难切削材料的加工及其精密切削加工方面的问题分析

合集下载

浅谈特种加工技术及其应用(论文)

浅谈特种加工技术及其应用(论文)

浅谈特种加工技术及其应用(论文)摘要:介绍特种加工技术的概念、特点、分类,探索电火花加工、复合加工等方面的实际应用与研究发展趋势。

关键词:技术特点;技术种类;发展趋势一、概述传统的机械加工技术对推动人类的进步和社会的发展起到了重大的作用。

随着科学技术的迅速发展,新型工程材料不断涌现和被采用,工件的复杂程度以及加工精度的要求越来越高,对机械制造工艺技术提出了更高的要求。

二、特种加工技术的特点(一)加工范围上不受材料强度、硬度等限制。

特种加工技术主要不依靠机械力和机械能去除材料,而是主要用其他能量(如电、化学、光、声、热等)去除金属和非金属材料,完成工件的加工。

故可以加工各种超强硬材料、高脆性及热敏材料以及特殊的金属和非金属材料。

(二)以柔克刚。

特种加工不一定需要工具,有的虽使用工具,但与工件不接触,加工过程中工具和工件间不存在明显的强大机械切削力,所以加工时不受工件的强度和硬度的制约,在加工超硬脆材料和精密微细零件、薄壁元件、弹性元件时,工具硬度可以低于被加工材料的硬度。

(三)加工方法日新月异,向精密加工方向发展。

当前已出现了精密特种加工,许多特种加工方法同时又是精密加工方法、微细加工方法,如电子束加工、离子束加工、激光束加工等就是精密特种加工:精密电火花加工的加工精密度可达微米级0.5~1um,表面粗糙度可达镜面Ra0.021.1m。

(四)容易获得良好的表面质量。

由于在加工过程中不产生宏观切屑,工件表面不会产生强烈的弹、塑性变形,故可以获得良好的表面粗糙度。

残余应力、热应力、冷作硬化、热影响区及毛刺等表面缺陷均比机械切割表面小,尺寸稳定性好,不存在加工中的机械应变或大面积的热应变。

特种加工的主要应用范围有1.加工各种难切削材料。

如硬质合金、钛、合金、耐热钢、不锈钢、淬硬钢、金刚石、红宝石、石英以及锗、硅等各种高硬度、高强度、高韧性、高熔点的金属及非金属材料。

2.加工各种特殊复杂零件的三维型腔、型孔、群孔和窄缝等。

通用机械行业精密机械零件加工方案

通用机械行业精密机械零件加工方案

通用机械行业精密机械零件加工方案第1章精密机械零件加工概述 (3)1.1 零件加工要求与难点分析 (3)1.1.1 加工要求 (3)1.1.2 难点分析 (4)1.2 加工工艺现状与发展趋势 (4)1.2.1 加工工艺现状 (4)1.2.2 发展趋势 (4)第2章零件加工材料选择与处理 (5)2.1 常用材料功能及适用范围 (5)2.1.1 金属材料 (5)2.1.2 非金属材料 (5)2.2 材料热处理与表面处理技术 (5)2.2.1 热处理技术 (5)2.2.2 表面处理技术 (5)2.3 材料选择与加工匹配性分析 (6)第3章零件加工设备选型与配置 (6)3.1 常用加工设备类型及特点 (6)3.1.1 数控车床 (6)3.1.2 数控铣床 (6)3.1.3 数控磨床 (7)3.2 设备选型原则与配置方案 (7)3.2.1 设备选型原则 (7)3.2.2 配置方案 (7)3.3 设备功能与加工精度保障措施 (7)第4章零件加工工艺规划与设计 (7)4.1 加工工艺流程设计 (8)4.1.1 分析零件结构特点和技术要求 (8)4.1.2 确定加工方法及加工顺序 (8)4.1.3 设计算法及加工参数 (8)4.1.4 编制工艺文件 (8)4.2 关键工序与工艺参数优化 (8)4.2.1 识别关键工序 (8)4.2.2 优化工艺参数 (8)4.2.3 评估优化效果 (8)4.3 工艺验证与改进措施 (8)4.3.1 工艺验证 (9)4.3.2 收集反馈信息 (9)4.3.3 改进措施 (9)4.3.4 持续改进 (9)第5章零件加工精度控制 (9)5.1 加工误差来源与控制策略 (9)5.1.1 误差来源分析 (9)5.1.2 控制策略 (9)5.2 精密测量技术在加工中的应用 (10)5.2.1 三坐标测量机 (10)5.2.2 激光干涉仪 (10)5.2.3 光学测量技术 (10)5.3 精度控制案例分析 (10)5.3.1 案例一:精密齿轮加工 (10)5.3.2 案例二:精密轴类零件加工 (10)第6章零件加工表面质量与完整性 (11)6.1 表面质量要求与影响因素 (11)6.1.1 表面质量要求 (11)6.1.2 影响因素 (11)6.2 表面完整性检测与评价方法 (11)6.2.1 检测方法 (11)6.2.2 评价方法 (11)6.3 表面加工质量控制措施 (12)6.3.1 优化切削参数 (12)6.3.2 选择合适的刀具和切削液 (12)6.3.3 提高机床功能 (12)6.3.4 优化工艺流程 (12)6.3.5 检测与调整 (12)第7章零件加工中的装夹与定位 (12)7.1 装夹方式选择与设计 (12)7.1.1 装夹方式选择原则 (13)7.1.2 装夹结构设计要点 (13)7.2 定位精度分析与优化 (13)7.2.1 定位误差来源 (13)7.2.2 定位精度优化措施 (13)7.3 装夹与定位误差控制 (13)7.3.1 装夹误差控制 (13)7.3.2 定位误差控制 (14)第8章零件加工过程中的切削液应用 (14)8.1 切削液的作用与选用原则 (14)8.1.1 切削液的作用 (14)8.1.2 切削液的选用原则 (14)8.2 切削液的使用与维护 (14)8.2.1 切削液的添加与更换 (14)8.2.2 切削液的浓度控制 (14)8.2.3 切削液的过滤与清洁 (14)8.2.4 切削液的防腐与抗菌 (15)8.3 切削液对加工质量的影响分析 (15)8.3.1 切削液对加工表面质量的影响 (15)8.3.2 切削液对加工精度的影响 (15)8.3.3 切削液对刀具寿命的影响 (15)8.3.4 切削液对切屑排除的影响 (15)8.3.5 切削液对加工环境的影响 (15)第9章零件加工质量检测与控制 (15)9.1 检测方法与设备选型 (15)9.1.1 尺寸检测 (15)9.1.2 形状和位置公差检测 (15)9.1.3 表面质量检测 (15)9.1.4 材质分析 (16)9.2 加工过程质量控制策略 (16)9.2.1 严格遵循工艺规程 (16)9.2.2 在线检测与实时调整 (16)9.2.3 加强设备维护与管理 (16)9.2.4 员工培训与管理 (16)9.3 质量问题分析与处理 (16)9.3.1 质量问题收集与分类 (16)9.3.2 原因分析 (16)9.3.3 制定改进措施 (16)9.3.4 改进效果验证 (16)第10章零件加工成本控制与优化 (17)10.1 成本构成与影响因素 (17)10.1.1 成本构成 (17)10.1.2 影响因素 (17)10.2 成本控制策略与措施 (17)10.2.1 成本控制策略 (17)10.2.2 成本控制措施 (17)10.3 供应链管理与优化建议 (17)10.3.1 供应链管理 (18)10.3.2 优化建议 (18)第1章精密机械零件加工概述1.1 零件加工要求与难点分析1.1.1 加工要求精密机械零件作为通用机械行业的重要组成部分,其加工质量直接影响到整个机械设备功能的稳定性和使用寿命。

精密车削过程中难点分析

精密车削过程中难点分析

精密车削过程中难点分析李金玉北京京煤集团三河综合厂个人简历精密车削过程中难点分析摘要:精密切削加工选用的背吃刀量极小(几微米甚至小于1微米),因此切削力及温度对加工精度的影响不容忽视。

关键词:精密机床进给量背吃刀量温度在长时间试切过程中,对于切削用量、刀具几何参数、工件材质等因素对表面粗糙度的影响较为重视,而往往忽视了切削力对表面粗糙度的二次影响。

因此,减小切削力对表面粗糙度的影响已成为精密切削领域一个亟待解决的重要问题。

其次,温度对加工也有不可忽视的影响。

一、引言经过近些年的不断发展,精密机床的加工性能已达到相当高的水平。

由于精密切削加工选用的背吃刀量极小(几微米甚至小于1微米),因此切削力对加工精度的影响不容忽视。

在精密切削中,由于金刚石刀具的切削刃具有钝圆半径,因此前刀面被分为平面和圆柱面两部分(圆柱面部分均为负前角)。

当选用不同的背吃刀量时,刀具前刀面的两个部分在切削过程中所起作用和所占比重也各不相同。

以前刀面圆弧部分为主要工作部分时,其单位切削面积所受切削力比以平面部分为主要工作部分时大得多,切削层越薄,单位面积所受切削力越大。

切削力对被加工工件的尺寸和形状精度、加工表面粗糙度、加工变质层和刀具耐用度等均具有直接或间接影响。

在长时间试切过程中,对于切削用量、刀具几何参数、工件材质等因素对表面粗糙度的影响较为重视,而往往忽视了切削力对表面粗糙度的二次影响。

因此,减小切削力对表面粗糙度的影响已成为精密切削领域一个亟待解决的重要问题。

其次,温度对加工也有不可忽视的影响。

本文通过精密车削,研究了各切削参数对切削力的影响规律。

二、精密车削条件1、精密机床拿HCM-I型精密车床来说,机床工作台由直流伺服电机驱动,进给分辨率0.01μm;采用空气静压主轴(回转精度±0.1μm);导轨部件采用可抗温度干扰的花岗岩材料,空气导轨直线度误差0.13μm/100mm;采用空气弹簧作为减振、隔振系统;机床固有频率:水平方向≤1.12Hz,垂直方向≤2Hz。

精密超精密加工技术

精密超精密加工技术

精密超精密加工技术精密及超精密加工对尖端技术的发展起着十分重要的作用。

当今各主要工业化国家都投入了巨大的人力物力,来发展精密及超精密加工技术,它已经成为现代制造技术的重要发展方向之一。

本节将对精密、超精密加工和细微加工的概念、基本方法、特点和应用作一般性介绍。

一、精密加工和超精密加工的界定精密和超精密加工主要是根据加工精度和表面质量两项指标来划分的。

这种划分是相对的,随着生产技术的不断发展,其划分界限也将逐渐向前推移。

1.一般加工一般加工是指加工精度在10µm左右(IT5~IT7)、表面粗糙度为R a0.2µm~0.8µm的加工方法,如车、铣、刨、磨、电解加工等。

适用于汽车制造、拖拉机制造、模具制造和机床制造等。

2.精密加工精密加工是指精度在10µm~0.1µm(IT5或IT5以上)、表面粗糙度值小于R a0.1µm的加工方法,如金刚石车削、高精密磨削、研磨、珩磨、冷压加工等。

用于精密机床、精密测量仪器等制造业中的关键零件,如精密丝杠、精密齿轮、精密导轨、微型精密轴承、宝石等的加工。

3.超精密加工超精密加工一般指工件尺寸公差为0.1µm~0.01µm数量级、表面粗糙度R a 为0.001µm数量级的加工方法。

如金刚石精密切削、超精密磨料加工、电子束加工、离子束加工等,用于精密组件、大规模和超大规模集成电路及计量标准组件制造等方面。

二、实现精密和超精密加工的条件精密和超精密加工技术是一项内容极为广泛的制造技术系统工程,它涉及到超微量切除技术、高稳定性和高净化的工作环境、设备系统、工具条件、工件状况、计量技术、工况检测及质量控制等。

其中的任一因素对精密和超精密加工的加工精度和表面质量,都将产生直接或间接的不同程度的影响。

1.加工环境精密加工和超精密加工必须具有超稳定的加工环境。

因为加工环境的极微小变化都可能影响加工精度。

航空发动机加工难在哪?到底需要怎样的机床工具?

航空发动机加工难在哪?到底需要怎样的机床工具?

航空发动机加工难在哪?到底需要怎样的机床工具?航空发动机是飞机的心脏,是决定飞机性能的重要因素之一。

发动机中盘、轴、鼓筒、轴颈等零件均是发动机的核心转动部件和关键件,在高温、高压、高转速的恶劣环境下工作。

这类零件材料大多采用高温合金、粉末高温合金、钛合金等难加工材料制造,尺寸精度要求高,技术条件严格,对零件表面质量、表面完整性要求高,其加工质量的高低直接影响到发动机的使用寿命和安全可靠性。

近年来,随着航空发动机技术的不断进步和发展,这些关键部件的加工技术有了大幅度的提升,从传统的加工方式、过多依赖操作者的经验和水平完成加工,转向车铣复合加工、全程序无干预数控加工、各类边缘自动成型加工和自动光整加工等自动化、集成化、精准化及抗疲劳制造的方向推进和发展。

航空发动机关键部件加工技术的进步对提高航空发动机的可靠性,在全寿命使用周期内安全可靠的工作起到了至关重要的作用。

今天金属加工小编为金粉们介绍几个航空关键部件加工的典型案例。

1航空发动机制造对机床工具需求航空制造业对零件加工精度和效率日益提高的需求不断推动机床技术的发展,是机床产品创新的源源动力。

高速高精度加工中心、复合加工和多轴联动数控机床的出现,都与客户需求密切相关。

3 ~5轴加工中心、数控车床加工中心、各种磨削设备、各种精锻设备、各种铸造设备、特种电加工设备、复合加工中心(车铣、铣车)、叶片加工中心及磨削中心、特种电加工设备、激光加工及强化设备和零件表面处理设备是航空制造中必需的设备。

(1)盘类零件加工设备的基本要求。

数控立车:在工作台直径、定位精度、重复定位精度、工作台转速和工作台承重等方面应与所加工零件相适应。

具有自动换刀功能,刀库容量足够大;控制系统,具备刀具轨迹图形显示功能;具备USB 端口、DNC网络接收数据端口;配置高压内冷,机载自动对刀功能、机载工件测量功能、温度自动补偿功能;机床具有足够的刚性和可靠性。

(2)机匣加工设备的基本要求。

如何分析产生变形的原因

如何分析产生变形的原因

如何分析产生变形的原因对于机械加工来说,差不多的理念是致命的,一个看起来差不多的产品,如果再和其他组合使用,缺陷就会继续放大,导致工厂的加工品质一直达不到高端精密的制造要求。

我们都知道加工中心的工件变形问题比较难解决,因此首先必须分析产生变形的原因,然后才能采取应对的措施。

一、工件的材质和结构影响形变变形量的大小与形状复杂程度、长宽比和壁厚大小成正比,与材质的刚性和稳定性成正比。

所以在设计零件时尽可能的减小这些因素对工件变形的影响。

尤其在大型零件的结构上更应该做到结构合理。

在加工前也要对毛坯硬度、疏松等缺陷进行严格控制,保证毛坯质量,减少其带来的工件变形。

二、工件装夹时造成的变形首先夹具使用需要选择正确的夹紧点,根据夹紧点位置选择适当夹紧力。

尽可能使夹紧点和支撑点一致,使夹紧力作用在支撑上,夹紧点应尽可能靠近加工面,且选择受力不易引起夹紧变形的位置。

(来源夹具侠)当工件上有几个方向的夹紧力作用时,要考虑夹紧力的先后顺序。

对于使工件与支撑接触夹紧力应先作用,且不易太大,对于平衡切削力的主要夹紧力,应作用在后。

增大工件与夹具的接触面积或采用轴向夹紧力。

增加零件的刚性,是解决发生夹紧变形的有效办法,但由于薄壁类零件的形状和结构的特点,导致其具有较低的刚性。

这样在装夹施力的作用下,就会产生变形。

增大工件与夹具的接触面积,可有效降低工件件装夹时的变形。

如在铣削加工薄壁件时,大量使用弹性压板,目的就是增加接触零件的受力面积;在车削薄壁套的内径及外圆时,无论是采用简单的开口过渡环,还是使用弹性芯轴、整弧卡爪等,均采用的是增大工件装夹时的接触面积。

这种方法有利于承载夹紧力,从而避免零件的变形。

采用轴向夹紧力,在生产中也被广泛使用。

设计制作专用夹具可使夹紧力作用在端面上,可以解决由于工件壁薄,刚性较差,导致的工件弯曲变形。

三、工件加工时造成的变形工件在切削过程中由于受到切削力的作用,产生向着受力方向的弹性形变,就是我们常说的让刀现象。

难切削材料加工参数选择

难切削材料加工参数选择

1. 前角选择的原则:刀具材料的抗弯强度和韧性较高时,可选用大前角。

高速钢刀具的前角,在同样条件下,可比硬质合金刀具的前角大5-10°,而陶瓷的前角又要比硬质合金的小一些。

加工塑性材料宜选较大的前角,以减少金属变形和摩擦。

加工脆性材料时,应选5-15读的较小前角。

工件材料硬度、强度较低时,应选用较大前角,反之,选负前角或较小的正前角,以增强刀刃的强度和散热的体积。

粗加工取较小的前角,精加工取较大的前角,精密成型刀具取零度前角。

2. 倒棱选择原则:倒棱宽度和进给量有关。

倒棱宽度一般取(0.3~0.8)f 粗加工取大值。

进给量f<=0.2mm/r 的精加工刀具,不宜磨出负倒棱。

高速钢倒棱前角取-5~0°,硬质合金倒棱角去-15~-5。

另外也可以采用刃口钝圆形式代替倒棱,可以增强刃口强度,一般用于粗加工。

3. 后角选用原则:后角主要按照切削厚度来选择。

切削厚度小时,宜选用大后角,以减少刃口圆弧半径,使刃口锋利。

当f<=0.25mm/r 时,取后角为10~12°,反之,取后角为6~8°。

后角还依据材料强度和硬度选择,材料强度和硬度高,应取小的后角,相反则取大的后角,当工艺系统刚性差时,应选用小的后角或刃带宽=0.1mm~0.2mm,角度为0的刃带。

另外后角的选择与刀具的运动轨迹有关。

副后角选择原则与主后角相似。

4. 主偏角选择原则:在工艺系统和工艺要求允许的情况下,主偏角宜选的小一些。

工艺系统刚性好、切深小和工件硬度高时,如对冷硬铸铁和淬火钢的加工,取10~30°,工艺系统差可取75~93°。

粗加工时为了增加刀尖强度,改善散热条件,应取较小主偏角。

5. 副偏角的选择原则:在工艺系统刚性较好的情况下,副偏角不宜取得太大,精加工时取5~10°,粗加工时取10~15°。

切断刀或切槽刀为了增强刀头强度,取1~2°。

第4章 影响切削加工及表面质量

第4章 影响切削加工及表面质量

4.2 刀具材料的合理选择
2. 硬质合金的分类和性能 ISO国际标准将硬质合金分为以下三大类: P类:相当于我国的 YT类,用于加工长切屑黑色金
属。 K类:相当于我国的 YG类,用于加工短切屑黑色金 属、有色金属和非金属。 M类:相当于我国的YW类,用于加工长短切屑的黑 色金属、有色金属。

常用刀具材料有碳素工具钢(T10A,T12A)、合金工 具钢(9SiCr、CrWMn)、高速钢、硬质合金、陶瓷、金刚 石、立方氮化硼等。碳素工具钢和合金工具钢因耐热性差、 允许切削速度低,所以常用碳素工具钢制造手用刀具(如锉 刀、刮刀)。用合金工具钢制造低速刀具(如丝锥,板牙 等),陶瓷、金刚石、立方氮化硼仅用于某些难加工材料和 精密、超精密切削加工。目前刀具材料中应用最多的仍是高 速钢和硬质合金。
4.2 刀具材料的合理选择
3. 硬质合金的选用 1)YG类硬质合金主要用于加工铸铁、有色金属及非金属。 加工这类材料时,切屑呈崩碎切屑,切削力、切削热集中在 刀刃附近容易崩刃, YG 类硬质合金强度高,韧性好,导热 性能好,正好满足加工要求。 YG3X、YG6X 还可用于加工 冷硬铸铁、淬火钢、高强度钢、不锈钢、高温合金、钛合金、 硬青铜、硬的和耐磨的绝缘材料。YS2(YG10H)可用于加 工高强度钢、高温合金等难加工材料。 YG6A、YG8A 可加 工铸铁和不锈钢。
4.1 工件材料的切削加工性
4.1 工件材料的切削加工性
4.1.2 影响工件材料切削加工性的因素
一、工件材料的硬度对切削加工性的影响 工件材料的硬度有常温硬度和高温硬度,它们对切削加工性的影响 是不同的。 1. 工件材料的常温硬度对切削加工性的影响 一般情况下,同类工件材料中常温硬度越高的材料其切削加工性 越低。 2. 工件材料的高温硬度对切削加工性的影响 工件材料的高温硬度越高,切削加工性越低。因为工件材料的高温 硬度越高,切削温度越高,刀具材料的硬度在高的切削温度作用下 会下降,刀具材料的硬度与工件材料的硬度比要下降,因此刀具磨 损加剧、耐用度低、切削加工性低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难切削材料的加工及其精密切削加工方
面的问题分析
研究表明,由于其在一定范围内能够有效地解决难切削材料的加工及其精密切削加工方面的问题并在加工中具有一系列的特点,因而越来越引起人们的重视而受到世界各国的瞩目。

1.普通切削与振动切削
在普通切削中,切削是靠刀具与工件的相对运动来完成的。

切屑和已加工表面的形成过程,本质上是工件材料受到刀具的挤压,产生弹性变形和塑性变形,使切屑与母体分离的过程(见图1)。

在这种刀具始终不离开切削的普通切削中,刀具的作用包括两个方面:一个是刀刃的作用;一个是形成刀刃的刀面的作用。

由于刀刃与被切物接触处局部压力很大,从而使被切物分离。

刀面则在切削的同时撑挤被切物,促进这种分离。

普通切削中,伴随着切屑的形成,由于切屑与刀具之间的挤压和摩擦作用,将不可避免地产生较大的切削力,较高的切削温度,使刀具磨损和产生切削振动等有害现象。

基于这种思想,在和有害的自激振动现象作斗争中产生了一种新的切削方法——振动切削。

振动切削即是通过在切削刀具上施加某种有规律的、可控的振动,使切削速度、背吃刀量发生周期性的改变,从而得到特殊的切削效果的方法(见图2)。

振动切削改变了工具和被加工材料之间的空间与时间存在条件,从而改变了加工(切削)机理,达到减小切削力、切削热,提高加工质量和效率的目的。

振动切削按所加频率不同可分为高频振动和低频振动,低频振动仅仅从量上改变切屑的形成条件,主要用来解决断屑问题以及与此相关的一系列问题。

而超声振动(高频振动)切削已经使切屑形成机理产生重大变化,可以提高被加工材料的可加工性,提高刀具寿命和工件加工质量。

超声加工的工艺效果来自刀具和工件之间的分离运动,即它是一种脉冲式的断续切削过程。

所以,作为精密加工和难加工材料加工中的一种新技术,它的切削效果已经得到世界各国的一致公认,认为它是传统加工技术的一个飞跃。

振动切削系统的流程是:超声波电源输出大功率的超声频的交流信号,由换能器将电能转换成同频率的机械振动,经过变幅杆进行振幅放大,从而带动刀具振动。

其组成如图3所示。

把振动系统固定在刀架上,刀杆的左端是刀片,右端是振动驱动中心,由换能器和变幅杆将纵向振动转换为弯曲刀杆的横向振动。

2.振动切削的特点及工艺效果分析
(1)振动切削的特点
振动切削可以使切削力大幅度降低,使摩擦热减小、刀具寿命提高和已加工表面粗糙度值减少,即有以下特点:
①在切削过程中,刀具前面不是始终与工件保持接触状态,而是处于有规律
的接触、分离状态。

②有规律的脉冲冲击切削力取代了连续切削力。

③刀具(或工件)的有规律强迫振动取代了刀具和工件无规律的自激振动。

④切削力大部分来自刀具(或工件)的振动,刀具(或工件)的运动仅是为了满
足工件加工几何形状而设置的。

(2)工艺效果分析
①瞬间切削力增大
根据连续弹性体动力分析理论,在普通切削中,切削力一直作用在工件上,使
得周边的材料也参与抵抗变形,就使得切口处切削力降低。

在振动切削中,材料的破坏过程与普通切削不同,它由每次冲击产生细微破坏而完成切削。

在振动切削中,因振动提高了实际的瞬间切削速度,并以动态冲击力作用于工件,使得局部变
形减少,作用力集中,瞬间切削力增大。

从而获得较大的波前切应力,有利于金属的塑性脆化。

减小塑性变形,利于切削。

在超硬材料的加工方面,这一优点更为突出。

②零件表面质量的提高由表面粗糙度值计算公式:
在振动切削中,由于不灵敏性振动切削机理的特性,Δf和Δαp都趋于零,故
ΔRth也趋近于零,从而使已加工表面的表面粗糙度值接近几何表面粗糙度值。

③有利于冷却
刀具的高速振动对刀具的散热十分有利,同时由于刀具的前面周期性脱离工件,使得切削液更容易进入刀具和工件之间,也增加了系统的散热能力。

振动切削中,刀具在振动源驱动下周期性接触、离开工件。

刀屑分离时,切削液产生空化作用,切削液充分进入切削区。

振动切削时刀具对工件的冲击作用,应力波的出现,
有利于切削区裂纹的萌生和扩展。

刀屑接触时,由于压力差出现,使得切削液渗透作用加强,充分发挥切削液的润滑和冷却作用。

这些都大大降低了前刀面与切屑间及后刀面与已加工工件表面间的摩擦。

3.振动切削技术的应用
振动切削技术是在研究了切削加工本质的基础上所提出的一种精密加工方法,它弥补了普通切削加工的不足,但并不能完全取代普通切削加工,而有一定的
适用范围,主要有以下几方面:
(1)难切削材料的加工
不锈钢、淬硬钢、高速钢、钛合金、高温合金、冷硬铸铁以及陶瓷、玻璃、石材等非金属材料由于力学、物理、化学等特性而难以加工,如采用超声振切削
则可化难为易。

例如用硬质合金刀具振动车削淬硬钢(35~45HRC)外圆、端面、螺纹与镗孔时,不但提高了平行度、垂直度与同心度,而且可达到“镜面”的表面粗糙度,也可用金刚石刀具进行振动精密加工。

又如钛历来只能以磨削和研磨作为精加工,现用硬质合金刀具振动车削时,其端面上的最大表面粗糙度值可达
Ra=2~3μm,最佳时可达Ra=0.5μm。

此外,用普通切削加工石墨与氧化铝等材料时得不到平整的加工表面,只有采用超声振动才能产生微粒式的切削分离并得到整齐的加工表面。

国外用超声振动能顺利地切削富铝红柱石,如果将超声波能源切断,工件会马上损坏,根本无法加工。

(2)难加工零件的切削加工
如易弯曲变形的细长轴类零件,小径深孔、薄壁零件,薄盘类零件与小径精密螺纹以及形状复杂、加工精度与表面质量要求又较高的零件,用普通切削与磨削加工很困难,用振动切削,既可提高加工质量,又可提高生产效率,例如用硬质合金车刀超声振动精车细长的退火调质铝棒(Φ7.2mm,长220mm)的外圆,振动频率为F=21.5kHz,振幅为A=15μm,f=0.05mm/r,ap=0.01mm,用全损耗系统用油作为切削液,加工后可获得工件直径精度为4μm,最大表面粗糙度值Ra=1μm。

又如超声振动精镗有特殊钢制成的薄壁圆筒(工件长70mm,孔径15mm,壁厚1mm),在镗过的
50mm长度上可测出内孔精度为4μm,最大表面粗糙度值Ra=3μm。

(3)高精度、高表面质量工件的切削加工
与普通切削相比,振动切削时切屑变形与切削力小,切削温度低,加工表面上不产生积屑瘤、鳞刺与表面微裂纹,再加上表面硬化程度较大,表面产生残余压应力小,切削过程稳定,容易加工出高精度与高表面质量的工件。

例如前述的超声振动车削软铝制成的细长轴(长200mm,7mm)时可得到圆度2μm、圆柱度
3μm/170mm的加工精度。

超声车削Φ5mm的电动机整流器铜线时,可得到
Ra=0.05μm的镜面,用其他加工方法是不可能达到的。

(4)排屑、断屑比较困难的切削加工
钻孔、铰孔、攻螺纹、剖断、锯切、拉削等切削加工时,切屑往往处于半封闭或封闭状态,因而常不得不由于排屑断屑困难而降低切削用量,这时如果用振动切削则可比较顺利地解决排屑断屑,保证加工质量与提高生产效率。

4.结语
随着科学技术的发展和进步,超声波振动切削作为一种新技术正在逐步渗透到各个领域,对超声波振动切削的研究和开发也越来越受到人们的普遍重视。

我国在振动切削技术研究利用方面和国外相比有较大差距,大力加强高速超高速磨削加工技术的研究、推广和应用,对提高我国机械制造业的加工水平和加快新产品开发具有十分重要的意义。

相关文档
最新文档