应用多元统计分析课后答案-朱建平版

合集下载

应用多元统计分析课后答案朱建平版

应用多元统计分析课后答案朱建平版

i 1
n
(Xi - μ)(Xi - μ) 2n(X μ)(X μ) n(X μ)(X μ) i 1
n
(Xi - μ)(Xi - μ) n(X μ)(X μ) i 1
E( S ) n 1
1 n 1
E
n i1
(Xi
-
μ)(Xi
-
μ)
n(X
μ)(X
μ)
1 n 1
n i1
E(Xi
*
*
* ( ij ) 为一正交矩阵,即 ΓΓ I 。
1 n
Ζn ) = X1 X2
Xn Γ ,
由于Xi (i 1, 2,3, 4, n)独立同正态分布,且Γ为正交矩阵
所以 (1 2
n ) 独立同正态分布 。且有
Ζn
1 n
n
Χi , E(Ζn )
i 1
1 n
n
E(Χi )
i 1
其它
2
cov(x1, x2 )
d c
b a
x1
a
2
b
x2
d
2
c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a )( x2
c)] dx1dx2
(c d )(b a) 36
cov(x1, x2 ) 1
x1 x2
3
(3)解:判断 X1 和 X 2 是否相互独立。 X1 和 X 2 由于 f (x1, x2 ) fx1 (x1) fx2 (x2 ) ,所以不独立。
36573750.00 -199875.00
-736800.00
-35.80

应用多元统计分析课后答案

应用多元统计分析课后答案

第二章2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。

SPSS-朱建平版应用多元统计答案

SPSS-朱建平版应用多元统计答案

5#703Spss实习作业上机操作余聪0701020223数学二班数据变换是正式分析前的重要一步,通过数据变换,一个优秀的统计分析员可以将原始记录整理成所需的任何形式,从而为后面的精确分析打下坚实的基础——这正是他和普通分析员的区别所在。

-------张文彤3.61992年美国总统选举的三位候选人为布什、佩罗特和克林顿。

支持三位候选人的选民中抽取了20人,假定三组都服从多元正态分布,检验这三组的总体均值是否都显著性差异( )。

解:我们知道One-Way ANOVA 过程用于两组及多组间样本均值的比较,即成组设计的方差分析。

具体操作步骤:1.先对数据进行预处理,1代表布什,2代表佩罗特,3代表华盛顿。

2.Analyze---Compare Mean---One-Way ANOVADependent List框:总统分组Options: Homogeneity-of-varianceContinuePost Hoc:S-N-K:ContinueOK3.运行结果1:结果解释:上图给出单因子方差分析的结果,可见F=3.095,P=0.034<0.05,所以证明假设不成立,选民年龄程度存在差异。

运行结果2:结果解释:上图给出单因子方差分析的结果,可见F=2.354,P=0.065>0.05,所以证明假设成立,选民受教育程度不存在差异。

4.10从胃癌者、萎缩性胃炎患者和非胃炎患者中分别抽取五个病人进行四项生化指标的化验:血清铜蛋白(X1)、蓝色反应(X2)、尿吲哚乙酸(X3)和中性硫化物(X4),数据见下表。

试用距离判别法建解:1.费希尔判别法的主要思想:从k各总体中具有P个样品观测数据,借助发差分析的思想构造现行判别函数U(x)=u1*X1+ u2*X2+ u2*X2+ u3*X3++ up*Xp= u’X其中,系数u =(u1, u2, u3,…,u p)’确定的原则是使总体之间区别最大,而使每个总体之间的离差最小。

应用多元统计分析课后答案

应用多元统计分析课后答案

第二章2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。

应用多元统计分析课后答案 .doc

应用多元统计分析课后答案 .doc

2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

应用多元统计分析 朱建平

应用多元统计分析 朱建平
i 1 i 1
n
( Xi - μ)( Xi - μ) 2n( X μ)(X μ) n( X μ)(X μ)
i 1 n
n
( Xi - μ)( Xi - μ) n( X μ)(X μ)
i 1
E(
S 1 n ) E ( Xi - μ)( Xi - μ) n( X μ)(X μ) n 1 n 1 i 1 1 n E ( Xi - μ)( Xi - μ) nE ( X μ)(X μ) Σ 。 n 1 i 1
i i
方法 2: S
n
(X - X)(X - X)
i 1
Xi - μ ( X μ) Xi - μ ( X μ)
i 1 n
( Xi - μ)( Xi - μ) 2 ( Xi - μ)( X - μ) n( X μ)(Xμ Xμ)
b

(c d )(b a ) 36 cov( x1 , x2 )

xx
1

2
1 3
(3)解:判断 X 1 和 X 2 是否相互独立。
X 1 和 X 2 由于 f ( x1 , x2 ) f x1 ( x1 ) f x2 ( x2 ) ,所以不独立。
2.4 设 X ( X 1 , X 2 , X p ) 服从正态分布,已知其协方差矩阵为对角阵,证明其分量是相


S 为 Σ 的无偏估计。 n 1
试求 S 2.9.设 X (1) , X (2) , ..., X ( n ) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本, 的分布。 证明: 设

应用多元统计分析习题解答_朱建平_第七章

应用多元统计分析习题解答_朱建平_第七章

Abbo无私奉献,只收1个金币,BS收5个金币的…何老师考简单点啊……第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

应用多元统计分析课后答案 (2)

应用多元统计分析课后答案 (2)

(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
'.
.
fx1 (x1)
d c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)( x2
c)]
dx
d
2(d c)(x1 (b a)2 (d
a)x2 c)2
d c
2[(b
a)( x2 (b
差阵。)
2.6 渐近无偏性、有效性和一致性;
2.7 设总体服从正态分布, X ~ N p (μ, Σ) ,有样本 X1, X2 ,..., Xn 。由于 X 是相互独立的正
态分布随机向量之和,所以 X 也服从正态分布。又
E(X)
E
n
Xi
n
n
E Xi
n
n μ

i1
i1
i1
D(X) D n Xi i1
μ j
nj i1
Σ1 ( Xij
μj)
0(
j
1, 2,..., k)
解之,得
μˆ j
xj
1 nj
nj
xij , Σˆ
i 1
k nj
xij x j
j1 i1
xij x j
n1 n2 ... nk
第三章
3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。 其基本思想和步骤均可归纳为: 答:
i 1
i 1
n
(Xi - μ)(Xi - μ) 2n(X μ)(X μ) n(X μ)(X μ) i 1
n
(Xi - μ)(Xi - μ) n(X μ)(X μ) i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
(b a)2 (d c)2
c
2(d c)(x1 a)x2 (b a)2 (d c)2
d
[(b a)t2 2(x1 a)t 2 ] (b a)2 (d c)2
d c
1 ba
c
0
所以
由于
X1
服从均匀分布,则均值为
b
2
a
,方差为
ba 12
2

1
同理,由于
X2
服从均匀分布
fx2 (x2 )
应用多元统计分析课后答案-朱 建平版
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况, X ( X1, X 2 , X p ) 的联合分布密
度函数是一个 p 维的函数,而边际分布讨论是 X ( X1, X 2 , X p ) 的子向量的概率分布,其概率密度
a )( x2
c)] dx1dx2
(c d )(b a) 36
cov(x1, x2 ) 1
x1 x2
3
(3)解:判断 X1 和 X 2 是否相互独立。
X1 和 X 2 由于 f (x1, x2 ) fx1 (x1) fx2 (x2 ) ,所以不独立。
2.4 设 X ( X1, X 2 , X p ) 服从正态分布,已知其协方差矩阵为对角阵,证明其分量是相互独立的随
Σ
12
2 2
2 p
1/ 2
exp
1 2
(x
μ)Σ1
1
2 2
(x
μ)
1
2 p
p
1 2
1 2
p
1
exp
1 2
(
x1
1
2 1
)2
1 2
( x2
3 )2
2 2
...
1 2
(xp
2 p
p
)2
p i1
i
1 2
exp
(
xi i
2
2 i
)2
f (x1)... f (xp )
(2)随机变量 X1 和 X 2 的协方差和相关系数;
(3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
fx1 (x1)
d c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)( x2
c)]
d
c
0
d c2


12
x1 c, d ,则均值为 d c ,方差
其它
2
(2)解:随机变量 X1 和 X 2 的协方差和相关系数;
cov(x1, x2 )
d c
b a
x1
a
2
b
x2
d
2
c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
i1
D(X)
D
n
Xi
i1
n
1 n2
n
D
i1
Xi
1 n2
n Σ Σ
i1
n
所以 X ~ Np (μ, Σ) 。
2.8
方法 1:
Σˆ
1 n 1
n i 1
(Xi
X)(Xi
X)1 Βιβλιοθήκη 1n i 1Xi Xi
nXX
E(Σˆ )
1 n 1
E(
n i 1
Xi Xi
nXX)
1 n 1
n i1
2.6 渐近无偏性、有效性和一致性;
则其分量是相互独立。
2.7 设总体服从正态分布, X ~ N p (μ, Σ) ,有样本 X1, X2 ,..., Xn 。由于 X 是相互独立的正态分布随
机向量之和,所以 X 也服从正态分布。又
E(X)
E
n
Xi
n n E Xi
n
n μ

i1
i1
机变量。
解: 因为 X ( X1, X 2 , X p ) 的密度函数为
f
(
x1,
...,
x
p
)
1 2
p
Σ
1/
2
exp
1 2
(x
μ)Σ1
(x
μ)
12
又由于
Σ
2 2
2 p
Σ
12
2 2
2 p
1
12
1
Σ 1
2 2
则 f (x1,..., xp )
1
2 p
1
2 1
1 p 2
12 21
12
2 2
1
(x
μ)

2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)(x2
c)]
其中 a x1 b , c x2 d 。求
(1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
i 1
i 1
n
(Xi - μ)(Xi - μ) 2n(X μ)(X μ) n(X μ)(X μ) i 1
n
(Xi - μ)(Xi - μ) n(X μ)(X μ) i 1
E( S ) n 1
1 n 1
E
n i1
(Xi
-
μ)(Xi
-
μ)
n(X
μ)(X
μ)
1 n 1
n i1
函数的维数小于 p。
2.2 设二维随机向量 ( X1 X 2 ) 服从二元正态分布,写出其联合分布。
解:设 ( X1
X 2 ) 的均值向量为 μ 1
2
,协方差矩阵为
12 21
12
2 2
,则其联合分布密
度函数为
f
(x)
1 2
2
12 21
12
2 2
1/
2
exp
1 2
(x
μ)
E
Xi Xi
nE
XX
1 n 1
n i1
Σ
n
Σ n
1 (n n 1
1)Σ
Σ

方法 2: S n (Xi - X)(Xi - X) n Xi - μ (X μ) Xi - μ (X μ)
i 1
i 1
n
n
(Xi - μ)(Xi - μ) 2 (Xi - μ)(X - μ) n(X μ)(Xμ Xμ)
E(Xi
-
μ)(Xi
-
μ)
nE(X
μ)(X
μ)
Σ。
S

为 Σ 的无偏估计。
n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S 的分布。
*
*
证明: 设 Γ *
1 n
令 Ζ = (Ζ1 Ζ2
*
*
*
*
*
* ( ij ) 为一正交矩阵,即 ΓΓ I 。
1 n
1 n
Ζn ) = X1 X2
Xn Γ ,
由于Xi (i 1, 2,3, 4, n)独立同正态分布,且Γ为正交矩阵
所以 (1 2
n ) 独立同正态分布 。且有
Ζn
1 n
n
Χi , E(Ζn )
i 1
1 n
n i 1
dx
d
2(d c)(x1 a)x2 (b a)2 (d c)2
c
d c
2[(b
a)( x2 (b
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
d
2(d c)(x1 a)x2 dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
相关文档
最新文档