(完整版)二次根式的化简(1)

合集下载

《二次根式的化简》教案(1) (3)

《二次根式的化简》教案(1)  (3)

5.1.2 二次根式的化简〔3〕教学目标1 进一步加深对积的算式平方根的性质的理解,进一步掌握二次根式的化简。

重点、难点重难点:积的算式平方根的性质进行二次根式的化简。

教学过程一 、创设情景,导入新课二、 合作交流,探究新知上面问题中用到了:546⋅= 546⨯,这样计算对吗?你是根据什么法那么想到这样计算的呢?(00)(00)ab a b a b a b ab a b =≥≥∴=≥≥,, P158 例4 化简以下二次根式〔1〕 18 〔2〕 20 〔3〕 72化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外 〔注意:从根号下直接移到根号外的数必须是非负数〕 P158 例5 化简以下二次根式 〔1〕21 〔2〕53最简二次根式:(1) 被开方数中不含得尽方的因数〔或因式〕; (2) 被开方数不含分母。

一次函数复习〔二〕课题第四章一次函数复习〔二〕本课〔章节〕需13课时 ,本节课为第12—13课时,为本学期总第46—47课时教学目标知识与技能:1、使学生理解一次函数的意义,掌握根据条件确定一次函数表达式的方法,会画一次函数图像。

探究并掌握一次函数性质,并用之解决实际问题。

过程与方法:通过例题讲解,使学生体会一次函数性质及应用。

情感态度与价值观:体会函数作为数学模型在分析解决实际问题中的重要作用。

重点 应用一次函数的概念、图像和性质解题难点 一次函数在实际问题中的应用教学方法课型练习 教具 多媒体教学过程: 一、根底练习1.如图1,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,那么不等式20x kx b <+<的解集为〔 〕 A .2x <- B .21x -<<- C .20x -<< D .10x -<< 2.如图2,点A 的坐标为(-1,0),点B 在直线x y =上 运动,当线段AB 最短时,点B 的坐标为〔 〕 A.〔0,0〕 B.〔-1,-1〕个案修改yxO BA〔2题〕yOxB A〔1题〕C.〔-21,-21〕 D.〔-22,-22〕3.沪杭高速铁路已开工建设,在研究列车的行驶速度时,得到一个数学问题.如图3,假设v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,那么=-12t t 〔 〕 A .51B .163 C .807 D .160314.甲、乙两名运发动进行长跑训练,两人距终点的路程y 〔米〕与跑步时间x 〔分〕之间的函数图 象如以下图,根据图象所提供的信息解答问题: ⑴求甲距终点的路程y 〔米〕和跑步时间 x 〔分〕 之间的函数关系式;⑵当x =15时,两人相距多少米?在15<x <20的 时段内,求两人速度之差. 能力提升:1. 如图,过点Q 〔0,3.5〕的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 〔 〕A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 y =-3x -2的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 3. 函数y=kx 的函数值随x 的增大而增大,那么函数的图像经过〔 〕 A .一、二象限 B . 一、三象限 C .二、三象限 D .二、四象限 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 假设一次函数y kx b =+,当x 得值减小1,y 的值就减小2,那么当x 的值增加2时,y 的值〔 〕A .增加4B .减小4C .增加2D .减小2 二、拓展探究1.某加油站五月份营销一种油品的销售利润y 〔万元〕与销售量x 〔万升〕之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.〔销售利润=〔售价-本钱价〕×销售量〕请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答以下问题:⑴求销售量x 为多少时,销售利润为4万元;⑵分别求出线段AB 与BC 所对应的函数关系式;⑶我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?〔直接写出答案〕Ox 〔万升〕y 〔万元〕 CB A 4 10 1日:有库存6万升,本钱价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,本钱价4.5元/升. 31日:本月共销售10万升.五月份销售记录一次函数复习〔二〕A .2x <-B .21x -<<- C .20x -<< D .10x -<< 2.如图2,点A 的坐标为(-1,0),点B 在直线x y =上 运动,当线段AB 最短时,点B 的坐标为〔 〕 A.〔0,0〕 B.〔-1,-1〕C.〔-21,-21〕 D.〔-22,-22〕3.沪杭高速铁路已开工建设,在研究列车的行驶速度时,得到一个数学问题.如图3,假设v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,那么=-12t t 〔 〕 A .51B .163 C .807 D .160315.甲、乙两名运发动进行长跑训练,两人距终点的路程y 〔米〕与跑步时间x 〔分〕之间的函数图 象如以下图,根据图象所提供的信息解答问题: ⑴求甲距终点的路程y 〔米〕和跑步时间 x 〔分〕 之间的函数关系式;⑵当x =15时,两人相距多少米?在15<x <20的 时段内,求两人速度之差. 能力提升:1. 如图,过点Q 〔0,3.5〕的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 〔 〕A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 y =-3x -2的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 3. 函数y=kx 的函数值随x 的增大而增大,那么函数的图像经过〔 〕 A .一、二象限 B . 一、三象限 C .二、三象限 D .二、四象限 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 假设一次函数y kx b =+,当x 得值减小1,y 的值就减小2,那么当x 的值增加2时,y 的值〔 〕A .增加4B .减小4C .增加2D .减小2 二、拓展探究1.某加油站五月份营销一种油品的销售利润y 〔万元〕与销售量x 〔万升〕之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.〔销售利润=〔售价-本钱价〕×销售量〕请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答以下问题:⑴求销售量x 为多少时,销售利润为4万元;⑵分别求出线段AB 与BC 所对应的函数关系式;⑶我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC 三段所表示的销售信息中,哪一段的C1日:有库存6万升,本钱价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,本钱五月份销售记录。

专题01 二次根式化简的四种题型全攻略(解析版)

专题01 二次根式化简的四种题型全攻略(解析版)

专题01 二次根式化简的四种题型全攻略类型一、利用被开方数的非负性化简二次根式例.= )A .1x ³B .1x ³-C .1x ³或1x £-D .1x ¹±【变式训练1】已知m ,n 为实数,且3n -==________.【详解】依题意可得m -2≥0且2-m ≥0,∴m =2,∴n -3=0∴n =3,=.【变式训练2】已知a ,b ,c 是ABC V ||0b c -=ABC V 的形状是_______.A .3x >B .3x ³C .3x <D .3x £等腰三角形周长.【答案】17【详解】解:由题意得:3030a a -³ìí-³î,解得:a =3,则b =7,若c =a =3时,3+3<7,不能构成三角形.若c =b =7,此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示,化简a b -+-A .b c--B .c b - C .222b c -+D .2b c ++【答案】A 【详解】解:由数轴知:00c b a <,<<,∴0b a -<,∴原式=a b a c----()=a b a c--+-=b c --.故选:A .【变式训练1】已知实数m n、||m n+=_____A.2a b-+B.2a b-C.b-D.b【答案】A【解析】根据数轴上点的位置得:a<0<b,∴a-b<0,则原式=|a|+|a-b|=-a+b-a= -2a+b.故选:A.【变式训练3】已知实数a、b、c.【变式训练4】如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.试化简:c +.类型三、利用字母的取值范围化简二次根式例1.已知,化简:25m -<<5-=__________.【答案】23m -##32m-+A B C .D .【变式训练2】若35x <<+=_______;【答案】0【解析】由题意可知:3-x ≥0,∴2=3x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长,求另一条直角边的长度.类型四、双重二次根式的化简例.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一==1===以上这种化简的步骤叫做分母有理化.(1;(2(2【变式训练1】阅读理解“分母有理化”是我们常用的一种化简的方法7==+设x =-,>故0x >,由22x =33=+-2=解得x -=【答案】5-【详解】解:设x=>∴0x<∴266x=--+,∴212236x=-´=,∴x=5=-,∴原式55=--=-【变式训练2】先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:=①===④在上述化简过程中,第步出现了错误,化简的正确结果为;(2)请根据你从上述材料中得到的启发,化简由于437+=,4312´=,即:227+=, =2====问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +=那么便有:=__________.(3(请写出化简过程)【答案】(11+(2)a b ±>;(3【详解】解:(11===+;)a b >;【变式训练4】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(231+=,善于思考的小明进行了以下探索:设()2a m =(其中a 、b 、m 、n 均为正整数),则有222a m n =++,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若()2a m +=+,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若()2a m +=,且a 、m 、n 均为正整数,求a 的值;(3.课后作业120-=,那么这个等腰三角形的周长为( )A .8B .10C .8或10D .9【答案】B【详解】解:20-=∴40a -=,20b -=,解得4a =,2b =当腰长为2,底边为4时,∵224+=,不满足三角形三边条件,不符合题意;当腰长为4,底边为2时,∵2464+=>,4402-=<,满足三角形三边条件,此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A B C .D .【答案】AA .2b c-B .2b a -C .2a b --D .2c b-6.已知x、y为实数,4y+,则x y的值等于______.8a b =+.根据这一性质,我们可以将一些“双重二次根式”去掉一层根号,达到化简效果..解:设24+=(a ,b 为非负有理数),则4a b +=++∴43a b ab +=ìí=î①②由①得,4b a =-,代入②得:()43a a -=,解得11a =,23a =∴13b =,21b =∴224(1+==1==请根据以上阅读理解,解决下列问题:(1)__________;(2)(3)的大小,我们可以把a和b分别平方,∵a2=12,b2=18,则a2<b2,∴a<b.请利用“平方法”解决下面问题:(1)比较c=,d=c d(填写>,<或者=).(2)猜想m=n=+(3)=(直接写出答案).10.(1)已知a 、b 4b =+,求a 、b 的值.(2)已知实数a 满足2021a =,求22021a -的值.。

二次根式的性质与化简-初中数学知识点

二次根式的性质与化简-初中数学知识点

1 / 1 二次根式的性质与化简
1.二次根式的性质与化简
(1)二次根式的基本性质:①0a ≥ ; 0a ≥(双重非负性).②()()2
0a a a =≥ (任何一个非负数都可以写成一个数的平方的形式).③()20a a =≥ (算术平方根的意义)
(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.ab a b =⋅ ab ab =
(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.
【规律方法】二次根式的化简求值的常见题型及方法
1.常见题型:与分式的化简求值相结合.
2.解题方法:
(1)化简分式:按照分式的运算法则,将所给的分式进行化简.
(2)代入求值:将含有二次根式的值代入,求出结果.
(3)检验结果:所得结果为最简二次根式或整式.。

二次根式的化简(一)

二次根式的化简(一)

二次根式的化简(一)一、考点、热点回顾(一)巧用公式法 (二)适当配方法。

(三)正确设元化简法。

(四)拆项变形法 (五)整体倒数法。

(六)借用整数“1”处理法。

(七)恒等变形整体代入结合法 (八)降次收幂法:二、典型例题巧用公式法 例1计算ba b a ba ba b a +-+-+-2适当配方法。

例2.计算:32163223-+--+正确设元化简法。

例3:化简53262++拆项变形法 例4,计算()()76655627++++整体倒数法。

例5、计算()()13251335++++借用整数“1”处理法。

例6、计算63232231++-+恒等变形整体代入结合法分析:本例运用整体代入把x+y 与xy 的值分别求出来,再运用整体代入法将x+y 与xy 代入例题中,但一定要把所求多项式进行恒等变形使题中含有x+y 与xy 的因式, 如x 2-xy+y 2=(x+y)2-3xy ,然后再约分化例7:已知X=21(57+),y =21(-75),求下列各式的值。

(1)x 2-xy+y 2; (2)yx+ x y降次收幂法:例8、已知x=2+3,求725232-+-x x x 的值。

三、课堂练习1.化简22111(1)n n +++,所得的结果为_____________.2、计算2222222220041200311413113121121111++++++++++++ .3.化简:5225232-+---++y y y y . 4.化简241286+++.5.化简:23246623+--. 6.化简:223223+-+--7.化简:236104322-+- 8.化简:132527235+++分母有理化 9.计算:4947474917557153351331++++++++ 的值.10.分母有理化:53262++. 11.计算:321232+++-.(三)因式分解(约分) 12.化简:2532306243+--+. 13.化简:626321---+.14.化简:()()643326332++++. 15.化简:()()75237553++++.16.化简: 336226++++. 17.化简:2310141521++++.18.化简:64332181226+++++. 19.化简:52733535377+++++20、设333cz by ax ==,且3333222c b a cz by ax ++=++,0 xyz ,求zy x 111++的值。

二次根式的化简求值(含答案)

二次根式的化简求值(含答案)

第八讲 二次根式的化简求值用运算符号把数或表示数的字母连结而成的式子,叫做代数式,有理式和无理式统称代数式,整式和分式统称有理式.有条件的二次根式的化简求值问题是代数式的化简求值的重点与难点.这类问题包容了有理式的众多知识,又涉及最简根式、同类根式、有理化等二次根式的重要概念,同时联系着整体代入、分解变形、构造关系式等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形,有时需把待求式化简或变形,有时需把已知条件和待求式同时变形.例题求解 【例l 】已知21=+xx ,那么191322++-++x x x x x x 的值等于 .(2001年河北省初中数学创新与知识应用竞赛题)思路点拨 通过平方或分式性质,把已知条件和待求式的被开方数都用xx 1+的代数式表示.【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( )A .1B .2C . 3D . 4 (2003年全国初中数学联赛题)思路点拨 对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导.(第20后俄罗斯数学臭林匹克竞赛题改编) 思路点拨 由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.【例4】 已知:aa x 1+= (0<a<1),求代数式42422362222----+---+÷-+x x xx x x x x x x x 的值. (2002半四川省中考题)思路点拨 视x x x 4,22--为整体,把aa x 1+=平方,移项用含a 代数式表示x x x 4,22--,注意0<a1的制约.【例5】 (1)设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积;(第12届“五羊杯”竞赛题)(2)已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.(2003年北京市竞赛题)思路点拨 (1)显然不能用面积公式求三角形面积(为什么?),22c a +的几何意义是以a 、c 为直角边的直角三角形的斜边,从构造图形人手,将复杂的根式计算转化为几何问题加以解决;(2)用代数的方法求U 的最小值较繁,运用对称分析,借助图形求U 的最小值.学历训练1.已知2323-+=x ,2323+-=y ,那么代数式22)()(y x xy y x xy +-++值为 .2.若41=+a a (0<a<1),则aa 1-= . 3.已知123123++=++x x ,则)225(423---÷--x x x x 的值.(2001年武汉市中考题)4.已知a 是34-的小数部分,那么代数式)4()2442(222a a a a aa a a a -⋅++++-+的值为 . (2003年黄石市中考题)5.若13+=x ,则53)321()32(23+-+++-x x x 的值是( ) A .2 B .4 C .6 D .8 (2003年河南省竞赛题) 6.已知实数a 满足a a a =-+-20012000,那么22000-a 的值是( ) A .1999 B .2000 C .2001 D .20027.设9971003+=a ,9991001+=a ,10002=c ,则a 、b 、c 之间的大小关系是( ) A .a<b<c B .c<b<a C . c<a<b D .a<c<b8.设a a x -=1,则24x x +的值为( )A .a a 1-B .a a -1C .aa 1+ D .不能确定 9.若a>0,b>0, 且)5(3)(b a b b a a +=+,求abb a ab b a +-++32的值.10.已知x x =--2)1(1,化简x x x x +++-+414122.11.已知31+=x ,那么2141212---++x x x = . (2003年“信利杯”全国初中数学竞赛题) 12.已知514=-++a a ,则a 26-= .13.已知9)12(42+-++x a 的最小值为= .(“希望杯”邀请赛试题)14.已知2002)2002)(2002(22=++++y y x x ,则58664322+----y x y xy x = .(第17届江苏省竞赛题) 15.1+a2如果22002+=+b a ,22002-=-b a ,3333c b c b -=+,那么a 3b 3-c 3的值为( ) (2003年武汉市选拔赛试题)A .20022002B .2001C .1D .016.已知12-=a ,622-=b ,26-=c ,那么a 、b 、c 的大小关系是( ) A .a<b<c B .b<a<c C .c<b<a c<a<b (2002年全国初中数学联赛题)17.当220021+=x 时,代数式20033)200120054(--x x 的值是( ) A . 0 B .一1 C . 1 D .- 22003 (2002年绍兴市竞赛题)18.设a 、b 、c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( ) A .1999 B . 2000 C . 2001 D .不能确定 (2001年全国初中数学联赛试题)19.某船在点O 处测得一小岛上的电视塔A 在北偏西60°的方向,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问再向西航行多少海里,船离电视塔最近?20.已知实数 a 、b 满足条件1<=-a b b a ,化简代数式2)1()11(--⋅-b a ba ,将结果表示成不含b 的形式.21.已知a a x 21+=(a>0),化简:2222-++--+x x x x .22.已知自然数x 、y 、z 满足等式062=+--z y x ,求x+y+z 的值. (加拿大“奥林匹克”竞赛题)答案:。

初中数学 什么是二次根式的化简

初中数学 什么是二次根式的化简

初中数学什么是二次根式的化简在初中数学中,二次根式的化简是指将一个二次根式表达式化简为最简形式。

化简二次根式可以使其更简洁、易于计算和理解。

本文将详细介绍二次根式的化简方法和步骤。

一、二次根式的基本化简方法对于二次根式的基本化简,我们可以使用以下方法:1. 因数分解将二次根式的根号下的数进行因数分解,以便找到可以化简的因式。

2. 合并同类项将二次根式中的相同根号下的因子合并在一起,以简化表达式。

3. 化简分数如果有分数出现在二次根式中,可以将分子和分母分别进行化简,以使表达式更简洁。

二、二次根式的化简步骤下面是二次根式的化简步骤:步骤一:因数分解对于二次根式的根号下的数,我们需要尽可能进行因数分解。

例如,对于√(12),可以将12分解为2和6的乘积。

步骤二:合并同类项将根号下的相同因子合并在一起,以简化表达式。

例如,对于√(12),可以合并根号下的2和6,得到√(2*6)。

步骤三:化简分数如果有分数出现在二次根式中,可以将分子和分母分别进行化简。

例如,对于√(2/3),可以化简分子和分母,得到√(2)/√(3)。

步骤四:最简形式最后,将所有因子合并在一起,得到最简形式的二次根式。

例如,对于√(2*6),我们可以继续化简为√(2)*√(6)。

最终,我们得到√(12) = √(2)*√(6)。

三、实例演示让我们通过一些实际的例子来说明二次根式的化简步骤:例子1:化简√(16)。

步骤一:因数分解16是一个完全平方数,可以分解为4和4的乘积。

步骤二:合并同类项√(16)中只有一个根号下的因子,无需合并。

步骤三:化简分数√(16)中没有分数,不需要化简。

步骤四:最简形式将所有因子合并在一起,得到√(16) = 4。

例子2:化简√(18)。

步骤一:因数分解18可以分解为2和9的乘积。

步骤二:合并同类项√(18)中只有一个根号下的因子,无需合并。

步骤三:化简分数√(18)中没有分数,不需要化简。

步骤四:最简形式将所有因子合并在一起,得到√(18) = √(2*9) = √(2)*√(9).继续化简,√(2)*√(9) = √(2)*3 = 3√(2).通过这些示例,我们可以看到如何对二次根式进行化简。

二次根式的化简

二次根式的化简

二次根式的化简(一)化简目标(1)化成最简二次根式:化简结果中被开方数不能再开方,被开方数是整数,被开方的字母因式是整式。

(2)把分母有理化:分母中不能有根号。

(二)化简形式分类(1)√整数(根号下是整数)①化简思路:把整数化成4、9、16、25、36...×几的形式(即a2×几的形式,这个几不能再拆解成几的平方)②例如:√24=√4×6=√4×√6=2×√6=2√6③例如:√48=√4×√12→12可以再拆成4×3 →错误示范化简必须一步到位正确化简如下:√48=√16×3=√16×√3=4×√3=4√3④巩固练习√56= √12=√50= √24=√72= √300=√分数(根号下是分数)(2)①第一类:分母能开方化简的,先化简例如:√119= √11√9= √113(√9直接开成整数3)√524= √5√4×6= √5√4×√6= √5×√62√6×√6=√3012(分母√24按照√整数的思路去化简)巩固练习:√14 25= √349=√7 8= √148=②第二类:分母是最简根式,不能再开方,分子分母同乘分母例如:√32= √3√2= √3×√2√2 ×√2=√62√5 7= √5√7= √5×√7√7 ×√7=√357巩固练习:√1 3= √76=③第三类:根号下是带分数,把带分数化成假分数,再按以上两类思路化简。

带分数化成假分数:整数分子分母= 整数×分母+分子分母例如:√123= √53= √5√3= √5×3√3 ×√3=√153巩固练习:√334= √215=(3)√小数(根号下是小数)①化简思路:能开方的直接开方,不能开方的,把小数化成分数,再按照根号下是分数的方法化简②例如:√0.01= √(0.1)2=0.1 →直接开方√0.4=√410=√4√10= √10√10 ×√10=2√1010= √105→不能直接开方,把小数化成分数③巩固练习:√0.25= √0.8=√1.5= √0.0016=(4)几√a+b / 几√a−b(分母是根号几+几或-几的形式)①化简思路:利用平方差公式使分母中的根号消失平方差公式:(a+b)(a-b)= a2-b2②例如: √3−√2= √3+√2)(√3−√2)(√3+√2)= √3+2√2(√3)2−(√2)2=2√3+2√23−2=2√3+2√21=2√3+2√2√5+2= √5−1)(√5+1)(√5−1)= √5−2(√5)2−(1)2= 2√5−45−1= 2√5−44=2(√5−2)4= √5−22→结果能约分要约分③巩固练习:√3−2=√8+3=√7+√2=√5−√3=(5)√数字×字母的几次方/ √字母的几次方(次方>2时即可开方)①化简思路:字母的次方数>2时,化成字母的2次方×几的形式再开方②例如:√8a3=√8×√a3=√4×2×√a2×a=√4×√2×√a2×√a= 2√2a√a√9x4y= √9×√x4y=3×√(x2)2y=3x2√y√a4b3=√(a2)2×b2×b=√(a2)2×√b2×b=ab×b=a b2③巩固练习:√12a4b= √4x3y3=√a3b2= √ab5=。

【数学课件】二次根式的化简

【数学课件】二次根式的化简
图4-3
解 设菱形ABCD的两条对角线相交于点O.
由于AC⊥BD,因此△OAB是直角三角形.
由于
OA=
1 2
AC
=
1× 2
4
3=2
3,
OB
=
12 BD
=
1× 2
8= 4,
因此 AB2=OA2+OB2=( 2 3 )2+42
从而
=22× ( 3 )2+16 =4×3+16 =28. AB= 28 = 22× 7 = 2 7 .
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基
6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基
8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
然后根据积的算术平方根的性质和公式②, 就可以把根号下的平方因子去掉平方号后移到根 号外面(例如, 32· a2· ab =3a ab ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23ห้องสมุดไป่ตู้a
3π- 3
418
2、 当x取什么值时,二次根式
a 2 在实数范围 a-3
内有意义?
解:由a 2 0且a - 3 0得,a -2且a 3
3、若 4 - x2 x - 4,则x的取值范围是 x 4。
还有其他计 算方法吗?
如图,正方形ABCD的边长为2,它的对角线AC的长是多少?
2b 1 3a
2 4b2 12ab2 a 0,b 0
一般步骤:
①先把被开方式分解成平方 因子和其它因子相乘的形式。
②再根据积的算术平方根的 性质和 a2 a(a 0) 把平方因 子移到根号外。
当被开方式是多项式时,先 因式分解化为积的形式。
尝试练习
设 a 0 ,b 0,化简下列二次根式。
被开方数能写成平方因子和其它因 子相乘形式的二次根式
化简二次根式时,可以直接把根号下的每一个 平方因子去掉平方后移到根号外。
(注意:移到根号外的数必须是非负数)
例2:化简下列二次根式
1 9a3ba 0,b 0
解:1 9a3b
32 • a2 • a • b
3a ab
2 4b2 12ab2
4b2 1 3a
OA2 2 OA 2 AC 2OA 2 2
由此可见: 8 2 2
42 = 4 2
你能用前面学过的性质说明 8 2 2吗? ( 8)2 8 8是8的算术平方根
2 2 2 22
2
2 42 82
2是8的算术平方根
所以 8 2 2
1、做一做 4 9
25 4
2、自主探究
48 163 42 3 4 3
3 4a2 b2 4a2 b2 2a b ~~~~~ 性质错用
课堂小结
二次根式的化简
1、积的算术平方根的性质
ab a • ba 0,b 0
是化简二次根式的依据之一。 2、被开方式一定要先分解成平方因子和其它因子 相乘的形式。 3、被开方式是多项式时一定要先因式分解,化 为积的形式后才能化简。
4、化简时,被开方式的所有平方因子一定要 全部移到根号外。
• 化简二次根式的结果必须满足: 1、根号内不能含有能开方的因数或因式 2、根号内被开方数不含分母 3、分母上不带根号
满足上述条件的二次根式,叫做最简二次根式
挑战自我
将下列
a • b a • b a 0,b 0
积的算术平方根等于积中各因式的算术平方 根的积
积的算术平 方根的性质
下列选项中正确的是 (3)(4) 。
1 - 2- 3 - 2 - 3 2 4 9 4 9
3 16 25 4 16 25 4 4 8 8
99
推广: a • b • c a • b • c a 0,b 0,c 0
1 72
2 8a2b3
解:1 72 98 32 22 2 3 2 2 6 2
或 72 36 2 62 2 6 2
2 8a2b3 2• 22 • a2 •b2 •b 2ab 2b
在化简时,一定要把被开方式中所有平方 因子全部移到根号外,否则未完成化简。
归纳化简二次根式的步骤:
• 1、当被开方数(式)不是积的形式, 要 因数(式)分解 ;
由于∠B=90°,因此AC2 =AB2+BC2=22+22=8,
从而 AC 8
D
C
2
A
2
B
如图,正方形ABCD的边长为2,它的对角线AC
的长是多少?
连结BD,交AC与点O。 ∵四边形ABCD正方形,且边长为2
OA OB OC OD AC BC
OA2 OB2 AB2 即2 • OA2 4
4.1.2 二次根式的化简
1、 二次根式的定义:
形如 a(a 0)的式子叫作二次根式
2、 二次根式的基本性质:
1. a 2 aa 0
2.
a2
a(a 0)
aa 0
当 a 0 时, a 2
a2
1、化简1 a2 a 0
2 a 32 a 3
3 3π2
4- 3
2
2
答案:1a
• 2、把根号下的 平方因子 挑出来; • 3、直接把根号下的每一个 平方因子 去掉平
方号以后移到根号外 (注意:移到根号外的必须是非负数)
强化练习
1、P133 练习: 1. 2. 3.
2、下列二次根式的化简正确吗?
1 32 52 32 52 3 5 15
正确解法: 32 52 32 52 35 15 2 48 412 2 122 43 4 3
a a a 0,b 0
bb
例1 化简二次根式 1 20
2 32
解:1 20 45 22 5 22 5 2 5
2 32 16 2 42 2 42 2 4 2
我们把式子中 22、42叫做平方因子
思考
1、15 还能化简吗?为什么?
15 53 5 3
2、被开方数有什么特点的二次根式 才能化简呢?
(1)观察两个等式的左右两边,你发现了什么规律? 请用字母列示表示出一般情况。
a • b a • b a 0,b 0
a • b a • b a 0,b 0
(2)你能对上式进行推理证明吗?
证明:∵
2
2
2
a • b a • b a•b
2 a•b a•b
a • b a•b
相关文档
最新文档