-2023学年人教版八年级数学下册勾股定理的定理 同步测试卷

2022-2023学年人教版八年级数学下册勾股定理的定理 同步测试卷

17.2 勾股定理的定理测试卷一、选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 以下列各数为边长,能构成直角三角形的是( )A. 1,2,2B. 1,√3,2C. 4,5,6D. 1,1,√32. 下列数字作为三角形的三边长,不能构成直角三角形的是( )A. 8,15,17B. 1,√3,√2C. 4,√7,3D. √5,√12,√133. 三角形的三边a,b,c满足|a−3|+(b−4)2+√c−5=0,则三角形形状是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形4. 下列各组数中,是勾股数的是( )A. 13,14,15B. 3,4,7C. 6,8,10D. 1,√2,25. 下列各组数不能作为直角三角形三边长的是( )A. √3,√4,√5B. 3,4,5C. 0.3,0.4,0.5D. 30,40,506. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )A. CD、EF、GH B. AB、EF、GHC. AB、CF、EFD. GH、AB、CD7. 如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是( )A. CD,EF,GHB. AB,EF,GHC. AB,CD,EFD. GH,AB,CD8. 在△ABC的∠A,∠B,∠C的对边分别为a,b,c,且满足关系式(b−c)(b+c)=a2−2c2,则( )A. ∠A为直角B. ∠B为直角C. ∠C为直角D. 不是直角三角形二、填空题(本大题共8小题,共24分)9. 一艘轮船以16nmile/ℎ的速度离开港口向东南方向航行,另一艘轮船在同时同地以12nmile/ℎ的速度向西南方向航行,则1.5ℎ后两船相距nmile.10. 在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.11. 如图,一架秋千静止时,踏板离地的垂直高度DE=0.5m,将它往前推送1.5m(水平距离BC=1.5m)时,秋千的踏板离地的垂直高度BF=1m,秋千的绳索始终拉直,则绳索AD的长是12. 一长方体容器(如图1),长,宽均为4,高为16,里面盛有水,水面高为10,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD的长为.13. 如图,在四边形ABCD中,AB=3,BC=13,CD=12,AD=4,且∠A=90°,则四边形ABCD的面积是.14. 如图,以△ABC的三边向外作正方形,依次得到的正方形的面积为36,64,100,则这个三角形的面积是.15. 如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=度.16. 如图,在一个长6m、宽3m、高2m的房间里放进一根竹竿,竹竿最长可以是.三、解答题(本大题共9小题,共72分。

第17章 勾股定理(练习 )2022—2023学年人教版数学八年级下册

第17章 勾股定理(练习 )2022—2023学年人教版数学八年级下册

第17章勾股定理(练习)-人教版八年级下册一.选择题1.在△ABC中,BC=a,AC=b,根据下列条件不能判断△ABC是直角三角形的是()A.∠B=50°,∠C=40°B.∠A=2∠B=3∠CC.a=4,b=,c=5D.a:b:c=1::2.如图,在直角△ABC中,∠C=90°,BD平分∠ABC,AP,过点O作OM⊥AC,若△ABC的周长为30()A.30B.15C.60D.1203.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子顶端到地面的距离AC 为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,则小巷的宽为()A.2m B.2.5m C.2.6m D.2.7m4.如图,Rt△ABO中,∠A=90°,AB=1.以BC=1,OB为直角边;再以CD=1,OC 为直角边;…,按照这个规律,在Rt△OHI中()A.B.C.D.5.如图,大正方形ABCD由四个全等的直角三角形和一个小正方形拼接而成.点E为小正方形的顶点,延长CE交AD于点F,若△BCF为等腰三角形,AG=5()A.15B.16C.20D.256.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯()A.5米B.6米C.7米D.8米7.如图,在Rt△ABC中,∠C=90°,DE∥AB,交AC于点E,DE=5,DF=3()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=108.如图,AB=AC=13,BP⊥CP,CP=6,则四边形ABPC的面积为()A.48B.60C.36D.729.如图,Rt△ABC中,AC⊥BC,DE⊥AD交AB于点E,M为AE的中点,BD=4,CD=3.下列结论①∠AED=∠ADC;②;④4BF=5AC,其中结论正确的个数有()A.1个B.2个C.3个D.4个10.如图,在Rt△ABC中,∠C=90°,正方形CBGF,正方形AHIB,CG,作CP⊥CG交HI于点P1,S2,若S1=4,S2=7,则S△ACP:S△BCP等于()A.2:B.4:3C.:D.7:4二.填空题11.已知a、b为直角三角形的两边长,且满足(a﹣3)2+|b﹣4|=0,则第三边长为.12.如图,在△ABC中,∠ACB=90°,AB=b,D为边BC上一点∠ABC=2∠CAD,则线段BD的长=.(用含a,b的式子表示)13.如图,在△ABC中,∠C=90°,若BD=2,DC=32﹣AD2的值为.14.如图,四边形ABCD中,AB=14,CD=8,DA=6,则四边形ABCD的面积是.15.如图所示,已知△ABC中,BC=16cm,AB=12cm,点P是BC边上的一个动点,且速度为每秒2cm,设运动的时间为t(s),则运动时间t=.三.解答题16.如图,某超市为了吸引顾客,在超市门口离地高4.7m的墙上(AB=4.7m),人只要移至距该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”(CD=1.7m),门铃恰好自动响起,即AC=5m17.如图,某火车站内部墙面MN上有破损处(看作点A),现维修师傅需借助梯子DE完成维修工作.梯子的长度为5m,测得梯子底部E离墙角N处3m,维修师傅爬到梯子顶部使用仪器测量(1)该火车站墙面破损处A距离地面有多高?(2)如果维修师傅要使梯子顶部到地面的距离为4.8m,那么梯子底部需要向墙角方向移动多少米?18.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,由于某种原因,由C到A的路现在已经不通,决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,CH=4.8千米,BH=3.6千米.(1)问CH是否为从村庄C到河边的最近路线(即CH与AB是否垂直)?请通过计算加以说明.(2)求原来的路线AC的长.19.如图,在△ABC中,AB=AC=10厘米,点P从点A出发,沿AB边以1厘米/秒的速度向点B匀速移动,沿BC边以2厘米/秒的速度向点C匀速移动.如果P、Q同时出发,当Q点到达C点时(秒)表示移动的时间(0≤t≤6).(1)当PQ∥AC时,求t的值;(2)当t为何值时,P、B、Q三点构成直角三角形.20.如图,四边形ABCD为某工厂的平面图,经测量AB=BC=AD=80m m,且∠ABC =90°.(1)求∠DAB的度数;(2)若直线AB为工厂的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D处安装一个摄像头观察车辆进出工厂的情况,已知摄像头能监控的最远距离为80m。

2022-2023学年人教版八年级数学下册勾股定理-同步测试卷

2022-2023学年人教版八年级数学下册勾股定理-同步测试卷

17.1 勾股定理同步测试卷一、选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 一直角三角形的两直角边长为6和8,则斜边长为( )A. 10B. 13C. 7D. 142. 如图是由小正方形组成的4×5网格,每个小正方形的顶点叫做格点,△ABC的三个顶点都是格点.若BD 是△ABC的高,则BD的长为( )A. 75B. √7 C. 145D. 2√73. 如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm4. 如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. √3B. 2√2C. √5D. 2.55. 如图,在Rt△ABC中,∠B=90°,∠ACB=30°,AB=4,点D为BC的中点,延长AD至E点,使DE=AD,则△ACE的面积是( )A. √3B. 2√3C. 8D. 8√36. 斜边长是4的直角三角形,它的两条直角边可能是( )A. 3,5 B. 2,3 C. 3,√7 D. 2,27. 如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为( )A. √2B. 2C. √3D. 38. 如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为( )A. 4B. 4πC. 8πD. 8二、填空题(本大题共8小题,共24分)9. 在Rt△ABC中,∠C=90°,AB=15,AC=9,则BC=.10. 如图,数轴上点B表示的数为2,过点B作BC⊥OB于点B,且CB=1,以原点O为圆心,OC为半径作弧,弧与数轴负半轴交于点A,则点A表示的实数是.11. 如图,在Rt△ABC中,∠B=90∘,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长是.12. 如图,在△ABC中,∠ACB=90°,AC=3,BC=1,AC在数轴上,以点A为圆心,AB长为半径画弧,交数轴于点D,则点D表示的数是.13. 一个几何体的三视图如图所示.如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到CD的中点E ,这个线路的最短路程为.14. 如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为cm.15. 如图,在△ABC中,AB=AC=8,BC=4,AD⊥BC于点D,点P是线段AD上一个动点,过点P作PE⊥AB于点E,连接PB,则PB+PE的最小值为.16. 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.三、解答题(本大题共9小题,共72分。

17.1勾股定理训练 2022-2023学年人教版八年级下册数学

17.1勾股定理训练 2022-2023学年人教版八年级下册数学

勾股定理练习题一、选择题1、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形;B.锐角三角形;C. 直角三角形;D. 等腰三角形.2、△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 或 32 D.37 或 333、直角三角形的斜边为20cm,两条直角边之比为3∶4,那么这个直角三角形的周长为()A . 27cm B. 30cm C. 40cm D. 48cm4、一个直角三角形,有两边长分别为6和8,下列说法正确的是()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为105、放学以后,小红和小颖从学校分手,分别沿着东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离()A、600米;B、800米;C、1000米;D、不能确定二、填空题6、一个直角三角形的三边为三个连续偶数,则它的三边长分别为。

=30,c=13,且a<b,则a= ,b= 。

7、在Rt△ABC中,∠C=90°,S△ABC8、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是_________9.等腰三角形底边上的高为8,周长为32,则三角形的面积为_________10、在Rt△ABC中,已知两边长为3、4,则第三边的长为11、已知在△ABC中,AB=17,AC=10,BC边上的高等于8,则△ABC的周长为.12、在△ABC中,AB=13,BC=10,BC边上的中线AD=12,则AC的值是三、解答题13、已知:在Rt△ABC中,∠C=90°,CD⊥AB于D,∠A=60°,CD=3,求线段AAB的长。

DC B14、已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2023学年人教版八年级数学下册《17.1勾股定理》同步练习题(附答案)一.选择题1.已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A.5B.25C.D.5或2.△ABC中,AB=20,AC=13,高AD=12,则△ABC的面积为()A.66B.126C.54或44D.126或663.如图,Rt△ABC中,∠BAC=90°,分别以边AB,CA,BC向外作正方形,正方形ABIH 的面积为25,正方形BDEC的面积为169,则正方形ACFG的面积是()A.194B.144C.122D.1104.下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个5.如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为13,则直角三角形较短的直角边a 与较长的直角边b的比的值是()A.B.C.D.6.如图是一正方体的平面展开图,若AB=6,则该正方体A、B两点间的距离为()A.2B.3C.4D.67.如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.28.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14B.13C.14D.149.如图,正方形ABCD的面积为15,Rt△BCE的斜边CE的长为8,则BE的长为()A.17B.10C.6D.710.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1条B.2条C.3条D.4条二.填空题11.把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为.12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为.13.如图,已知OA=13,点A到射线OM的距离为5,点B是射线OM上的一个动点,当△AOB为等腰三角形时,线段OB的长度为.14.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点E,且AC=8,BC=5,则△BEC的周长是.15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,AC=6,则BD的长是.16.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…,依此法继续作下去,得OP2022=.三.解答题17.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.18.已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,△ACQ的面积是△ABC面积的;(3)当点Q在边CA上运动时,t为何值时,PQ将△ABC周长分为23:25两部分.19.如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?20.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做可爱三角形.(1)根据可爱三角形的定义,等边三角形是可爱三角形吗?请说明理由;(2)若某三角形的三边长分别为2、、3,试判断该三角形是否为可爱三角形,请说明理由.21.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?22.已知:在平面直角坐标系中,两点的横向(或纵向)距离可以用两点横坐标(或纵坐标)的差的绝对值来表示.(1)如图,平面内点A坐标为(2,3),点B坐标为(﹣1,﹣1),则AB两点的横向距离BC=,纵向距离AC=,最后,可得AB=;(2)平面内有点M(1,),点N(m,﹣)(m>0),请参考(1)中方法求线段MN的长.(用含m的式子表示)23.如图,在平面直角坐标系中有△ABC,AB=AC=13,BC=10,点C的坐标为(6,0),求A,B两点的坐标.24.如图,在平面直角坐标系中,点B,C的坐标分别为(﹣a,2a)、(3a,2a),其中a>0,点A为BC的中点,若BC=4,解决下列问题:(1)BC所在直线与x轴的位置关系是;(2)求出a的值,并写出点A,C的坐标;(3)在y轴上是否存在一点P,使得△P AC的面积等于5?若存在,求P的坐标;若不存在,请说明理由.25.如图是由边长为1个单位长度的小正方形组成的网格,△ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)△ABC的面积为;(4)点P在y轴上,且△ABP的面积等于△ABC的面积,则点P的坐标为.参考答案一.选择题1.解:当3和4都是直角边时,第三边长为:;当4是斜边长时,第三边长为:.故选:D.2.解:如图1,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=20,AD=12,∴BD===16,又∵AC=13,∴CD===5,∴BC=BD+CD=21,∴△ABC的面积=×21×12=126;如图2,BC=BD﹣CD=11,∴△ABC的面积=×11×12=66;综上所述,△ABC的面积为126或66,故选:D.3.解:在Rt△ABC中,∠BAC=90°,∴AB2+AC2=BC2,∵正方形ABIH的面积为25,正方形BDEC的面积为169,∴AB2=25,BC2=169,∴AC2=BC2﹣AB2=169﹣25=144,∴正方形ACFG的面积=AC2=144,故选:B.4.解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=(a+b)(a+b)=2××ab+c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b﹣)(a+)=ab+c c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.5.解:∵大正方形的面积是13,设边长为c,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.∵小正方形的面积为(b﹣a)2=1,∴b=3,a=2,∴.故选:B.6.解:∵AB=6,∴该正方体的棱长为3=,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,所以该正方体A、B两点间的距离为3,故选:B.7.解:由作图可知,点D在线段AB的垂直平分线上,∴AD=BD=2,故选:D.8.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.9.解:∵正方形ABCD的面积为15,∴BC2=15,∠ABC=90°,∴∠EBC=90°,在Rt△BCE中,由勾股定理得:BE===7,故选:D.10.解:由勾股定理得,a=,b=.c=,d=2,∵无理数有,两个,故选:B.二.填空题11.解:6﹣4=2,2×2=4.故图2中小正方形ABCD的面积为4.故答案为:4.12.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=a2+b2+2ab=25+24=49.故答案为:49.13.解:过A作AN⊥OM于N,则AN=5,∴ON===12,当△AOB为等腰三角形时,分三种情况:①当OA=AB时,如图1所示:∵AN⊥OM,∴ON=BN=12,∴OB=2ON=2×12=24;②OA=OB时,如图2所示:OB=13;③OB=AB时,如图3所示:设OB=AB=x,则BN=ON﹣OB=12﹣x,在Rt△ABN中,由勾股定理得:AN2+BN2=AB2,即52+(12﹣x)2=x2,解得:x=,∴OB=;综上所述,当△AOB为等腰三角形时,线段OB的长度为24或13或,故答案为:24或13或.14.解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案是:13.15.解:作DE⊥AB于E,在Rt△ABC中,由勾股定理得,BC=,∵AD平分∠BAC,AC⊥DC,DE⊥AB,∴CD=DE,∴S△ABC=+=,∴6CD+10CD=48,∴CD=3,∴BD=BC﹣CD=8﹣3=5,故答案为:5.16.解:∵OP=1,OP1=,OP2=,OP3=,∴OP2022=.故答案为:.三.解答题17.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.18.解:(1)当t=2s时,点Q在边BC上运动,则AP=2cm,BQ=2t=4(cm),∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),∴PQ的长为2cm;(2)∵S△ACQ=CQ•AB,S△ABC=BC•AB,点Q在边BC上运动时,△ACQ的面积是△ABC面积的,∴CQ=BC=×6=2(cm),∴BQ=BC﹣CQ=6﹣2=4(cm),∴t==2,∴当点Q在边BC上运动时,t为2时,△ACQ的面积是△ABC面积的;(3)在Rt△ABC中,由勾股定理得:AC===10(cm),当点P达到点B时,t==8,当点Q达到点A时,t=+=,∵当其中一个点到达终点时,另一个点也随之停止,∴0≤t≤8,∵AP=tcm,∴BP=(8﹣t)cm,点Q在CA上运动时,CQ=1.5×(t﹣)=(1.5t﹣4.5)(cm),∴AQ=10﹣(1.5t﹣4.5)=(﹣1.5t+14.5)(cm),∴BP+BC+CQ=8﹣t+6+1.5t﹣4.5=(0.5t+9.5)(cm),AP+AQ=t+(﹣1.5t+14.5)=(﹣0.5t+14.5)(cm),分两种情况:①=,即=,解得:t=4,经检验,t=4是原方程的解,∴t=4;②=,即=,解得:t=6,经检验,t=6是原方程的解,∴t=6;综上所述,当点Q在边CA上运动时,t为4或6时,PQ将△ABC周长分为23:25两部分.19.解:(1)∵∠ACB=90°,∴△ABC是直角三角形,在Rt△ABC中,由勾股定理得:AB===13,∴AB的长为13;(2)当点P在AC上时,CP=CB=5,t=5(s);当点P在AB上时,分三种情况:①当BP=BC=5,如图1所示:则AP=13﹣5=8,t=12+8=20(s);②当CP=CB=5时,过点C作CM⊥AB于M,如图2所示:则BM=PM=BP,∵AC•BC=AB•CM,∴CM===,在Rt△BCM中,由勾股定理得:BM===,∴BP=2BM=,∴AP=13﹣=,∴t=12+=(s);③当PC=PB时,如图3所示:则∠B=∠BCP,∵∠B+∠A=90°,∠BCP+∠ACP=90°,∴∠A=∠ACP,∴AP=PC,∴AP=PB=AB=,∴t=12+=(s);综上所述,当t=5s或20s或s或s时,△BCP为等腰三角形.20.解:(1)等边三角形是可爱三角形,理由:设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形是可爱三角形;(2)该三角形不是可爱三角形,理由:∵22=4,()2=17,32=9,∴22+()2≠2×32,22+32≠2×()2,()2+32≠2×22,∴该三角形不是可爱三角形.21.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.22.解:(1)BC=2﹣(﹣1)=3,AC=3﹣(﹣1)=4,由勾股定理得,AB=,故答案为:3,4,5;(2)∵MN的横向距离为m﹣1,纵向距离为2,∴MN====|m+3|,∵m>0,∴MN=m+3.23.解:过A作AD⊥BC于D,∵AB=AC,∴DC=BD=BC=5,∵点C的坐标为(6,0),∴OC=6,∴OD=1,OB=4,∴B(﹣4,0),在Rt△ADC中,根据勾股定理得AD=12,∴A(1,12);答:A,B两点的坐标分别是(1,12)、(﹣4,0).24.解:(1)平行,∵B与C的纵坐标相同,∴BC∥x轴,故答案为:平行;(2)∵BC=4,∴3a﹣(﹣a)=4,∴a=1,∴B(﹣1,2),C(3,2),∵A为BC的中点,∴A(1,2);(3)存在,设P(0,m),∵AC=2,∴,∴m=﹣3或7,∴P(0,﹣3)或(0,7).25.解:(1)点A的坐标为(3,4),点B的坐标为(0,2);故答案为:(3,4),(0,2);(2)BC==;故答案为:;(3)S△ABC=4×3﹣×2×3﹣×1×4﹣×1×3=5.5;故答案为:5.5;(4)设P(0,m),∵△ABP的面积等于△ABC的面积,∴|m﹣2|×3=5.5,解得:m=或﹣,∴点P的坐标为(0,)或(0,﹣).故答案为:(0,)或(0,﹣).。

相关文档
最新文档