时效与冷处理对热处理变形的影响

合集下载

热处理常见缺陷分析与对策-学习总结

热处理常见缺陷分析与对策-学习总结

热处理常见缺陷分析与对策时 间:2020.10.28 学习人:吴俊 部 门:试验检测中心基本知识点:1、热处理缺陷直接影响产品质量、使用性能和安全。

2、热处理缺陷中最危险的是:裂纹。

有:淬火裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹。

其中生产中最常见的裂纹是纵火裂纹。

3、热处理缺陷中最常见的是:热处理变形,它有尺寸变化和形状畸变。

4、淬火获得马氏体组织,以保证硬度和耐磨性。

淬火后应进行回火,以消除残余应力,如W6Mo5Cr4V2应进行一次回火。

5、亚共析钢淬火加热温度: +(30-50)度。

6、高速钢应采用调质处理即淬火+高温回火。

7、回火工艺若控制不当则会产生回火裂纹。

8、热处理过热组织可通过多次正火或退火消除,严重过热组织则应采用高温变形和退火联合作用才能消除。

9、渗氮零件基本组织为回火索氏体。

其原始组织中若有大块F 或表面严重脱碳,则易出现针状组织。

10、有色金属最有效的强化手段是固溶处理和固溶处理+时效处理。

11、疲劳破坏有疲劳源区、裂纹疲劳扩展和瞬时断裂三个阶段。

12、高速钢的热组织为:共晶莱氏体,也有可能晶界会熔化。

13、应力腐蚀开裂的必要条件之一是:存在拉应力。

14、65Mn 钢第二类回火脆性温度区间为250-380。

钼能有效抑制第二类回火脆性。

15、热处理时发生的组织变化中,体积比容变化最大的是马氏体。

16、防止淬裂的工艺措施:等温淬火、分级淬火、水-油淬火和水-空气双液淬火。

17、高温合金热处理产生的特殊热处理缺陷有:晶间氧化、表面成分变化、腐蚀点、晶粒粗大及混合晶粒等。

18、感应加热淬火缺陷有:表层硬度低、硬化层深度不合格、变形大、残留应力大、尖角过热及软点与软带。

19、弹簧钢的组织状态一般为:T+M 。

20、氢脆条件:氢的存在、三项应力和对氢敏感的组织。

21、断裂有脆性断裂和韧性断裂。

绝大多数热处理裂纹属脆性断裂。

22、高碳钢淬火前应进行球化退火。

23、时效变形的主要影响因素有:化学成分、回火温度和时效温度。

《金属热处理缺陷分析及案例》完整版

《金属热处理缺陷分析及案例》完整版

第三章 热处理变形
一、产生原因:热处理应力引起。 二、对质量影响最大:淬火变形。 三、类别:尺寸变化和形状畸变。 四、影响因素: 1、成分(Mn、Cr、Si、Ni、Mo、B等 降低Ms点,减小淬火变形)。 工业上应用:微变形钢(含较多的Si、 W、V等合金元素)。
2、组织和应力状态:
(二)、热处理缺陷分析方法:
1、热处理缺陷的影响:直接影响产品质量、 使用性能和安全,所以准确分析和判断十分 重要。 2、分析方法:断口分析(裂源位置、扩展方 向、断裂性质和方式)、化学分析(材料成分、 沉积物、氧化物)、金相分析(晶粒、组织、 晶界)、力学性能试验(硬度、拉伸、冲出、 疲劳断裂韧度)、验证试验(原工艺和改进工 艺对比)、综合分析(得出缺陷产生的几种主 要原因,提出改进措施)。
第二章、热处理裂纹:
(一)、产生原因:内应力作用下发 生,最终断裂。条件是内应力>脆 断强度。 (二)、断裂类别: 1、裂纹按扩展程度:(失稳)可发 展裂纹、阻断裂纹(不断裂)。 2、断裂:脆性断裂和韧性断裂。多 数为脆性断裂(断口灰亮色)
(三)、加热不当形成的裂纹:
升温速度过快(多出现于灰铸铁、 合金铸铁、高锰钢、高合金钢铸 件)、表面增碳或脱碳[合金钢、低 碳马氏体钢20SiMn2MoV,高锰钢 (Mn13)]、过热或过烧(高速钢、不 锈钢)、氢致裂纹(条件:足够氢、 对氢敏感的金相组织和三向应力。 措施:脱氢、低温回火、自然时效、 低氢淬火)
2、按照危害程度分类:
(1)、第一类热处理缺陷: 最危险缺陷如裂纹,其中最 主要是淬火裂纹,其次加热 裂纹、延迟裂纹、冷处理裂 纹、回火裂纹、时效裂纹、 磨削裂纹和电镀裂纹等。
(2)、第二类热处理缺陷:

材料热处理变形的因素与控制

材料热处理变形的因素与控制

材料热处理变形的因素与控制摘要:随着金属材料加工与热处理技术的有机融合,不断对材料内部结构进行优化,有效提升材料性能。

,以保证在实际生产中热处理过程的有效应用,对中国的金属行业提升生产能力、提高产品质量的同时,在一定程度上推动相关企业的快速健康的发展。

因此,本文着重解决在对金属材料热加工中影响变形的原因,以及解决办法,以此来提高在金属材料加工当中的难题。

关键词:材料、热处理、变形、因素与控制一、影响金属材料热处理变形的因素1 时效、冷处理冷处理会导致残余奥氏体转变为马氏体,由于金属材料体积变大;低温回火和时效会使金属材料变形两种效应,这是由马氏体的分解造成的,硬质金属材料小;另一种是应力松弛的影响,造成金属材料的变形。

2 原始组织、应力状态①原材料的微观结构会影响金属材料的变形,如碳化物数量、合金元素的形态和偏析、以及纤维的锻造方向。

调理治疗通常是有效的,可以有效降低金属材料的绝对水平变形,淬火变形更多规则和进一步控制目的的变形金属材料。

②化学热处理的主要目的是提高金属材料的表面性能,如提高金属材料表面的氧化性,提高金属表面的耐磨性等。

二、影响材料热处理变形的因素1 温度对热处理造成变形的因素有很多,主要温度为主要影响因素,温度高低、保温时间等都会直接影响热应力以及组织应力形成以及产生的影响,另外,随着温度升高,金属塑形会逐渐增大,导致高温蠕变趋势更加明显,在淬火环节,加热温度主要对金属材料翘曲变形产生影响,对体积变形中所引发的尺寸变化并无明显影响。

因此,需要获得热处理参数的性能指标,同时,要想降低变形,需要对热处理的问温度进行严格测量与控制。

2 结构尺寸对于高碳钢轴类零件以及长轴类零件,在淬透后是马氏体组织,其主要组织应力形变,因此,其体积会有所增大,长度以及直径会有所增强。

合金钢轴类零件有着良好的淬透性,材料变形主要是由热应力以及组织应力共同作用产生,尺寸较小工件的长度与直径均会有所增大,而大尺寸工件的直径会缩小,长度会增大。

热处理对于钢铁材料性能的影响

热处理对于钢铁材料性能的影响

热处理对于钢铁材料性能的影响热处理是一项重要的工艺,用于改变钢铁材料的性能。

通过控制材料的加热、保温和冷却过程,可以显著改善钢铁材料的力学性能、组织结构和耐腐蚀能力。

本文将深入探讨热处理对于钢铁材料性能的影响。

一、冷处理冷处理是热处理的一种重要方式,其主要目的是通过快速冷却来提高钢铁材料的硬度和强度。

当钢铁材料经过热处理后,快速冷却可以产生细小的晶粒,从而提高材料的硬度。

此外,冷处理还可以减少材料的残余应力,提高材料的耐磨性和疲劳寿命。

二、淬火处理淬火是一种将钢铁材料加热至适宜温度后迅速冷却的热处理方法。

淬火可以使钢铁材料的晶格结构发生变化,从而显著提高材料的硬度和强度。

通过控制淬火工艺参数,如冷却速率、冷却介质等,可以获得不同的硬度和强度。

然而,过快的冷却速率可能导致材料内部产生应力过大,从而引起开裂和变形。

三、回火处理回火是一种将冷处理的材料重新加热至适宜温度后保温一段时间,然后缓慢冷却的热处理方法。

回火可以减轻材料的内部应力,增加其韧性和塑性,降低脆性。

通过合理控制回火温度和时间,可以在硬度和韧性之间取得平衡,使材料具有较好的综合性能。

四、渗碳处理渗碳是一种将含碳气体或液体浸渍到钢铁材料表面,并进行高温处理的方法。

渗碳可以在材料表面形成高碳含量的渗层,从而提高材料的硬度和耐磨性。

此外,渗碳还可以改善材料的耐蚀性能和疲劳寿命。

常用的渗碳方法包括气体渗碳、液体渗碳和离子渗碳等。

五、固溶处理固溶处理是一种通过加热钢铁材料至固溶温度后快速冷却的热处理方法。

固溶处理可以使材料内部的溶质(如碳、氮等)扩散均匀,从而改善材料的强度和塑性。

此外,固溶处理还可以提高钢铁材料的冷加工性能,增加其可塑性。

综上所述,热处理对于钢铁材料性能具有显著的影响。

通过冷处理、淬火处理、回火处理、渗碳处理和固溶处理等方法,可以改善钢铁材料的硬度、强度、耐磨性、耐蚀性和韧性等性能。

因此,在钢铁制造和应用过程中,合理运用热处理技术可以有效提高钢铁材料的综合性能,满足不同工程和应用的需求。

金属材料热处理变形及开裂问题的解决措施

金属材料热处理变形及开裂问题的解决措施

金属材料热处理变形及开裂问题的解决措施发布时间:2023-02-07T04:21:30.919Z 来源:《福光技术》2023年1期作者:张茹[导读] 虽然工件强度会持续下降,但塑性却处于相反的状态,针对金属工件强度来讲,当内部应力大的时候,就会引发塑性变形隐患。

中航西安飞机工业集团股份有限公司摘要:热处理工艺可以以多重方式淬炼金属材料,减少网状碳化物等杂质含量,消除内应力缺陷,促进金属材料自身强度以及韧性水平的提升,因而被广泛应用于深加工环节中。

但目前技术条件支持下,热处理环节中金属材料仍然存在变形甚至开裂的可能性,必然对其使用以及相关功能的拓展产生不良影响。

如何解决变形、开裂问题,提高热处理工艺的安全性与稳定性,这一问题备受业内重视。

关键词:金属材料;热处理;变形;开裂一、热处理变形开裂的原因1.1热处理原因通常情况下,当前企业所进行的金属材料热处理工作,会选择冷却与加热两种模式,伴随着热处理工作的持续进行,因为热胀冷缩表现,会直接决定金属材料体积出现调整。

将重心放在金属材料工件视角下,如果处理过程达到了淬火温度条件,虽然工件强度会持续下降,但塑性却处于相反的状态,针对金属工件强度来讲,当内部应力大的时候,就会引发塑性变形隐患。

1.2组织应力原因站在金属材料工件组织应力结构下,相比较轴向应力来讲,切向应力相对较大,而且对比金属工件表层,两者有着大致相同的应力,如果外界存在较大拉应力,此时金属材料工件表面会受到相应影响。

在进行淬火操作中,组织应力会有变形以及开裂等现象,这主要就是工作人员所开展的热处理,导致金属材料工件组织应力以及热应力受到影响产生的。

二、金属材料热处理技术使用过程中需要遵守的原则2.1规范操作原则金属材料在热处理的过程中出现变形及开裂问题会大大降低其使用效率,给企业带来额外的经济损失。

目前来说,人工操作失误是金属材料热处理过程中出现变形及开裂问题的主要原因。

因此,企业应提高金属材料热处理人员的专业知识水平,普及金属材料热处理的操作规范流程,并要求工人在对金属材料进行热处理之前充分了解不同金属的特性,制定科学合理的热处理计划,并且建立健全的热处理监督机制,确保热处理人员能够按照操作规范进行操作。

钢件热处理变形的原因总结

钢件热处理变形的原因总结

钢件热处理变形的原因总结
引起热处理变形的因素颇多,总括起来,基本上有三点:
1、固态相变时,各相质量体积的变化必然引起体积的变化,造成零件的胀与缩的尺寸变化;
2、热应力,包括急热热应力和急冷热应力,当它们超过零件在该温度下所具有的屈服极限时,将使零件产生塑性变形,造成零件的形状变化,即歪扭,或称为畸变;
3、组织应力也会引起形状的改变,即畸变。

一般说,淬火工件的变形总是由于以上的两种或三种因素综合作用的结果,但究竟哪一个因素对变形的影响较大,则需要具体情况作具体的分析。

总的来说,体积变化是由相变时比容的改变而引起的。

马氏体的质量体积比钢的其他组成相的质量体积要大,热处理时钢由其他组成相转化为马氏体时,必然引起体积的增加。

而奥氏体的质量体积要比钢的其他组织质量体积要小,在热处理时由其他组成相转变为奥氏体时,则引起体积的减小。

关于形状的变化,歪扭或称为畸变,主要是由于内应力或者外加应力作用的结果。

在加热、冷却过程中,因工件各个部位的温度有差别,相变在时间上有先后,有时发生的组织转变也不一致,而造成内应力。

这种内应力一旦超过了该温度下材料的屈服极限,就产生塑性变形,引起形状的改变。

此外工件内的冷加工残余应力在加热过程中的松弛,以及由于加热时受到较大的外加应力也会引起形状的变化。

在热处理时可能引起体积变化和形状变化的原因见下表。

表中“体积变化原因” 一栏未列入钢因热胀冷缩现象而产生的体积变化,钢由淬火加热温度到零下温度进行冷处理,均随温度的变化而有相应的体积变化,因热胀冷缩而引起的体积变化不均匀乃是热应力产生的原因,而且对变形有相当的影响。

热处理可能引起体积变化和形状变化的原因。

回火、调质、时效与冷处理工艺

回火、调质、时效与冷处理工艺

回火、调质、时效与冷处理工艺类别工艺过程特点应用范围回火低温回火回火温度为l50一250℃回火后获得回火马氏体组织,但内应力消除不彻底,故应适当延长保温时间目的是降低内应力和脆性,而保持钢在淬火后的高硬度和耐磨性。

主要用于各种工具、模具、滚动轴承和渗碳或表面淬火的零件等中温回火回火温度为350一450℃左右回火后获得屈氏体组织,在这一温度范围内回火,必须快冷,以避免第二类回火脆性目的在于保持一定韧性的条件下提高弹性和屈服强度,故主要用于各种弹簧、锻模、冲击工具及某些要求强度的零件,如刀杆等高温回火回火温度为500一680℃,回火后获得索氏体组织。

淬火十高温回火称为调质处理,可获得强度、塑性、韧性都较好的综合力学性能,并可使某些具有二次硬化作用的高合金钢(如高速钢)二次硬化,其缺点是工艺较复杂,在提高塑性、韧性同时,强度、硬度有所降低广泛地应用于各种较为重要的结构零件,特别是在交变负荷下工作的连杆、螺栓、齿轮及轴等。

不但可作为这些重要零件的最终热处理,而且还常可作为某些精密零件如丝杠等的预先热处理,以减小最终热处理中的变形,并为获得较好的最终性能提供组织基础调质处理淬火后高温回火的热处理方法称为调质处理。

调质可以使钢的性能,材质得到很大程度的调整,其强度、塑性和韧性都较好,具有良好的综合机械性能。

调质处理后得到回火索氏体。

调质常常应用在中碳(低合金)结构钢,也用在低合金铸钢中。

总之对力学要求高的结构零部件都要进行调质处理。

例如立轴、丝杠、齿轮等。

一般是在零件加工后进行,也可将粗坯调质后再进行机械加工。

时效处理高温时效加热略低于高温回火的温度,保温后缓冷到300℃以下出炉时效的目的是使淬火后的工件进一步消除内应力,稳定工件尺寸常用来处理要求形状不再发生变形的精密工件,例如精密轴承、精密丝杠、床身、箱体等低温时效将工件加热到100一150 ℃,保温较长时间(约5—20h)低温时效实际就是低温补充回火冷处理将淬火后的工件,在零度以下的低温介质中继续冷却到零下80℃待工件截面冷到温度均匀一致后,取出空冷可使残余奥氏体全部或大部分转变为马氏体。

回火、调质、时效与冷处理工艺

回火、调质、时效与冷处理工艺

回火、调质、时效与冷处理工艺类别工艺过程特点应用范围回火低温回火回火温度为l50一250℃回火后获得回火马氏体组织,但内应力消除不彻底,故应适当延长保温时间目的是降低内应力和脆性,而保持钢在淬火后的高硬度和耐磨性。

主要用于各种工具、模具、滚动轴承和渗碳或表面淬火的零件等中温回火回火温度为350一450℃左右回火后获得屈氏体组织,在这一温度范围内回火,必须快冷,以避免第二类回火脆性目的在于保持一定韧性的条件下提高弹性和屈服强度,故主要用于各种弹簧、锻模、冲击工具及某些要求强度的零件,如刀杆等高温回火回火温度为500一680℃,回火后获得索氏体组织。

淬火十高温回火称为调质处理,可获得强度、塑性、韧性都较好的综合力学性能,并可使某些具有二次硬化作用的高合金钢(如高速钢)二次硬化,其缺点是工艺较复杂,在提高塑性、韧性同时,强度、硬度有所降低广泛地应用于各种较为重要的结构零件,特别是在交变负荷下工作的连杆、螺栓、齿轮及轴等。

不但可作为这些重要零件的最终热处理,而且还常可作为某些精密零件如丝杠等的预先热处理,以减小最终热处理中的变形,并为获得较好的最终性能提供组织基础调质处理淬火后高温回火的热处理方法称为调质处理。

调质可以使钢的性能,材质得到很大程度的调整,其强度、塑性和韧性都较好,具有良好的综合机械性能。

调质处理后得到回火索氏体。

调质常常应用在中碳(低合金)结构钢,也用在低合金铸钢中。

总之对力学要求高的结构零部件都要进行调质处理。

例如立轴、丝杠、齿轮等。

一般是在零件加工后进行,也可将粗坯调质后再进行机械加工。

时效处理高温时效加热略低于高温回火的温度,保温后缓冷到300℃以下出炉时效的目的是使淬火后的工件进一步消除内应力,稳定工件尺寸常用来处理要求形状不再发生变形的精密工件,例如精密轴承、精密丝杠、床身、箱体等低温时效将工件加热到100一150 ℃,保温较长时间(约5—20h)低温时效实际就是低温补充回火冷处理将淬火后的工件,在零度以下的低温介质中继续冷却到零下80℃待工件截面冷到温度均匀一致后,取出空冷可使残余奥氏体全部或大部分转变为马氏体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时效与冷处理对热处理变形的影响---对于精密零件和测量工具,为了在长期使用过程中,保持精度和尺寸稳定,往往需要进行冷处理和回火,以便使其组织更加稳定,因此,了解回火工艺和冷处理对工件在时效过程中的变形规律,对于提高这类工件的热处理质量有重要意义。

冷处理使残余奥氏体转变为马氏体导致体积膨胀;低温回火和时效一方面促使∈-碳化物析出和马氏体分解使体积收缩,另一方面引起一定程度的应力松驰导致工件产生形状畸变。

钢的化学成分,回火温度和时效温度是影响时效过程中工作变形的主要因素。

化学热处理工件的变形---化学热处理工件的表面和心部成分和组织不同,具有不同的比体积和不同的奥氏体等温转变曲线,因此,其热处理变形的特点和规律不同于一般工件。

化学热处理工件的变形校正工作更难以进行。

化学热处理可以分为两类:一类在高温奥氏体状态下进行渗碳,热处理过程中有相变发生,工件变形较大。

另一类在低温铁素体状态下进行渗氮,热处理过程中除因渗入元素进入渗层形成新相外,不发生相变,工件变形较小。

渗碳工件的变形---渗碳工件通常用低碳钢和低碳合金钢制造,其原始组织为铁素体和少量珠光体,根据工件的服役要求,工件经过渗碳后需要进行直接淬火、缓冷重新加热淬火或二次淬火。

渗碳工件在渗碳后缓冷和渗碳淬火过程中由于组织应力和热应力的作用而发生变形,其变形的大小和变形规律取决于渗碳钢的化学成分、渗碳层深度、工件的几何形状和尺寸以及渗碳和渗碳后的热处理工艺参数等因素。

工件按其长度、宽度、高度(厚度)的相对尺寸可以分为细长件、平面件和立方体件。

细长件的长度远大于其横截面尺寸,平面件的长度和宽度远大于其高度(厚度),立方体三个方向的尺寸相差不大。

最大热处理内应力一般总是产生在最大尺寸方向上。

若将该方向称为主导应力方向,则低碳钢和低碳合金钢制造的工件,渗碳后缓冷或空冷心部形成铁素体和珠光体时,一般沿主导应力方向表现为收缩变形,收缩变形率约为0.08-0.14%。

钢的合金元素含量增加、工件的截面尺寸减小时,变形率也随之减小,甚至出现胀大变形。

截面厚度差别较大形状不对称的细长杆件,渗碳空冷后易产生弯曲变形。

弯曲变形的方向取决于材料。

低碳钢渗碳工件冷却快的薄截面一侧多为凹面;而12CrN3A、18CrMnTi等合金元素较高的低碳合金钢渗碳工件,冷却快的薄截面一侧往往为凸面。

低碳钢和低碳合金钢制造的工件经过920-940C温度下渗碳后,渗碳层碳的质量分数增加至0.6-1.0%,渗碳层的高碳奥在体在空冷或缓冷时要过冷至Ar1以下(600C左右)才开始向珠光体转变,而心部的低碳奥氏体在900C左右即开始析出铁素体,剩余的奥氏体过冷至Ar1温度以下也发生共析分解转变为珠光体。

从渗碳温度过冷至Ar1温度,共析成分的渗碳层未发生相变,高碳奥氏体只随着温度的降低而发生热收缩,与此同时,心部低碳奥氏体却因铁素体的析出比体积增大而发生膨胀,结果心部受压缩应力,渗碳层则受拉伸应力。

由于心部发生γ->α转变时,相变应力的作用使其屈服强度降低,导致心部发生压缩变形。

低碳合金钢强度较高,相同条件下心部的压缩塑性变形量较小。

形状不对称的渗碳工件空冷时,冷却快的一侧奥氏体线长度收缩量大于冷却慢的一侧,因而产生弯曲应力,当弯曲应力大于冷即慢的一侧的屈服强度时,则工件向冷却快的一侧弯曲。

对于合金元素含量较高的低碳合金钢,渗碳后表层具有高碳合金钢的成分,空冷时冷却快的一侧发生相变,形成硬度较高、组织比体积较大的新相,而另一侧因冷即较慢形成的新相硬度较低,故出现相反的弯曲变形。

渗碳工件的淬火变形规律可以用相同的方法分折。

渗碳件的淬火温度通常为800-820C,淬火时渗碳层的高碳奥氏体从渗火温度冷却至Ms点温度区间内将发生明显的热收缩;而同时心部低碳奥氏体转变为铁素体和珠光体、低碳贝氏体或低碳马氏体。

不论转变为何种组织,心部都因组织比体积的增大而发生体积膨胀,结果在渗碳层与心部产生较大的内应力。

一般来说,未淬透的情况下,由于心部的相变产物为屈服强度较低的铁素体和珠光体,因而心部在渗碳层热收缩压应力作用下,沿主导应力方向产生收缩变形;当心部的相变产物为强度较高的低碳贝氏体和低碳马氏体对,表层高碳奥氏体则在心部胀应力作用下产生塑性变形,结果主导应力方向而胀大。

随着渗碳钢碳含量和合金元素含量的增加,渗碳件淬火后心部硬度升高,主导应力方向胀大倾向增大。

当心部硬度为28-32HRC时,渗碳工件的淬火变形很小。

随着心部硬度的升高,胀大变形倾向增大。

很明显,提高渗碳件的淬透性等凡导致渗碳工件心部硬度升高的因素,都会增大渗碳工件沿主导应力方向的胀大倾向。

渗氮工件的变形---渗氮能够有效地提高工件表面的硬度和抗疲劳性,并能在一定程度上改善其耐蚀性。

渗氮温度较低,约为510-560C,钢铁材料在渗氮过程中,基本金属不发生相变,因此,渗氮工件变形较小。

渗氮一般是热处理的最后一道工序,工件在渗氮之后,除了高精度的工件还要进行研磨加工外,一般不再进行其他机械加工,因此,渗氮被广泛用来处理要求硬度高而变形小的精密零件。

尽管如此,渗氮工件仍会产生变形。

由于氮原子的渗入,使渗氮层的比体积增大,因此,渗氮工件最常见的变形是工件表面产生膨胀,由于表面渗氮层的胀大受到心部的阻碍,表层受到压应力,心部受拉应力作用。

内应力的大小受零件截面大小、渗氮钢的屈服强度、渗氮层氮浓度及渗氮层深度等因素的影响。

当工件截面尺寸较小,截面形状不对称、炉温和渗氮不均匀时,渗氮工件也会产生尺寸变化或弯曲与翘曲变形等形状畸变。

轴类零件经过渗氮后其变形规律是外径胀大,长度伸长。

径向胀大量通常随工件直径的增大而增艾,但最大胀大量不超过0.055mm。

长度伸长量一般大于径向胀大量,其绝对值随轴的长度增大而增大,但不随轴的长度变化而成比例的变化。

渗氮的套类工件的变形取决于壁厚,壁厚薄时,内外径都趋向于胀大,随着壁厚的增大,胀大量减小,壁厚足够大时,内径有缩小的趋势。

一般情况下,当工件的有效截面尺寸大于50mm时,渗氮处理的主要变形方式是表面膨胀。

但随着工件横截面积的减小,当渗氮层的截面积与心部截面积之比大于0.05小于0.7时,除了表面膨胀外,还必须考虑内应力引起的变形,沿工件主导应力方向的变形量可以用经验公式近似予以估算: ΔL=η(Ν/Κ)%ΔL----主导应力方向长度的增加; η----系数,取决于材料和渗氮工件横截面的形状;Ν------渗氮层的横截面积; Κ----心部的横截面积。

常用渗氮钢的η值工件横截面形状38CrMoALA 40CrNiMo圆形0.3 0.15方形0.4 0.2五>热处理变形的校正热处理变形的校正---工件的热处理变形可以在一定程度上加以控制和减小,但是不能够完全避免。

机械校正法---采用机械或局部加热的方法使变形工件产生局部微量塑性变形,同时伴随着残余内应力的释放和重新分布达到校正变形的目的。

常用的机械校正法有冷压校正、淬火冷却至室温前的热压校正、加压回火校正、使用氧-乙炔火焰或高频对变形工件进行局部加热的”热点”校正、锤击校正等。

机械校正的零件在使用、放置过程中或进行精加工时,由于残余应力的衰减和释放可能部分地恢复原来的变形和产生新的变形。

因此,对于承受高负荷的工件和精密零件,最好不要进行机械校正。

必须进行机械校正时,校正达到的塑性应变应该超过热处理变形的塑性应变,但校正塑性变形量必须控制在很小的范围内,一般应大于弹性极限应变的10倍,小于条件强度极限的十分之一。

校正要尽可能在淬火后应即进行,校正后应进行消除残余应力处理。

热处理变形工件的校正,要求操作者具有熟练的技术并很费工时,因此,校正自动化是热处理工作者的一项重要任务。

热处理校正法---对于因热处理胀大或收缩变形而尺寸超差的工件,可以重新使用适当的热处理方法对其变形进行校正。

常用的热处理校正法有在Ac1温度下加热急冷法对胀大变形的工件进行收缩处理---工件不发生组织比体积变化的相变,因此,不会产生组织应力,只产生因心部和表面热收缩量不同而形成的热应力。

急冷时工件表面急剧收缩对温度较高塑性较好的心部施以压应力,使工件沿主导应力方向产生塑性收缩变形,这是热处理收缩处理的机理。

钢的化学成分不同,其热传导和热膨胀系数不同,在Ac1温度下加热后,钢的塑性和屈服强度也不相同,靠热应力所能达到的塑性收缩变形效果不尽相同,一般碳素钢和低合金钢的收缩效果比较明显,高碳高合金钢的收缩效果则比较差。

收缩处理的加热温度应根据Ac1选择,应保证在水中激冷时不淬硬为原则,对奥氏体稳定性差的碳钢可采用稍高于Ac1的温度,以利用相变温度区的相变超塑性达到最大的收缩效果。

各类钢的加热温度是;碳素钢Ac1—20⌒Ac1+20C 低合金钢Ac1—20⌒Ac1+10C低碳高合金钢(1Cr13 、2Cr13 、18Cr2Ni4W A等) Ac1—30⌒Ac1+10C奥氏体型耐热耐蚀钢850—1000C加热时间应保证工件充分热透,冷却以食盐水激冷为最好。

Ac1温度下加热急冷收缩处理法,可以收缩处理各种不同形状的工件,如环形工件的内孔和外圆,扁方工件的孔、孔距尺寸及外形尺寸,轴类工件的长度以及某些需要局部尺寸收缩的工件等。

淬火胀大法对收缩变形的工件进行胀大处理---主要适用于形状简单的工件。

其原理是利用淬火时工件表层发生马氏体相变时比体积增大,对尚未发生马氏体相变或未淬透的心部施以拉应力,通过心部拉伸塑性变形达到工件沿主导应力方向胀大的目的。

对于低中碳钢和低中碳合金结构钢制造的工件,使用常规淬火加热温度的上限加热水淬时,在工件淬透或半淬透的情况下,可使主导应力方向胀大0.20—0.50%。

形状简单的工件可以左或稍高于Ac1温度下加热正火后,重复淬火1—2次。

CrMn、9CrSi、GCr15、CrWMn等过共析合金工具钢件,在原来未淬透的情况下,可按常规热处理规范的上限加热温度加热,并尽可能淬透或获得较深淬硬层,可使工件沿主导应力方向胀大0.15—0.20%。

淬火后应经240-280C回火,这类钢的淬火胀大变形主要靠淬火时马氏体相变的比体积增大,故胀大变形量有限,并有淬裂的危险。

相关文档
最新文档