用FFT对信号作频谱分析Matlab程序.doc

合集下载

实验二用FFT对信号进行频谱分析

实验二用FFT对信号进行频谱分析

实验二用FFT对信号进行频谱分析简介:频谱分析是信号处理中常用的一种方法,通过将信号变换到频域,可以得到信号的频谱特征。

其中,快速傅里叶变换(FFT)是一种高效的计算频域的方法。

在这个实验中,我们将学习如何使用FFT对信号进行频谱分析。

实验步骤:1.准备工作:a. 安装MATLAB或者Octave等软件,并了解如何运行这些软件。

2.载入信号:a. 在MATLAB或Octave中,使用内置函数加载信号文件,将信号读入到内存中。

b.查看信号的基本信息,例如采样频率、时长等。

3.FFT变换:a. 使用MATLAB或Octave的fft函数将信号由时域变换到频域。

b.设置合适的参数,例如变换的点数、窗口函数等。

可以尝试不同的参数,观察其对结果的影响。

4.频谱绘制:a. 使用MATLAB或Octave的plot函数将变换后的频率数据进行绘制。

b.可以绘制幅度谱(频率的能量分布)或相位谱(频率的相位分布),也可以同时绘制两个谱。

5.频谱分析:a.根据绘制出的频谱,可以观察信号的频率特征。

例如,可以识别出信号中的主要频率分量。

b.可以进一步计算信号的能量、均值、方差等统计量,了解信号的功率特征。

c.可以对不同的信号进行对比分析,了解它们在频域上的差异。

实验结果和讨论:1.绘制出的频谱图可以清晰地显示信号的频率分量,可以识别出信号中的主要频率。

2.通过对不同信号的对比分析,可以发现它们在频域上的差异,例如不同乐器的音调特征。

3.可以进一步分析频谱的统计特征,例如信号的能量、平均幅度、峰值频率等。

4.在进行FFT变换时,参数的选择对结果有一定的影响,可以进行参数的调优,获得更准确的频谱分析结果。

结论:本实验通过使用FFT对信号进行频谱分析,可以获得信号在频域上的特征。

通过观察频谱图和统计特征,可以进一步了解信号的频率分布、能量特征等信息。

这对信号处理、音频分析等领域具有很大的应用价值。

在实际应用中,可以根据不同的需求,选择合适的参数和方法,对不同的信号进行频谱分析。

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析假设一信号:()()292.7/2cos1.0996.2/2sin1.06.0+++=ttRππ画出其频谱图。

分析:首先,连续周期信号截断对频谱的影响。

DFT变换频谱泄漏的根本原因是信号的截断。

即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。

实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT变换可以得到精确的模拟信号频谱。

举一个简单的例子:()ππ2.0100cos+=tY其周期为。

截断时不同的持续时间影响如图一.1:(对应程序)140.0160.0180.02截断时,时间间期为周期整数倍,频谱图0.0250.0320406080100截断时,时间间期不为周期整数倍,频谱图图错误!文档中没有指定样式的文字。

.1其次,采样频率的确定。

根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/,取16。

再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。

实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。

实验结果如图一.2:其中,0点位置的冲激项为直流分量造成(对应程序为)0204060801001201401601802000.40.50.60.70.800.050.10.150.20.250.30.350.40.450.550100150图 错误!文档中没有指定样式的文字。

.2♣ARMA (Auto Recursive Moving Average )模型:将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为()()()∑∑=-=-+==Pk kk Qr r rza zb z A z B z H 111用差分方程表示为()()()∑∑==-+--=Qr r P k k r n u b k n x a n x 01AR (Auto Recursive )自回归模型,即ARMA 模型中系数b 只有在r=0的情况下为1,其余都是零,获得一个全极点模型:()()()∑=-+==Pk kk za z A z B z H 111差分方程表示为:()()()n u k n x a n x Pk k +--=∑=1AR 模型的功率谱估计为:()()()Ω-ΩΩ=j j uj x e A e A eS 12σ程序:%%------------------------------------------------------------------------%%功能:利用MATLAB 的FFT 函数做双正弦信号频谱分析 %%------------------------------------------------------------------------ fs=16; t=0:1/fs:200;x6=+sin(2*pi*t/*+cos(2*pi*t/+2)*;subplot(2,1,1);plot(t,x6);N=length(t);subplot(212);plot((-N/2:N/2-1)*fs/N,abs(fftshift(fft(x6,N)))) %绘制信号的频谱,横轴对应实际频率axis([0 0 160]);例子:%%------------------------------------------------------------------------%%功能:连续周期信号截断对频谱的影响%%------------------------------------------------------------------------fs=8000;n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,1);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,2);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期为周期整数倍,频谱图');n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,3);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,4);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期不为周期整数倍,频谱图');。

实验二FFT实现信号频谱分析

实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换

实验二的应用FFT对信号进行频谱分析

实验二的应用FFT对信号进行频谱分析

实验二的应用FFT对信号进行频谱分析引言:频谱分析是通过将连续信号转换为离散信号,根据信号在频域上的强度分布来分析信号的频谱特性。

其中,FFT(Fast Fourier Transform,快速傅里叶变换)是一种常见的频谱分析算法,可以高效地计算离散信号的傅里叶变换。

实验目的:本实验旨在使用FFT算法来对一个信号进行频谱分析,从而了解FFT 的原理和应用。

实验器材:-计算机-MATLAB软件实验步骤:1.准备信号数据:首先,需要准备一个信号数据用于进行频谱分析。

可以通过MATLAB 自带的函数生成一个简单的信号数据,例如生成一个正弦信号:```Fs=1000;%采样频率T=1/Fs;%采样时间间隔L=1000;%信号长度t=(0:L-1)*T;%时间向量S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); % 生成信号,包含50Hz和120Hz的正弦波成分```其中,Fs为采样频率,T为采样时间间隔,L为信号长度,t为时间向量,S为生成的信号数据。

2.进行FFT计算:利用MATLAB提供的fft函数,对准备好的信号数据进行FFT计算,得到信号的频谱:```Y = fft(S); % 对信号数据进行FFT计算P2 = abs(Y/L); % 取FFT结果的模值,并归一化P1=P2(1:L/2+1);%取模值前一半P1(2:end-1) = 2*P1(2:end-1); % 对非直流分量进行倍频处理f=Fs*(0:(L/2))/L;%计算对应的频率```其中,Y为FFT计算的结果,P2为对应结果的模值,并进行归一化处理,P1为P2的前一半,f为对应的频率。

3.绘制频谱图:使用MATLAB的plot函数,将频率和对应的功率谱绘制成频谱图:```plot(f,P1)title('Single-Sided Amplitude Spectrum of S(t)')xlabel('f (Hz)')ylabel(',P1(f),')```实验结果与分析:上述实验步骤通过MATLAB实现了对一个信号的频谱分析并绘制成频谱图。

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。

MATLAB提供了方便易用的函数来实现FFT。

首先,我们需要了解FFT的原理。

FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。

FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。

FFT算法能够帮助我们高效地进行频谱分析。

下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。

通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。

在频谱图中,横轴表示频率,纵轴表示振幅。

该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。

2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。

3.频率范围是0到采样率之间的频率。

实验三的报告可以包含以下内容:1.实验目的和背景介绍。

应用FFT实现信号频谱分析

应用FFT实现信号频谱分析

应用FFT实现信号频谱分析一、快速傅里叶变换(FFT)原理快速傅里叶变换是一种将时域信号转换为频域信号的算法,它通过将信号分解为不同频率的正弦波的和,来实现频谱分析。

FFT算法是一种高效的计算DFT(离散傅里叶变换)的方法,它的时间复杂度为O(nlogn),在实际应用中得到广泛使用。

二、FFT算法FFT算法中最基本的思想是将DFT进行分解,将一个长度为N的信号分解成长度为N/2的两个互为逆序的子信号,然后对这两个子信号再进行类似的分解,直到分解成长度为1的信号。

在这一过程中,可以通过频谱折叠的性质,减少计算的复杂度,从而提高计算效率。

三、FFT实现在实际应用中,可以使用Matlab等软件来实现FFT算法。

以Matlab 为例,实现FFT可以分为以下几个步骤:1.读取信号并进行预处理,如去除直流分量、归一化等。

2. 对信号进行FFT变换,可以调用Matlab中的fft函数,得到频域信号。

3.计算频谱,可以通过对频域信号进行幅度谱计算,即取频域信号的模值。

4.可选地,可以对频谱进行平滑处理,以降低噪音干扰。

5.可选地,可以对频谱进行归一化处理,以便于分析和比较不同信号的频谱特性。

四、应用1.音频处理:通过分析音频信号的频谱,可以实现音频特性的提取,如频率、振幅、共振等。

2.图像处理:通过分析图像信号的频谱,可以实现图像特征的提取,如纹理、边缘等。

3.通信系统:通过分析信号的频谱,可以实现信号的调制解调、频谱分配等功能。

4.电力系统:通过分析电力信号的频谱,可以实现电力质量分析、故障检测等。

总结:应用FFT实现信号频谱分析是一种高效的信号处理方法,通过将时域信号转换为频域信号,可以实现对信号频谱特性的提取和分析。

在实际应用中,我们可以利用FFT算法和相应的软件工具,对信号进行频谱分析,以便于进一步的研究和应用。

MATLAB中FFT的使用方法(频谱分析)

MATLAB中FFT的使用方法(频谱分析)

说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

用FFT对信号作频谱分析Matlab程序

用FFT对信号作频谱分析Matlab程序

对以下序列进行FFT 分析x 1(n)=R 4(n)x 2(n)=x 3(n)=x1n=[ones(1,4)]; %产生R4(n)序列向量X1k8=fft(x1n,8); %计算x1n 的8点DFTX1k16=fft(x1n,16); %计算x1n 的16点DFT%以下绘制幅频特性曲线N=8;f=2/N*(0:N-1); (不懂)figure(1);subplot(1,2,1);stem(f,abs(X1k8),'r','、'); %绘制8点DFT 的幅频特性图,abs 求得Fourier 变换后的振幅title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'、'); %绘制8点DFT 的幅频特性图title('(1b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%x2n 与 x3nM=8;xa=1:(M/2); xb=(M/2):-1:1; %从M/2到1每次递减1x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'r','、'); %绘制8点DFT 的幅频特性图n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤70 其它ntitle('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X3k8),'r','、'); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'、'); %绘制8点DFT的幅频特性图title('(2b) 16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X3k16),'、'); %绘制8点DFT的幅频特性图title('(3b) 16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');%x4n 与 x5nN=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'r','、'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X5k8),'r','、'); %绘制8点DFT的幅频特性图title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X4k16),'、'); %绘制8点DFT的幅频特性图title('(4b) 16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X5k16),'、'); %绘制8点DFT的幅频特性图title('(5b) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');%x8nFs=64; T=1/Fs;N=16;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k16=fft(x8n,16);N=16;f=2/N*(0:N-1);figure(4);subplot(2,2,1);stem(f,abs(X8k16),'、'); %绘制8点DFT的幅频特性图title('(6a) 16点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度');N=32;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k32=fft(x8n,32);N=32;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X8k32),'、'); %绘制8点DFT的幅频特性图title('(6b) 32点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度'); N=64;n=0:N-1; %对于N=16的情况nT = n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)X8k64=fft(x8n,64);N=64;f=2/N*(0:N-1);subplot(2,2,3);stem(f,abs(X8k64),'、'); %绘制8点DFT的幅频特性图title('(6c) 64点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度');。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对以下序列进行FFT 分析
x 1(n)=R 4(n)
x 2(n)=
x 3(n)=
x1n=[ones(1,4)]; %产生R4(n)序列向量
X1k8=fft(x1n,8); %计算x1n 的8点DFT
X1k16=fft(x1n,16); %计算x1n 的16点DFT
%以下绘制幅频特性曲线
N=8;
f=2/N*(0:N-1); (不懂)
figure(1);
subplot(1,2,1);stem(f,abs(X1k8),'r','.'); %绘制8点DFT 的幅频特性图,abs 求得Fourier 变换后的振幅
title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');
N=16;
f=2/N*(0:N-1);
subplot(1,2,2);stem(f,abs(X1k16),'.'); %绘制8点DFT 的幅频特性图
title('(1b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');
%x2n 和 x3n
M=8;xa=1:(M/2); xb=(M/2):-1:1; %从M/2到1每次递减1
x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)
x3n=[xb,xa];
n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它
n
X2k8=fft(x2n,8);
X2k16=fft(x2n,16);
X3k8=fft(x3n,8);
X3k16=fft(x3n,16);
figure(2);
N=8;
f=2/N*(0:N-1);
subplot(2,2,1);stem(f,abs(X2k8),'r','.'); %绘制8点DFT的幅频特性图title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X3k8),'r','.'); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');
N=16;
f=2/N*(0:N-1);
subplot(2,2,2);stem(f,abs(X2k16),'.'); %绘制8点DFT的幅频特性图title('(2b) 16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X3k16),'.'); %绘制8点DFT的幅频特性图title('(3b) 16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');
%x4n 和 x5n
N=8;n=0:N-1;
x4n=cos(pi*n/4);
x5n=cos(pi*n/4)+cos(pi*n/8);
X4k8=fft(x4n,8);
X4k16=fft(x4n,16);
X5k8=fft(x5n,8);
X5k16=fft(x5n,16);
figure(3);
N=8;
f=2/N*(0:N-1);
subplot(2,2,1);stem(f,abs(X4k8),'r','.'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X5k8),'r','.'); %绘制8点DFT的幅频特性图title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');
N=16;
f=2/N*(0:N-1);
subplot(2,2,2);stem(f,abs(X4k16),'.'); %绘制8点DFT的幅频特性图title('(4b) 16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X5k16),'.'); %绘制8点DFT的幅频特性图title('(5b) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');
%x8n
Fs=64; T=1/Fs;
N=16;n=0:N-1; %对于N=16的情况
nT = n*T;
x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)
X8k16=fft(x8n,16);
N=16;
f=2/N*(0:N-1);
figure(4);
subplot(2,2,1);stem(f,abs(X8k16),'.'); %绘制8点DFT的幅频特性图title('(6a) 16点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度'); N=32;n=0:N-1; %对于N=16的情况
nT = n*T;
x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)
X8k32=fft(x8n,32);
N=32;
f=2/N*(0:N-1);
subplot(2,2,2);stem(f,abs(X8k32),'.'); %绘制8点DFT的幅频特性图title('(6b) 32点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度'); N=64;n=0:N-1; %对于N=16的情况
nT = n*T;
x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT)
X8k64=fft(x8n,64);
N=64;
f=2/N*(0:N-1);
subplot(2,2,3);stem(f,abs(X8k64),'.'); %绘制8点DFT的幅频特性图title('(6c) 64点DFT[x_8(n)]');xlabel('ω/π');ylabel('幅度');。

相关文档
最新文档