图像处理技术及其应用
图像处理的技术应用

图像处理的技术应用图像处理是指对图像进行数字化处理和分析的过程,它可以通过各种算法和技术来改善图像的质量、增强图像的细节、提取图像的特征等。
随着科技的不断进步,图像处理的技术应用越来越广泛,已经渗透到了各个领域,如医学、军事、娱乐等。
本文将探讨图像处理的技术应用以及其在不同领域中的具体应用案例。
一、医学领域的图像处理应用在医学领域,图像处理技术被广泛应用于医学影像的诊断和治疗。
例如,在放射科学中,医生可以借助图像处理技术对X射线、CT扫描、MRI等医学影像进行增强和分析,以帮助他们更准确地诊断疾病。
此外,图像处理技术还可以应用于医学图像的配准和分割,从而实现对病灶的定位和量化分析。
二、军事领域的图像处理应用在军事领域,图像处理技术被广泛应用于目标识别、情报分析等方面。
通过对卫星图像、无人机图像等进行处理和分析,可以实现对敌方目标的识别和跟踪,从而为军事行动提供有力的支持。
此外,图像处理技术还可以用于军事图像的隐写和解密,以保障军事信息的安全性。
三、娱乐领域的图像处理应用在娱乐领域,图像处理技术被广泛应用于电影、游戏等方面。
例如,在电影制作中,通过对影像进行特效处理,可以实现各种奇幻的视觉效果,提升电影的观赏性和娱乐性。
此外,图像处理技术还可以应用于游戏中的虚拟现实和增强现实技术,为玩家带来更加沉浸式的游戏体验。
四、其他领域的图像处理应用除了医学、军事和娱乐领域,图像处理技术还应用于许多其他领域。
例如,在工业领域,图像处理技术可以用于产品质量检测和自动化生产线的控制。
在交通领域,图像处理技术可以用于交通监控和智能交通系统的建设。
在环境保护领域,图像处理技术可以用于遥感图像的分析和环境监测。
综上所述,图像处理的技术应用广泛而多样,已经成为许多领域中不可或缺的工具。
通过对图像进行处理和分析,可以提高图像的质量和清晰度,提取出有用的信息,从而为各个领域的应用提供支持和帮助。
随着科技的不断进步,相信图像处理技术的应用会越来越广泛,为人们的生活和工作带来更多的便利和创新。
图像处理技术的原理及应用案例

图像处理技术的原理及应用案例在现代科技快速发展的时代,图像处理技术逐渐成为了一个非常重要的领域。
有些人可能会想,“图像处理指的是什么呢?”实际上,图像处理不仅仅是简单的对图片的美化和优化,还包括对图像的分析、识别、重建等方面的技术。
本文将为大家详细介绍图像处理技术的原理以及实际应用案例。
一、图像处理技术的原理1.数字图像处理数字图像处理是指通过一个计算机系统对数字化的图像进行各种处理,进而获得可用的图像信息的过程。
数字图像处理首先需要将图像进行数字化处理,然后再根据用户需求,进行各种调整、改变、优化等操作。
而数学方法则是数字图像处理的基础,通过各种数学模型的应用,可以分析和优化图像信号的质量。
2.数字图像处理的流程数字图像处理的流程一般包括四个部分:数字图像获取、数字图像预处理、数字图像处理和数字图像分析。
在数字图像获取环节,我们需要采用传感器、摄像机、扫描仪等设备将图像进行数字化处理,然后再进入数字图像预处理阶段,对原始图像进行去噪、增强、分割等处理,再进入数字图像处理阶段,对图像中特定的目标进行识别、重构和优化,最后再进入数字图像分析环节,利用数学方法对图像信息进行分析和处理。
3.数字图像处理的应用领域数字图像处理技术被广泛应用于各个领域,如航空、医学、生物、交通、地质等。
在航空领域,数字图像处理可以对航空图像进行自动识别和跟踪分析;在医学领域,数字图像处理可以对医学影像进行自动探测和分析;在生物领域,数字图像处理可以对显微镜成像进行分析和识别;在交通领域,数字图像处理可以用于交通监控和识别等方面;在地质领域,数字图像处理可以用于地形分析和地质成像等方面。
二、图像处理技术的应用案例1.医学影像处理医学影像处理是一种在医疗领域广泛使用的图像处理技术,它旨在通过数字图像处理来获得更高质量的医学图像并提高医疗诊断的准确性。
医学影像处理可以进行多种类型的图像处理,如对医学影像进行增强、去噪、降低辐射等。
图像处理技术的方法和应用

图像处理技术的方法和应用随着科技的不断发展,我们的生活已经离不开图像。
我们每天在手机、电视、网络、广告等等各个方面都会看到图像。
而图像处理技术的发展,就是为了更好地满足这些需求。
图像处理技术是一种将数字信号处理和数字图像处理相结合的技术。
其主要任务是对图像进行优化,更好地呈现出图像本身所包含的信息。
在近年来,图像处理技术的应用已经涉及到了很多领域,如医学、车辆、智能设备等等。
图像处理技术的方法1. 数字信号处理方法在图像处理技术中,数字信号处理方法充分考虑到数字信号的特点,对图像进行分析、处理和识别,从而达到更好的效果。
例如,数字信号处理可以对图像进行去噪、压缩、增强等。
去噪:图像信号是由噪声和图像本身所构成的混杂信号,对其进行去噪处理可以将图像中的难以分辨的细节信息恢复出来。
压缩:图像压缩是将图像信号进行压缩和恢复处理,将大规模的图像数据变成小而有用的数据,从而方便存储和传输。
增强:图像增强是利用一系列的技术方法,增强图像的对比度、亮度以及色彩等方面的特征,使得图像更加清晰、明亮。
2. 计算机视觉方法计算机视觉是一种应用数学、计算机科学和机器学习等技术,将图像中的信息转化为数学模型,以实现图像的识别、分类、目标检测等任务。
例如,计算机视觉可以实现火车识别、人脸检测、自动驾驶等。
火车识别:利用计算机视觉技术,对图像进行识别,可以有效地实现火车识别的任务,从而实现自动化的铁路监测和安全防护。
人脸检测:利用计算机视觉技术,基于图像中的特征点信息,可以完成人脸检测的任务,从而应用于人脸识别场景。
自动驾驶:利用计算机视觉技术,结合深度学习算法,实时地获取车辆周围的信息,对路况进行分析,最终实现自动驾驶的功能。
图像处理技术的应用1. 医学领域图像处理技术在医学领域应用广泛,例如医学影像的处理、医学诊断等等。
医学影像处理技术能够对医学图像进行处理和优化,增强图像的对比度和清晰度,更好地表达患者的病情。
同时,也能够通过自动化的医学识别和自动定位等技术,实现医学诊断和治疗的智能化。
图像处理技术的研究及应用

图像处理技术的研究及应用随着科技的不断发展,图像处理技术已经成为数字化时代一个非常重要的研究内容和应用领域。
通过各种图像处理技术,我们能够发现、识别和分析图像中所包含的信息,包括但不限于颜色、形状、纹理等等。
图像处理技术涉及的范围非常广泛,包括但不限于计算机视觉、医学影像、安防监控、虚拟现实、人工智能等等,它的应用场景也越来越多样化。
一、图像处理技术的基本原理图像处理技术的基本原理主要包括两个方面:数字图像的获取与表示、数字图像的处理与分析。
数字图像的获取与表示是指将图像所对应的模拟信号转换成数字化的光学信号,并对其进行采样和量化,最终得到数字图像。
数字图像的处理与分析则是指对数字图像进行各种处理和分析,如图像滤波、图像增强、图像分割、物体识别等等。
这些处理和分析方法大多是基于数学与计算机科学理论而建立,通过对数字图像进行处理和分析,我们可以获得更多有价值的信息。
二、图像处理技术的研究进展随着计算机技术的飞速发展,图像处理技术也得到了广泛的应用和研究。
其中最重要的一个方向是图像识别与分类。
通过建立机器学习算法和大规模数据的训练,我们可以掌握并运用各种图像识别技术,如人脸识别、车辆识别、场景识别、自然语言处理等等。
这些技术已经被应用在不同的领域,如智能家居、虚拟现实、医学影像和无人驾驶等。
另外,图像处理技术也正在不断地创新和改进。
例如,近年来,深度学习技术的发展促进了图像识别的准确度和速度的大幅提升。
同时,3D图像处理、图像压缩和图像传输方面的技术也在不断地创新和改进。
这些技术都帮助图像处理变得更快、更准确和更易操作。
三、图像处理技术的应用在实际应用中,图像处理技术已被广泛地应用在各种领域和行业中。
下面列举几个例子:1.医学影像:在医学领域,图像处理技术可以利用X射线、CT、MRI等设备获取身体内部的影像,并进行分析和诊断。
这些技术可以用于疾病的早期诊断和治疗,让医生可以更加准确地诊断病情。
2.安防监控:在安防领域,图像处理技术可以对监控器、摄像头捕获的场景进行实时分析、报警并给出相应的预警措施。
图像处理技术的应用和发展

图像处理技术的应用和发展图像处理技术是指通过数字化的方式对图像进行处理和分析,以达到特定的目的,如图像增强、图像识别等。
随着科技的不断进步和应用的广泛,图像处理技术一直在发展和创新,并在各个领域得到了广泛的应用。
一、图像处理技术的发展史早期的图像处理技术出现在20世纪60年代,当时主要用于空间和遥感图像的处理。
随着计算机技术的不断发展和完善,计算机能够处理更加复杂的图像,图像处理技术也得到了迅速的发展。
在20世纪90年代,数字图像处理被广泛应用于媒体、医学、安防等领域中,并取得了显著的成果。
20世纪末和21世纪初,随着互联网、移动设备和计算机硬件的飞速发展,图像处理技术得到了更广泛的应用和发展。
二、图像处理技术的应用1.医学医学领域是数字图像处理的一个重要应用领域。
例如,CT、MRI、超声波等医学影像技术经常采用数字图像处理技术,可以精准地分析疾病的情况,为医生提供了更精准的诊断和治疗方案,极大地提高了医疗质量和效率。
2.媒体媒体领域也是数字图像处理的一个重要应用领域。
近年来,智能手机和平板电脑等移动设备的普及,让人们拍照和录像变得十分常见。
数字图像处理技术使得拍照和录像变得更加精准和专业,并且还可以通过各种滤镜达到更加独特的效果。
3.安防数字图像处理技术在安防领域也得到广泛的应用。
例如,通过数字摄像机拍摄的监控视频可以通过数字图像处理技术进行有效分析和处理,识别嫌疑人的面部特征和行为模式,从而提高安防的效率和准确率。
三、图像处理技术的未来发展数字图像处理技术已经得到了广泛的应用和发展,但是随着新技术的不断涌现和应用场景的不断增加,启发着我们对数字图像处理未来发展的好奇。
以下是数字图像处理技术未来发展的趋势:1.人工智能人工智能是数字图像处理技术未来发展的重要方向之一。
AI技术可以极大地提高图像处理的适应性和准确性,例如在医学影像诊断、人脸识别等领域,都可以通过AI技术达到更加精准、高效的处理效果。
视频图像处理技术及其应用

视频图像处理技术及其应用第一章:视频图像处理技术介绍视频图像处理技术指的是对视频图像数据进行处理,以达到一定目的的技术手段。
这项技术应用广泛,比如医学影像处理、安防监控、媒体制作、艺术设计等等。
其核心技术就是图像处理技术。
图像处理技术是指对图像信息进行数字处理,包括图像增强、图像变形、目标检测、摄像头校正等等。
不同的处理方法会对图像特征进行提取、抽象和描述,分析图像内容,以满足不同应用需求。
在视频图像处理技术中,主要涉及到以下几种技术:1. 基础图像处理技术基础图像处理技术是指对图像信息进行预处理,以提高图像质量,比如去噪、增强对比度、色彩平衡等等。
2. 目标检测技术目标检测技术是指对视频图像数据中感兴趣的目标进行检测,并提取出该目标在图像中的位置信息、属性信息等,以实现目标跟踪和分析。
3. 物体识别与分类技术物体识别与分类技术是指对图像中物体进行分类和识别,以实现对物体信息的自动化处理。
第二章:视频图像处理技术的应用视频图像处理技术应用非常广泛,涉及到很多领域。
下面主要介绍其在医学影像处理、安防监控、媒体制作和艺术设计等领域的应用。
1. 医学影像处理医学影像处理是指对医学图像信息进行自动化处理,以提高医学诊断精度,减少医生的操作负担,加快诊断速度。
医学影像处理技术可以应用于不同的医学领域,如CT、MRI、X-Ray、超声等。
医学影像处理技术主要包括图像分割、特征提取、数据分析和模型建立等等。
2. 安防监控安防监控是指对室内外环境的实时监控和视频数据的处理分析。
该技术可以用于现场安防监控、车辆监控、人员监控等方面。
安防监控领域主要使用的视频图像处理技术有目标检测、人脸识别、行为检测等等。
3. 媒体制作媒体制作是指对视频、电影、电视等媒体信息进行数字化处理、编剧、编程、制作的过程。
图像处理技术在媒体制作中占有重要地位,比如增强画面的对比度、色彩饱和度、降噪等等。
4. 艺术设计艺术设计是指利用计算机技术对艺术品、图像等进行数字处理,以实现创意性、美学性的效果。
10个图像处理技术的实际应用案例

10个图像处理技术的实际应用案例图像处理技术在当今社会中已经得到了广泛的应用,无论是在科研领域、医学诊断、影视制作还是智能交通等领域都发挥着重要的作用。
以下是10个图像处理技术的实际应用案例。
人脸识别技术。
这项技术可以通过图像识别出人脸特征,并与数据库中的信息进行对比,用于安全门禁、人脸支付、社交媒体的面部标记等。
虚拟现实技术。
基于图像处理技术,虚拟现实可以模拟出逼真的虚拟世界,广泛应用于游戏制作、建筑设计、医学培训等领域。
第三,医学图像处理技术。
医学领域借助这一技术可以对CT、MRI等图像进行处理,辅助医生进行疾病诊断和手术规划,提高了医疗质量和效率。
第四,图像压缩技术。
这项技术可以减少图像的存储空间和传输带宽,广泛应用于图像和视频的传输和存储中,如图像传真、图像存储等。
第五,图像修复技术。
该技术可以通过图像处理算法修复破损、受损或补全的图像,被广泛运用于文物修复、图像恢复等领域。
第六,图像分割技术。
图像分割技术可以将图像分成若干区域,常用于图像识别、目标检测等领域,如自动驾驶、智能机器人等。
第七,图像增强技术。
该技术可以通过增加图像的对比度、亮度、锐度等来提高图像的质量和可视化效果,广泛应用于图像美化、摄影后期处理等领域。
第八,图像识别技术。
基于图像处理技术,图像识别可以识别出图像中的物体、文字等,并进行分析和识别,广泛应用于智能搜索、自动驾驶、人脸识别等领域。
第九,图像融合技术。
该技术可以将多幅图像融合成一幅图像,常用于遥感图像、医学图像等领域,如遥感影像的特征提取、多模态医学影像的融合等。
图像超分辨率技术。
该技术可以通过图像处理方法提高图像的分辨率,常用于监控视频、数字摄影等领域,如安全监控中的行人特征提取、卫星图像的解析度提升等。
综上所述,图像处理技术在多个领域中都有着广泛的应用。
随着技术的不断发展,相信图像处理技术将在未来带来更多的创新和应用案例。
图像处理技术原理与应用介绍

图像处理技术原理与应用介绍第一章:图像处理技术概述图像处理技术是计算机视觉领域中的一个重要分支,通过数字化处理来改善或者增强图像的质量、提取有用的信息。
这些信息可以用于医学图像诊断、安防监控、自动驾驶等领域。
图像处理技术的原理是将图像数据转换为数字信号,并应用各种算法和方法进行处理。
第二章:图像获取与采集技术图像的获取与采集是图像处理的第一步,包括摄影、扫描、摄像、雷达等方式。
在数字相机中,光经过镜头进入感光元件,通过光电转换将光信号转换为电信号。
扫描技术通过移动的感光元件逐行采集图像,如CCD和CMOS传感器。
雷达技术利用电磁波回波来获得图像信息,适用于远程目标探测等场景。
第三章:图像预处理技术图像预处理是图像处理流程中的重要环节,旨在提取和增强图像中有用信息,去除噪声和不必要的细节。
常用的预处理技术包括灰度变换、图像平滑、图像增强和边缘检测等。
灰度变换在图像中引入了灰度级别的变化,用于增强图像对比度和亮度。
图像平滑通过低通滤波器来去除图像中的高频噪声。
图像增强技术则用于增强图像的细节和边缘。
边缘检测技术可以检测出图像中物体之间的边界。
第四章:图像分割与特征提取图像分割是指将图像划分为不同的区域或对象,常用的算法包括阈值分割、区域生长、边缘检测等。
阈值分割通过设定一个阈值,将图像中灰度值高于或低于该阈值的像素归为同一类。
区域生长是一种通过像素之间的相似性将相邻像素合并的方法。
边缘检测通过检测图像中的灰度级别变化来找到物体之间的边界。
特征提取是在图像分割的基础上,提取出图像中的有用属性,如纹理、形状、颜色等,用于后续的图像识别和分类。
第五章:图像压缩与编码图像压缩是通过减少图像中的冗余信息来减小图像的存储空间和传输带宽。
常见的图像压缩算法有无损压缩和有损压缩。
无损压缩通过对图像数据进行编码和解码来保证图像的完整性,如Huffman编码和LZW编码。
有损压缩则通过舍弃一部分信息来减小图像的大小,如JPEG和JPEG2000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像处理技术及其应用姓名:(班级:学号:)【摘要】图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。
本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。
【关键字】图像处理;发展;技术应用1 引言计算机图像处理技术是在20世纪80年代后期,随着计算机技术的发展应运而生的一门综合技术。
图像处理就是利用计算机、摄像机及其它有关数字技术,对图像施加某种运算和处理,使图像更加清晰,以提取某些特定的信息,从而达到特定目的的技术。
随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。
无论在哪个领域中,人们喜欢采用图像的方式来描述和表达事物的特性与逻辑关系,因此,数字图像处理技术的发展及对其的要求就越来显得重要。
2 图像处理技术发展现况进入21世纪,随着计算机技术的迅猛发展和相关理论的不断完善,数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就。
随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
从图像变换方面来讲,目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用;而图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等,目前主要在指纹图像增强处理技术,医学影像学方面有显著的成果。
这项技术使得各自图像的空间分辨率和对比度有了更大的提高,而最新的医学图像融合则是指对医学影像信息如CT、MRI、SPECT和PET所得的图像,利用计算机技术将它们综合在一起,实现多信息的同步可视化,对多种医学影像起到互补的作用。
图像分割图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
图像描述图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法;图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
3 图像处理技术应用现状图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
3.1航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。
对由此得来的照片进行处理分析,用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。
这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。
现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。
我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。
在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。
3.2生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。
除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。
3.3通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。
具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。
其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。
要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。
在一定意义上讲,编码压缩是这些技术成败的关键。
除了已应用较广泛的熵编码、DPCM 编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
3.4工业和工程方面的应用在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。
3.5军事公安方面的应用在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。
目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。
3.6文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等。
4 图像处理技术国内外研究现状图像处理技术是在第三代计算机问世后才得到了迅速的发展,其快速的发展使得所有图像处理的问题都可以用数字信号处理的形式来解决,这为实时图像处理技术提供了广阔的应用空间。
在国际上实时图像处理研究开始于60年代。
因为图像所含的信息量大,为了达到实时处理的要求,现在的图像处理系统除了采用高性能、高速度的主处理器外,同时采用多处理器并行结构,例如美国Thinking Machine公司于1987年开始生产的CM2连接机,采用了65536个处理器,处理器之间用超立方体连接,也可组成网形结构。
该系统进行32位整数加法时,速度可达到25000MIPS(每秒百万条指令),做32位浮点数点乘时,速度可达到10000MFLOPS(每秒百万次浮点操作),由于其结构可变,还可以用于高层处理。
实时图像处理技术的应用范围极其广泛,如工业视觉检测中的实时视觉检测系统,机器人视觉,资源探测,天气预报和各种医学图像分析仪器等,在军用领域中如导弹精确制导,战场的动态分析等,都用到了实时图像处理技术州。
国内实时图像处理技术研究起步比国外晚。
1989年浙江大学用中小规模集成电路实现了模块化的实时图像处理系统ZRJP.I,1993年用LOGIC公司的VLSI研制出了改进型系统ZRJP.II,该系统可以在500IIls 内对图像中指定的几十个三维目标进行识别。
中科院合肥智能机械研究所1991年研制成功PLIS实时图像处理系统。
天津大学1990年研制的四个TMS310C25构成的MIMD实时图像处理系统用于焊接机器人,1992年又研制成功以单片TMS320C30为核心的实时图像处理系统。
从总体上来看,国内实时图像处理技术相对还是很落后,主要原因是对相应的图像处理系统不能满足复杂算法的实时性处理要求。
5 总结数字图像处理技术在实用生活,航空航天、工业生产、医疗诊断、资源环境、气象及交通监测、文化教育等领域有着广泛的应用,创造了巨额社会价值。
同时还远远不能满足社会需求,自身也在不断完善和发展,有很多新的方面要探索,它必将往更深入、更完善的方向发展,处理算法更优化,处理速度更快,实现图形的智能生成、处理、识别和理解。
数字图像处理技术的诞生和应用,极大地解放了人类劳动力,提高了生产自动化水平,改善了人类生活现状,具有很好的应用前景。
该项技术目前在我国正处于起步阶段,急需广大科技工作者的共同努力,来迅速提高我国图像处理技术的发展与应用水平,为现代化建设做出更大的贡献。
【参考文献】[1] 孙即祥,图像分析,北京:科学出版社,2005.[2] 刘大会,数字电视实用技术,北京:北京邮电大学出版社,2007.[3] 温玉春,计算机图像处理技术应用研究[J], 现代商贸工业,2011.[4] 尚蕾,计算机图像处理技术在临床医学中的应用研究[J],科技信息,2012.[5] 张贵英,计算机图像处理技术在医学中的应用[J],电脑知识与技术,2012.[6] 袁小平,图像处理技术在煤矿工业电视系统中的应用[J],电视技术,2001. [7] 胡成龙,图像处理技术在煤位检测中的应用[J],煤炭技术,2011.[8] 崔红光,图像处理技术在农业机器人中的应用[J],农机化研究,2008.[9] 张波,数字图像处理技术的发展及应用[J],武汉纺织,2006.[10] 吕戈静,浅谈数字图像处理技术的现状及发展[J],电脑知识与技术,2012. [11] 孙学康,石万文,刘勇, 多媒体通信技术,北京:北京邮电大学出版社,2006.Image processing technology and its application【Abstract】the research and application of image processing technology has received more and more social development, and its own technical characteristics, which in turn affect the progress of the whole society. This paper briefly summarizes the recent development and application of digital image processing technology, and lists the main advantages of digital image processing technology and the factors that restrict its development, and also the application and development of image processing technology in the future.【Key words】image processing; development; technology application。