永磁同步电机无传感器控制技术

永磁同步电机无传感器控制技术
永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系

Departme nt of Electrical Engin eeri ng

Harbin In stitute of Tech no logy

电力电子与电力传动专题课

报告

报告题目:永磁同步电机无传感器控制技术

哈尔滨工业大学

电气工程系

姓名:沈召源___________

学号:14S006040

2016年1月

目录

1.1研究背景 (1)

1.2国内外研究现状 (1)

1.3系统模型 (3)

1.4控制方法设计 ....................................................... 5 ........

1.5系统仿真 ........................................................... 9 ...............

参考文献 1.6结论 ............................................................. 1.0 ......

1.1

1.1研究背景

永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直

接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。

1.2国内外研究现状

无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情

况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。

最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是

一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种

(1)利用定子端电压和电流直接计算出B和

①。该方法的基本思想是基于场旋

转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应

快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。

(2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位

置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。

(3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构

造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的

转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分计算。该方法的特点是转速估算值与实际值非常接近,由估算值

构成的闭环系统在宽调速范围内具有良好的特性,但算法比较复杂。

(4)高频注入方法基于电机的凸极效应(固有的或人为的)和高频数学模型,不依赖于电机的基波方程和参数,因此可以实现对PMSM转子初始位置的有效估算。该方法不依赖

于任何电机的参数和运行工况,因而可能工作在极低速,

并且系统的计算工作量不大,是比较理想的方法之一。其最大的缺点就是要改造电机来形成明显的凸极效应。

(5)基于人工智能估计方法由于转速可以看成是定子电压和电流的函数,加之具有逼近任意非线性函数的能力、自学习和自适应的能力以及抗干扰性较强的人工神经网络

纷纷应用于电机控制方案,基于人工智能估计方法的应用日趋成熟,将为交流传动领域带来革命性的变化。由于目前神经元网络的方法还处于

理论研究阶段,离实用化还有一段距离

1.3系统模型

为简化分析,做如下假设:

(1)忽略定、转子铁心磁阻,不计涡流以及磁滞损耗;

(2)永磁材料的电导率为零,永磁体内部的磁导率与空气相同;

(3)转子上没有阻尼绕组;

(4)永磁体产生的励磁磁场和三相绕组产生的电枢反应磁场在气隙中均为正弦分布;

在ABC坐标系中,同步电机转子在电、磁结构上不对称,电机方程是一组与转子瞬间位置有关的非线性时变方程,同步电机的动态特性分析十分困难。在a-俟0坐标系中,尽管经过线性变换使电机方程得到一定简化,但电机磁链、电压方程仍然是一组非线性方程,故在分析与控制时,一般也不用该坐标系下电机数学模型。d-q-0坐标系下矢量控制技术很好地解决了这个问题,它利用坐标变换,将电机的变系数微分方程变换成常系数方程,消除时变系数,

从而简化运算和分析。永磁同步电机等效模型见图1所示,d-q-0坐标系是随定

子磁场同步旋转的坐标系,将d轴固定在转子励磁磁通的方向上,q轴为逆时针旋转方向超前d轴90。电角度。

取逆时针方向为转速的正方向。E f为每极下永磁励磁磁链空间矢量,方向与磁极磁场轴线一致,d、q轴随同转子以电角速度(电角频率)一起旋转,它的空间坐标以d轴与参考坐标轴:s间的电角度于来确定,B为定子三相基波合成旋转磁场轴线与永磁体基波励磁磁场轴线间的空间电角度,称为转矩角。

图1永磁同步电机d-q-0坐标系图

三相永磁同步电机在dq轴转子坐标系的定子电压方程,定子磁链方程和电磁转矩的方程分别为

d屮

U q 二R s i q 亍Yd

?d 二L d i d

「q = L q i q

3 3

T e=2PC d i q」q i d)=2P「儿(L d-L q)i d i q]

上式中括号中第一项是由定子电流与永磁体励磁磁场相互作用产生的电磁转矩,称为主电磁转矩;第二项是由转子凸极效应引起的,称为磁阻转矩。对

于转子为表面式的永磁同步电机,由于L q二L d,电磁转矩可写为T^| f i q

do

机械运动方程为J丄』=T e -T L -B,'m

dt

综上,可得永磁同步电机的状态方程为

上述电压方程、转矩方程、运动方程和状态方程构成了PMSM的数学模

从中可以看出,永磁同步机的模型是一个多变量非线性的状态方程

1.4控制方法设计

矢量控制的基本原理为:电磁转矩的生成可看成是两个磁场相互作用的结

果,可认为是由转子磁场与电枢磁场相互作用生成的。电磁转矩可以表达为转子磁链与定子电流矢量乘积:

T e 二 f i s Sin — p 听i s

转子磁链矢量叽的幅值不变,通过控制定子电流矢量的幅值及与转子磁

链矢量的夹角,就可以控制电磁转矩的大小,这就是永磁同步电动机以转子磁

「did

_

-

dt

di q

dt

dCO m

.dt一

p 'm

R s

J

-'i d 1 i q

+

1

L d

U

q 石

T L

j-一J

型。

场定向的矢量控制的原理2所示。

L d

~p 'm

U d

B

J

按转子磁场定向的矢量控制框图如图

图2按转子磁场定向的矢量控制结构框图

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机矢量控制原理

永磁交流同步电机矢量控制理论基础 0、失量控制的理论基础是两个坐标系变换,这是每一个学习过交流调速的人应 该熟记的两种变换。介于目前市面上流行的各类书籍的这一部分总有些这里那里的问题(也就是错误)。为了自己不被误导,干脆自己推导一边,整理如下。所有的推导针对3相永磁同步电机的矢量控制。 1、永磁交流同步电机的物理模型。 首先看几张搜集的图/照片,图1~7: 现分别说明如下: a.图1~3可以看出电机定子的情况。我和大家都比较熟悉圆圈中间加个“叉” 或者“点”的定子,通过这几张图应该比较清楚地认识定子的结构了。 b.图1中留出4个抽头,其中一个应该是中线,但是,在伺服用的永磁同步 电机,只连接3根线的。 c.图2是一个模型,红蓝黄三色代表三相绕组,在定子齿槽中上下穿梭,形 成回路的。 d.定子绕线连接可以从图7很清楚地看到,从A进入开始,分别经过1(上), 7(下),2(上),8(下),14(上),8(下),13(上),7(下),

13(上),19(下),14(上),20(下),2(上),20(下),1(上), 19(下)然后到X。一相绕组经过8个齿槽,占全部齿槽的1/3,每个齿 槽过两次,但每次方向是相同的。最后上上下下的方向如同图6所示。 e.三相绕组通电后,形成如同图6所示的电流分布,每相邻的6根是电流同 方向的。这样,如果把1和24像纸的里面拉,将这一长排围城一个圆, 则,1和7之间向里形成N(磁力线出)极的中心,12和13之间形成S (磁力线入)极的中心。这里,个人认为图6中的N、S分段有些错误, 中心偏移了,不知道是不是理解错误,欢迎指正,这图是我找的,不是我 画的,版权不属我:)。 f.同极磁场的分布有中心向两侧减弱的,大家都说是正弦分布,我是没分析 过,权且认同吧,如图5所示。 g.如图1同步电机的运转就是通过旋转定子磁场,转子永磁磁极与定子的磁 极是对应的N、S相吸,可以同步地运行。 h.实际电机定子槽数较多,绕线方式也有不同。旋转磁场的旋转是通过如图 6中的一个磁极6个齿槽一起向右/左侧移位 2、永磁同步电机数学模型 这才是本文的重点。学习这部分,先不要考虑电机,直接死记两种变换。 这两个变换都是定子侧的电流旋转,旋转的原则是,不论怎么变换都是其实都是一种假想的坐标系,一种变换游戏,都只有原始的三相绕线,通三相电流。 变换的目的是从中找出另外一个与电机转矩又直接关系的“状态量”——转矩电流,来控制转矩。实际矢量控制时,这一切变换都是在计算机里完成,最后又通过控制三相电流的,但此时的三相电流给定值可以保证这个“状态量”是我想要的那个数值。为什么非要变换?因为要对电机进行控制(速度控制),使电机按照你的意图运转,必须控制加到电机转子上的转矩,而转矩与三相电流之间的直接对应关系是没法直接写出来的,(如同质量与重量之间的关系,速度与位移之间的关系这么简单)。只有通过变换,才可以清楚地找出这个对应关系,其实, 图8定子静止三相到静止两图9 静止两相到旋转两相的变换

永磁同步电机的无传感器控制策略

2009,36(8)控制与应用技术 EMC A 永磁同步电机的无传感器控制策略 吴 奇, 程小华 (华南理工大学电力学院,广东广州 510640) 摘 要:机械传感器应用存在的诸多缺陷,使无传感器控制技术成为研究热点。介绍了多种常见的估算 永磁同步电机转子位置和转速的方法,并指出了各种方法的优缺点。分析了无传感器技术研究现状和今后的 研究发展趋势。 关键词:永磁同步电机;无传感器控制;位置检测 中图分类号:TM301.2 TM351 文献标识码:A 文章编号:1673-6540(2009)08-0029-04 Sensorless Control of Per m anent M agnet SynchronousM otor W U Q i, C HENG X i a o-hua (Co llege of E lectric Pow er,South China Un i v ersity of Techno l o gy,Guang zhou510640,Ch i n a) Abstrac t:In orde r to reso l ve the va rious defects for usi ng m echanica l sensors,sensorless contro l techno l ogy be-come a research ho tspo t.T he v arious m ethods o f t he esti m a ti on about the positi on and speed of P M S M roto r are pres-ented,and po i nted out the advantages and disadvantages of them.The sta t us and the deve l op m ent trend of the re-search about the sensor l ess are g i ven. K ey word s:perman en t magne t s ynch ron ous m otor(P M S M);sensorless contro;l positi on detection 0 引 言 永磁同步电动机(P M S M)因其高转矩惯性比、高能量密度和高效率等优点被广泛应用于国防、工业控制和日常生活等领域。传统的P M S M 控制系统通常采用电磁或光电传感器来获取所需的转子位置和转速信号。传感器的安装、电缆连接和环境限制等问题,带来了系统成本增加、体积增大、可靠性降低、易受环境影响等缺陷[1-2]。为了解决机械传感器带来的各种问题,许多学者开展了无传感器控制技术研究,其主要思想是利用电机绕组中的有关电信号,通过适当的方法估算出转子的位置和转速,实现转子位置的自检测。无传感器控制技术可以有效地解决机械传感器带来的诸多问题,使系统结构简化,成本降低,对提高系统可靠性有重要意义,已成为电机驱动领域的研究热点。 1 基波激励法 在各种转子位置和速度的检测方法中,大多通过检测基波反电势来获得转子的位置信息,但采用的具体方法有所不同,大致可分为以下几种。 (1)基于数学模型的开环估计[2]。该方法基于电机的电磁关系从电机的动态方程直接推导出转速或者位置角的关系表达式,并利用检测到的定子三相端电压和电流计算出转子位置角和转子角速度。 文献[3]中提出一种方法:在定子二相静止坐标系中,通过定子电压、电流得到实轴、虚轴的定子磁链值,根据二相磁链反正切值可得当前时刻的定子磁链位置,由定子磁链的变化率可得到电机的转速。该方式用到的电机参数不多,所以受参数影响较小,但电机必须工作在功率因数cos =1的方式下才能实现转子位置估计。 开环估计法一方面简单直观,动态响应快,几乎没有延时问题。另一方面,数学模型虽然可以有多种选择,但无论采用什么数学模型,都涉及电机参数,而电机参数在电机运行时是动态变化的。虽然对定子电阻和电感等参数可以进行在线辩识,但辩识的实现也需要复杂的技术。因此,开环 29

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机控制方法以及常见问题

永磁同步电机控制方法以及常见问题永磁同步电机控制方法以及常见问题。永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 1.掌握永磁同步电机的成熟控制方法和开发内容后如何转型 (1)仿真:连续simulink+线性电机模型仿真,离散模型+线性电机+线性电机模型,q 格式离散模型+线性电机模型,simplorer+ansoft+无位置开环和闭环q格式仿真,模拟实际电机的线性电机模型建立,matlabgui+simulink仿真。都是无位置开环切闭环模式,各种仿真变着花样玩,ekf,hfi,pll,atan,磁连观测,扩展反电视等各种无位置仿真。仿真和实际跑板子其实只要电流采样底层做得好,过调制出得来都可以和仿真对的上。 (2)电机参数识别,通过变频器激励与响应实现,其余的表示不靠谱,可以在电机启动前10s内辨识出来。没啥用。 (3) 控制性能优化,6次谐波自适应陷波滤波,sogi等手段。 (4) 压缩机驱动自动力矩补偿。

(5) svpwm简单快速实现与单电阻采样结合研究。 (6) 各种各样电机调试与性能测试,我调试的电机型号应该有上千款了,仅限于 10w-20kw永磁同步电机,都快调试吐了,测试电机单体性能,带变频器运行极限测试 2.永磁同步电机初始角设置的问题 电机控制的调试里除却方波驱动,基本都会有一个类似于超前角的变量,该变量非常重要,直接影响速度,效率和抖动性。改变该角可以降低输出转矩,但可能会带来其他问题。 旋转转子使d轴指向A+与A-的中心线,就找到了初始角!但是对模型的初始角修改一下之后,在同样Thet角下,转矩下降好多!现在问题是在在修改初始角之后输出转矩能够稳定吗?这个输出转矩应该是与负载大小有关! 修改后的初始角与原来A相反电势为0对应的初始角,他们对应的输出转矩一定会变化的,且修改后的初始角中设定的功率角不是真正的模型功率角;至于设定负载我还没尝试过,不过我觉得你说的应该是对的。 其实我刚开始主要是对修改初始角后模型输出转矩稳定性有疑问,按照你的说法现在转矩应该是稳定的!那么对于一个永磁同步电机模型,峰值转矩可以达到,但是要求的额定转矩却过大,当修改模型之后达到要求的额定转矩时,峰值转矩却达不到,敢问你觉得应该从方面修改模型??或是我修改模型的思路有问题 3.永磁同步电机控制的建模问题讨论,如模型仿真慢、联合仿真问题、PI控制问题等 两种控制方式不一样的所有输出量不一样。 永磁同步是电流源控制模式,电流源频率定了,当然转速也定了,所有你看的永磁同步设置多少转速计算出来也是多少转速。 无刷电机是电压源控制模式,而且计算出来都是开环的。性能由空载转速,电阻,电感

无速度传感器永磁同步电机发展与控制策略评述

无速度传感器永磁同步电机发展与控制策略评述潘萍付子义 中图分类号:TM351TM344.4文献标识码:A文章编号:1001-6848(2007)06-0091-02无速度传感器永磁同步电机发展与控制策略评述 潘萍,付子义 (河南理工大学,焦作454003) 摘要:介绍了永磁同步电机无速度传感器控制策略,分析了无速度传感器技术研究现状,指出状态观测器法及谐波注入法是目前无速度传感器技术的研究热点。 关键词:永磁同步电机;无速度传感器;评述;控制策略;状态观测器;谐波注入法 DevelopmentRenewandStrategyofPermanentM_agnetSynchronousMoOrSpeedSensorless PANPing,FUZi—yi (HenanPolytechnicUniversity,Jiaozuo454003,China) ABSTRACT:Thispapersummarizesthestrategyofpermanentmagnetsynchronousmotor.Itanalyzesthepresentofspeedsensorlesstechonologyofpermanentmagnetsynchronousmotor,indicatesthatthestateobserverandharmonicinjectionprocessarecurrentresearchfocus. KEYWORDS:Permanentmagnetsynchronousmotor;Speedsensorless;Review;Controlstrategy;Stateobserver;Harmonicinjectionmethod O引言 永磁同步电机控制系统离不开高精度的位置和速度传感器,但在实际的系统中,传感器的存在不仅增加了系统成本,还易受工作环境影响,同时也降低了系统的可靠性,因此,无速度传感器交流调速系统成为近年研究热点¨j。 1无速度传感器永磁同步电机研究及发展 无速度传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量,如定子电压、定子电流中提取出与速度有关的量,从而得出转子速度,并应用到速度反馈控制系统中。 国际上对永磁同步电机无速度传感器的研究始于20世纪70年代旧J。1975年,A.Abbondanti等人推导出了基于稳态方程的转差频率估计方法, 收稿日期:2006—09-26 基金项目:河南省杰出青年科学基金(0211060500);河南省重要攻关项目(9911020429)在无速度传感器控制领域作出首次尝试,调速比可达10:l。但由于其出发点是稳态方程,动态性能和调速精度难以保证。1979年,M.Ishida等学者利用转子齿谐波来检测转速,限于当时的检测技术和控制芯片的实时控制能力,仅在大于300r/rain的转速范围取得较好的结果。1983年R.Joetten首次将无速度传感器技术应用于永磁同步电机矢量控制。近年来,德国亚探工大(RWTHAachen)电机研究所的学者又先后开展了采用推广卡尔曼滤波器的永磁同步电机和感应电机无机械传感器调速系统的研究。美国麻省理工学院(MIT)电机工程系的学者在1992年发表了采用全阶状态观测器的无传感器永磁同步电机调速系统的论文。由于状态观测器受电机参数变化的影响较大,还需要另外一个状态观测器来估计电机的参数,这样使无传感器永磁同步调速系统的估计算法变得比较复杂,同时系统还存在对负载变化比较敏感等问题。国内自90年代中开始,也开始对永磁电机无速度传感器控制技术进行研究,但主要局限于各高等院校,研究主要还是着重于理论和仿真方面。 一91—   万方数据

一种永磁同步电机转子初始位置的判断方法

说明书摘要 本发明公开一种永磁同步电机转子初始位置的判断方法,步骤是:首先利用脉振高频电压注入法得到初次估计的转子位置,然后在初次估计的交轴上注入一个正方向扰动信号,再估计转子位置,根据估计得到的转速方向判断磁极极性,得到电机转子初始位置。此种方法可解决脉振高频电压信号注入法检测转子初始位置时磁极极性的收敛问题,无需在直轴上注入正负方向的脉冲电流,可以有效地实现转子初始位置估算。

摘要附图

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估计 的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时,收 敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

永磁同步伺服电机(PMSM)驱动器原理

永磁同步伺服电机(PMSM)驱动器原理 来源:开关柜无线测温 https://www.360docs.net/doc/297432939.html, 摘要:永磁交流伺服系统以其卓越的性能越来越广泛地应用到机器人、数控等领域,本文对其驱动器的功能实现 做了简单的描述,其中包括整流部分的整流过程、逆 变部分的脉宽调制(PWM)技术的实现、控制单元相应 的算法等三个部分。 关键词: DSP 整流逆变 PWM 矢量控制 1 引言 随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁

同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 图1 交流永磁同步伺服驱动器结构 伺服驱动器大体可以划分为功能比较独立的功率板和控制板两个模块。如图2所示功率板(驱动板)是强电部,分其中包括两个单元,一是功率驱动单元IPM用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源。 控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心控制算法的运行载体。控制板通过相应的算法输出PWM信号,

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

一种永磁同步电机转子初始位置的判断方法

一种永磁同步电机转子初始位置的判断方法

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估 计的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时, 收敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ 进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

永磁同步电机转子初始位置估计

工学硕士学位论文 永磁同步电机转子初始位置估计 INITIAL ROTOR POSITION ESTIMATION FOR PMSM 胡任之 哈尔滨工业大学 2008年7月

国内图书分类号:TM351 国际图书分类号:470.40 工学硕士学位论文 永磁同步电机转子初始位置估计 硕士研究生:胡任之 导师:邹继斌 教授 申请学位:工学硕士 学科、专业:电机与电器 所在单位:电气工程系 答辩日期:2008年7月 授予学位单位:哈尔滨工业大学

Classified Index:TM351 U.D.C.: 470.40 Dissertation for the Master Degree in Engineering INITIAL ROTOR POSITION ESTIMATION FOR PMSM Candidate:Hu Renzhi Supervisor:Prof. Zou Jibin Academic Degree Applied for:Master of Engineering Specialty:Electrical Machine and Apparatus Affiliation:Dept. of Electrical Engineering Date of Defence:July, 2008 Degree-Conferring-Institution:Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘要 永磁同步电机(PMSM)具有高效率、高功率密度、控制性能好、启动特性好等优点。然而转子初始位置的准确检测是PMSM可靠启动的必要保证。转子初始位置偏差将引起电机启动电流过大,甚至会造成电机过流或发生反转,负载较大时情况更加严重。本文针对PMSM的转子初始位置估计的问题进行了深入的研究。 基于转子预定位的PMSM初始位置估计是一种常用的方法。本文分析了转子预定位法的原理和初始位置估计精度的影响因素,采用了电流闭环的转子预定位方法,并提出平均值法来克服摩擦力引起的初始位置估计误差。该方法可以准确的估计空载条件下的转子初始位置。 针对负载对转子初始位置估计的影响,在分析转子初始位置偏差与电流矢量、电磁转矩关系的基础上,提出了基于电流矢量控制的PMSM转子初始位置估计方法。将该方法与转子预定位法相结合,可以克服极限位置下无法进行初始位置估计的问题。所提出的方法实现了较大负载条件下的初始位置估计。 针对在转子静止条件下进行初始位置估计的问题,在PMSM饱和凸极效应分析的基础上,对基于饱和凸极效应的转子初始位置估计的原理进行分析,研究了具体的实现方法。通过采用电压矢量优化和对电流矢量进行后处理的方法来提高初始位置估计的精度,实现了负载条件下的转子初始位置估计。 最后,对基于高频信号注入的PMSM转子初始位置估计方法进行了研究,分析了旋转高频电压注入法的原理,并进行了仿真验证。该方法可以在负载条件下准确地估计内嵌式永磁同步电机的转子初始位置。 关键词永磁同步电机;转子初始位置;估计;凸极效应 - I -

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

基于高频电压注入法的永磁同步电机转子初始位置检测1

基于高频电压注入法的永磁同步电机转子初始位置检测 Initial Rotor Position Inspection of PMSM Based on Rotating High Frequency Voltage Signal Injection 北京航空航天大学自动化科学与电气工程学院蔡名飞周元钧 摘要:为了解决新型无位置传感器永磁同步电机的起动问题,提出了一种在电机静止状态下检测转子位置的新方法。 该方法在算法上改进了传统的旋转高频电压注入法,使得可以更为快速、准确的检测出转子初始(均扫位置。并且针对传统旋转高频电压注人法无法检测出转子永磁体极性问题,在dq旋转坐标系下,通过分析永磁同步卜匕机d轴磁链和定子电流之间的关系,利用d轴电流的泰勒级数展开,提出J’根据定子铁芯非线性磁化特性获得判另}J N/S极极性信息的新方一案。最后,建立了系统仿真模型。仿真结果验证了这种方法的有效性和可行性。此方法同样适用于永磁同步电机在中、低速时的转子位置检测。 关键词:永磁同步电机转子初始位置旋转高频注人非线性磁化特性N/S极极性 1引言 永磁同步电机高精态、高动态性能的速度、位置控制,都需要准确的转子位置信息。如果位置检测误差较大,会导致电机不能正常起动、运行。传统方法是通过机械式传感器来测量转子的速度和位置。但机械式传感器减低了系统的可靠性,增加了系统的成本;同时传感器对环境有着严格的要求,电磁干扰、温度、湿度、振动对它的测量精度都有影响。特别针对某些航空伺服电机,长期工作在恶劣、复杂的环境中,所以研究无位置传感器不仅可 以减少航空电机成本,而且可以减少不必要的引线,将大大提高整个系统的可靠性〔‘]。 最简单的无位置传感器控制方法是文献「2]提出的基于对检测到的电机反电动势进行积分,这种方法虽然简单,但是在零速或低速阶段因为反电动太小,难以检测而失败。后来人们又提出了高频注人法,其主要思想是用电机固有的空间凸极或凸极效应可以实现对转子位置的检测,这种方法与转速没有直接关系,有效克服了反电动势法的 缺陷。文献〔3]提出通过处理电流高频响应,采取求导取极值计算电机的初始位置,但这种方法存在震荡现象,高频电流也会因滤波器移相导致检测误差,并且也没有给出电 机N/S极极性检测方法。文献【4]提出在电机中注人幅值相同、方向不同的系列脉冲,检测并比较相应电流的大小来估计转子的位置。这种方法可行但是对注入脉冲的电压幅 值和时间控制要求比较高,操作复杂,检测时间过长。文献[[5][6]通过注人高频信号引起PMSM的d,q轴磁链饱和程度差异实现初始位置检测,这种方法高频电流信号提取复 杂,容易带来计算误差,难以做到转子位置的实时检测跟踪。文献〔7l所使用的电机经过特殊设计,不具普遍性,仅适用于理论研究。 为了解决以上方法的存在的问题,本文提出了一种基于旋转高频电压注人法的永磁同步电机转子初始位置检测的新方法。在电机静止状态下,通过向电机定子三相绕组中注入高频电压信号,利用电机凸极效应,通过处理高频电流响应,得出转子的位置信号。为此,本文进行了仿真研究,实现了转子d轴位置和N/S极极性的快速、准确检测。 2高频激励下的永磁同步电机的数学模型

基于FPGA 的永磁同步电动机矢量控制IP 核的研究

基于FPGA的永磁同步电动机矢量控制IP核的研究 赵品志 摘要 论文首先分析了永磁同步电动机的数学模型及矢量控制的原理。研究了使用现代EDA工程设计方法,在FPGA上实现单芯片交流伺服控制系统的结构和具体实现方法。其次,详细分析了空间矢量脉宽调制(SVPWM)原理,利用Verilog HDL硬件电路描述语言,编写了SVPWM、坐标变换、串行通信、位置检测等IP模块,并进行了仿真和验证。最后,将本文编写的主要SVPWM IP模块、串行通信、位置检测等IP模块在Quartus II 3.0软件中进行综合编译,并通过ByteBlaster II下载电缆将生成的网络表配置到NIOS II开发板上的Cyclone 系列FPGA EP1C20F400C7芯片中,经过实验测试,验证了所编写的IP模块的正确性。 关键词:矢量控制,空间矢量脉宽调制,FPGA,IP 引言 为满足现代数控系统技术与市场发展需求,伺服系统出现交流化、数字化、智能化三个主要发展动向。伺服系统按其采用的驱动电动机的类型来分,主要有两大类:直流伺服系统和交流伺服系统,其中交流伺服系统又可分为感应电动机伺服系统和永磁同步电动机交流伺服系统[1]。以直流伺服电机作为驱动器件的直流伺服系统,控制电路比较简单,价格较低。其主要缺点是直流伺服电机内部有机械换向装置,碳刷易磨损,维修工作量大,运行时易起火花,给电机的转速和功率的提高带来较大的困难。交流异步电机虽然价格便宜、结构简单,但早期由于控制性能差,所以很长时间没有在伺服系统上得到应用。随着电力电子技术和现代电机控制理论的发展,1972年,德国西门子的Blaschke提出了交流异步电动机的矢量控制理论。该理论通过矢量旋转变换和转子磁场定向,将定子电流分解为与磁场方向一致的励磁分量和与磁场方向正交的转矩分量,得到类似直流电动机的解耦的数学模型,使交流电动机的控制性能得以接近或达到他励直流电动机的性能。1980年,德国人Leonhard为首的研究小组在应用微处理器的矢量控制的研究中取得进展,使矢量控制实用化[2]。90年代以来,随着永磁材料性能的大幅度提高和价格的降低,永磁同步伺服电动机得到了长足的发展。交流伺服系统采用永磁同步伺服电机作为驱动器件,可以和直流伺服电机一样构成高精度、高性能的半闭环或全闭环控制系统,由于永磁同步伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前永磁同步交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,伺服技术取得的突破可以归结为:交流伺服取代直流伺服、数字控制取代模拟控制[3][4]。 最初,交流伺服电机的变频调速都是由分立器件实现的,不可避免地存在温漂、老化等问题。这种方法所使用的器件数目非常多,而且结构也很复杂,这就使得系统的可靠性、精度很难保证在一个较高的水平。另外,用分立元件实现数字脉宽调制需要使用波形发生器,而分立元件的工作频率有限,因而很难实现高性能高精度的数字脉宽调制。利用分立元件实现较复杂的脉宽调制技术(如SVPWM)有很大的困难,复杂的逻辑关系难以实现。这些都驱使人们寻求其它实现数字脉宽调制的方法。其中单芯片系统(SOPC)使这种想法成为可能,在单芯片上可以实现复杂而精确的逻辑运算,运算速度比分立元件高得多,因而越来越受到人们的重视。本文对实现SOPC有很大帮助,利用Quartus软件生成的网络表可以直接用于芯片的生产[5]。

相关文档
最新文档