SPI协议
spi通信协议

spi通信协议SPI(Serial Peripheral Interface)串行外设接口是一种同步的、全双工的通信协议,常用于单片机和外部设备之间的通信。
SPI协议定义了一种主从模式的通信方式,其中一个设备充当主设备,负责发起通信,而其他设备则充当从设备,负责接收和处理通信数据。
SPI通信协议由四根线组成:时钟线(CLK)、片选线(SS)、主设备发出数据(MOSI)和主设备接收数据(MISO)。
在SPI通信中,主设备通过时钟线提供时钟脉冲,通过片选线选择和控制不同的从设备。
在通信开始时,主设备将片选线拉低,选择需要通信的从设备。
然后,主设备在每个时钟脉冲中,通过MOSI线发送数据给从设备,同时从设备通过MISO线将数据发送回主设备。
SPI通信协议的通信方式为全双工,即主设备和从设备可以同时发送和接收数据。
在通信过程中,主设备和从设备通过时钟的同步来保持数据的一致性。
主设备在上升沿将数据发送到MOSI线上,而从设备在下降沿将数据从MISO线上读取。
通过时钟的同步,主从设备可以准确地发送和接收数据。
在SPI通信中,数据的传输是串行的,即每个数据位都按顺序传输。
通信的起始位和终止位可以由主设备和从设备约定。
通常情况下,通信的起始位由主设备发起,并在时钟上升沿进行传输。
终止位可以由主设备或从设备发起,并在时钟下降沿进行传输。
SPI通信协议的速度可以通过调整时钟频率来控制。
时钟频率越高,数据传输的速度越快。
然而,时钟频率的增加也会增加信号的噪声和功耗。
因此,在选择时钟频率时,需要权衡速度和可靠性的要求。
SPI通信协议还支持多个从设备的通信。
每个从设备都有一个独立的片选线,主设备可以通过选择不同的片选线来与不同的从设备进行通信。
这种多从设备的通信方式使SPI协议更加灵活,可以同时与多个外部设备进行数据交换。
综上所述,SPI通信协议是一种常用的串行通信协议,使用主从模式进行数据交换。
它具有简单、可靠、高速的特点,适用于单片机和外部设备之间的通信。
SPI协议解析高速串行通信的协议标准

SPI协议解析高速串行通信的协议标准SPI(Serial Peripheral Interface)是一种高速串行通信协议,被广泛应用于各种数字设备的通信接口传输中。
本文将对SPI协议进行详细解析,介绍其协议标准,以及相关的特性和应用。
I. 介绍SPI协议是一种同步协议,常用于微控制器和外部外设之间的通信。
它通过四根信号线(时钟线、数据线、主从选择线、片选线)实现全双工通信,并且支持多主机和多从机的通信方式。
SPI协议具有高速传输、简单易用、灵活性强等特点,被广泛用于各种应用领域。
II. 协议标准SPI协议的通信规范主要包括以下几个方面:1. 时钟极性与相位SPI协议定义了两种类型的时钟极性和相位设置,分别为CPOL和CPHA。
CPOL用于控制时钟信号的极性,可以是低电平为开始(CPOL=0),或高电平为开始(CPOL=1)。
CPHA用于控制数据采样的时机,可以是时钟信号的上升沿采样(CPHA=0),或下降沿采样(CPHA=1)。
根据不同的设备要求,可以通过组合CPOL和CPHA来实现精确的时序控制。
2. 数据传输顺序SPI协议支持全双工传输,数据通信可以是单向的,也可以是双向的。
数据传输的顺序由设备的主从模式决定,主机先发送数据,然后从机进行响应。
在全双工通信中,数据可以同时双向传输,主机和从机同时发送和接收数据。
3. 主从设备选择SPI协议使用一根主从选择线(SS)来选择通信的主机或从机。
当某个从机被选中时,通过使能该从机的片选线,使其进入工作状态,其他从机则处于非工作状态。
主机可以通过控制主从选择线来选择不同的从机进行通信。
4. 数据帧格式SPI协议的数据传输是以数据帧的形式进行的。
每个数据帧由一个字节(8位)的数据组成,包括发送的数据和接收的数据。
数据帧可以是单向的,也可以是双向的。
5. 传输速率SPI协议支持各种传输速率,可以根据需要进行调整。
传输速率由时钟信号频率决定,可以通过调整时钟频率来达到不同的传输速率。
spi 协议

spi 协议SPI(Serial Peripheral Interface)是一种同步、全双工、串行通信协议,常用于连接微控制器和外设芯片之间的通信。
该协议在硬件的支持下,可以实现高速、可靠的数据传输,广泛应用于各个领域。
SPI协议的核心原理是通过主设备和从设备之间的数据传输,以实现设备之间的通信。
它主要包括四根信号线:SCLK(时钟线)、MOSI(主设备输出、从设备输入线)、MISO(主设备输入、从设备输出线)和SS(片选线)。
其中,时钟线由主设备产生,用于同步数据传输;主设备通过 MOSI 向从设备发送数据,从设备则通过 MISO 向主设备发送数据;片选线用于选择要与主设备通信的从设备。
SPI协议的通信过程如下:首先,主设备拉低某一从设备的片选线,选定要通信的从设备。
然后,主设备通过时钟线产生时钟信号,从而驱动数据的传输。
在每个时钟信号的上升沿或下降沿,主设备向 MOSI 线发送一个数据位,从设备则通过MISO 线返回一个数据位。
在数据传输过程中,主设备和从设备的数据位一一对应,通过时钟信号的同步,实现了数据的可靠传输。
最后,主设备拉高片选线,结束与从设备的通信。
SPI协议具有以下几个优点:首先,由于采用了同步通信方式,数据传输速度快,可以满足对实时性要求较高的应用;其次,SPI协议不需要复杂的协议栈,简化了通信的实现过程;再次,SPI协议支持全双工通信,主设备和从设备可以同时发送和接收数据;最后,SPI协议可以同时连接多个从设备,通过片选线选择要通信的设备,提高了系统的扩展性。
SPI协议的主要应用领域包括微控制器和外设的通信、存储器的读写、显示屏的控制等。
在微控制器中,利用SPI协议可以与各类外设芯片(如传感器、存储器、显示器等)进行通信,实时地获取和控制数据。
在存储器的读写中,SPI协议可以实现高速的数据传输,提升系统的读写性能。
在显示屏的控制中,SPI协议可以通过与显示屏的通信,实现图像的传输和显示。
spi协议

spi协议SPI(Serial Peripheral Interface)是一种串行外设接口协议,通常用于微控制器与外部设备之间进行通信。
它可以实现高速的数据传输和简化的通信交互,被广泛应用于各种嵌入式系统中。
SPI协议是一种主从架构的通信方式,其中一个设备作为主设备,控制整个通信过程,其他设备则作为从设备响应主设备的指令。
SPI协议采用四根信号线,分别为时钟线(SCK)、数据输入线(MISO)、数据输出线(MOSI)和片选线(SS)。
主设备通过控制这些信号线与从设备进行通信。
在SPI协议中,通信是基于字节的,主设备通过将数据位逐个串行地发送到MOSI线上,同时通过SCK时钟线推动数据的传输。
从设备在接收到位的同时将其逐个保存,并根据SCK时钟线的信号抽取数据。
在接收数据时,从设备将数据位逐个传输到MISO线上,主设备通过该线路接收倒数第二个时钟周期中的数据位。
为了确保通信的顺利进行,SPI协议定义了一系列的规则和时序。
首先,在通信开始之前,主设备需要选择要与之通信的从设备,这是通过拉低片选线(SS)来实现的。
同时,主设备还需要确定通信的传输速率,这是通过调整SCK的频率来实现的。
SPI协议还规定了数据传输的顺序,主设备先发送数据位,然后从设备传输数据位。
如果主设备发送太多的数据位,从设备可能无法及时读取和处理。
因此,在设计SPI通信时,需要确保主从设备之间的数据位数一致。
SPI协议还定义了一些数据传输模式,用于确定数据的传输顺序和时钟极性。
最常用的模式是模式0和模式3。
在模式0中,数据的传输采用下降沿锁存(falling edge latch)的方式,数据样本在上升沿时变化。
在模式3中,数据的传输采用上升沿锁存(rising edge latch)的方式,数据样本在下降沿时变化。
SPI协议具有一些优点,使其在许多应用中得到了广泛应用。
首先,由于采用了串行传输,SPI协议可以实现高速的数据传输。
SPI(SerialPeripheralInterface)协议

SPI(SerialPeripheralInterface)协议SPI是串⾏外设接⼝(Serial Peripheral Interface)的缩写,是Motorola推出的⼀种同步串⾏接⼝技术,是⼀种⾼速的、全双⼯、同步的通信总线。
全双⼯:host能与外围从设备之间的发送线和接收线各⾃独⽴,能同时进⾏发送数据和接收数据。
源同步传输⽂章内容SPI介绍SPI协议通信时序详解SPI数据传输⽅式SPI总线优缺点1、SPI介绍应⽤场景SPI协议主要⽤于短距离的通信系统中,特别是嵌⼊式系统:存储器:RAM,EEPROM,Flash等数模转换器:A/D, D/A转换器等驱动接⼝:LED显⽰驱动器,I/O接⼝芯⽚,UART接收器等。
主从模式控制:SPI以主从⽅式进⾏⼯作,这种模式通常包含⼀个master和⼀个或多个slave,需要⾄少4根线(在单向传输时3根也可以),分别为:SDO/MOSI(master output slave input):主设备数据输出,从设备数据输⼊;SDI/MISO(master input slave output):主设备数据输⼊,从设备数据输出;SCLK:时钟信号,由主设备产⽣;CS/SS:⽚选信号,主设备控制并⽤于选择与其通信的从设备。
多Slave的SPI协议SPI协议可以操作在⼀个master对应⼀个或者多个slave的条件下,此时有多个CS/SS⽚选信号,但是⼀个时间只能有⼀个⽚选信号有效。
slave的输出端⼝MISO都是三态驱动;⾼电平,低电平和不选中时输出为⾼阻态。
数据交换(data exchanges)SPI设备之间的数据传输称为数据交换⽽不是数据传输。
这是因为SPI设备不能在进⾏数据通信的过程中仅充当transmitter和recieiver的⾓⾊,⽽是在每个时钟周期内,主从SPI设备都会发送1bit⼤⼩的数据,相当于主从设备进⾏了1bit的数据交换。
在数据的传输过程中,每次接收到的数据必须在下⼀次数据传输之前被采样,如果之前接收的数据没有被采样,那么这些已经收到的数据可能被丢弃,导致 SPI 模块最终失效,因此,在程序中,⼀般都会在 SPI 传输完数据之后,去读取 SPI 设备⾥⾯的数据,即使这些数据是在我们程序中是没有⽤的。
spi通讯协议

spi通讯协议SPI(Serial Peripheral Interface)是一种同步串行通信协议,常用于连接微控制器和外部设备,如传感器、存储器、显示器等。
它采用主从结构,通过时钟信号和数据线进行双向通信,具有高速传输、简单灵活的特点,广泛应用于各种嵌入式系统。
SPI通信协议使用四根线进行通信:CLK(时钟线)、MOSI (主输出从输入线)、MISO(主输入从输出线)和SS(从选择线)。
时钟线由主设备产生,用于同步数据传输。
MOSI和MISO线负责数据传输,MOSI线由主设备输出数据,MISO线由从设备输出数据。
SS线由主设备控制,用于选择特定的从设备进行通信。
SPI通信协议是一种全双工通信方式,数据可以同时在MOSI和MISO线上传输。
通信过程中,主设备通过产生时钟信号控制数据传输的时序,每个时钟周期传输一个比特位。
主设备将数据送入MOSI线上,并将其与时钟信号同步,从设备通过MISO线上的数据响应主设备。
SPI通信协议中可以有多个从设备存在,但每个从设备都需要一个单独的片选信号控制。
主设备通过拉低某个从设备的片选信号(SS线),来选择特定的从设备进行通信。
通信结束后,主设备释放片选信号,并选择其他从设备进行通信。
这样可以实现多个从设备与一个主设备之间的并行通信。
SPI通信协议的速度可以根据实际需求进行调整,由主设备产生的时钟信号决定了数据传输的速率。
时钟信号的频率可以在主设备中设置,通常可以选择几十kHz至几十MHz的范围。
通信速度越快,数据传输的速率越高,但同时也会增加功耗和干扰的风险。
SPI通信协议具有以下优点:首先,它具有高速传输的优势,可以满足大部分实时性要求较高的应用场景。
其次,SPI通信协议的硬件实现比较简单,可以使用几个GPIO口实现。
最后,SPI通信协议支持全双工通信,可以同时进行数据的发送和接收,提高通信效率。
综上所述,SPI通信协议是一种快速、灵活且简单的串行通信协议,广泛应用于各种嵌入式系统。
spi 协议
spi 协议SPI协议。
SPI(Serial Peripheral Interface)是一种同步串行数据通信协议,通常用于在微控制器和外围设备之间进行通信。
SPI协议是一种全双工、点对点、串行通信协议,它使用四根线进行通信,包括时钟线(SCLK)、数据线(MOSI)、数据线(MISO)和片选线(SS)。
SPI协议的工作原理是通过主从模式进行通信,一个主设备可以连接多个从设备。
在通信过程中,主设备通过时钟线产生时钟信号,控制数据的传输速率,同时通过片选线选择要与之通信的从设备。
从设备在接收到片选信号后,根据时钟信号同步数据的传输,从而实现数据的传输和接收。
SPI协议的通信方式较为灵活,数据传输的速率可以根据具体的应用需求进行调整。
同时,SPI协议的通信是全双工的,主设备和从设备可以同时发送和接收数据,提高了通信效率。
此外,SPI协议的硬件连接简单,只需要四根线即可完成通信,因此在一些资源受限的应用场景中具有一定的优势。
在使用SPI协议进行通信时,需要注意一些问题。
首先,由于SPI协议是一种同步通信协议,主设备和从设备之间的时钟频率需要一致,否则会导致通信错误。
其次,由于SPI协议是一种点对点通信协议,因此在连接多个从设备时,需要合理设计片选信号的分配,避免片选信号的冲突。
最后,SPI协议在传输过程中没有错误检测和纠正机制,因此在一些对通信可靠性要求较高的应用场景中,需要额外考虑数据的校验和重传机制。
总的来说,SPI协议是一种灵活、高效的串行通信协议,适用于在微控制器和外围设备之间进行数据通信。
在实际应用中,需要根据具体的应用需求合理选择通信协议,并结合硬件设计和软件开发进行系统设计。
希望本文对SPI协议有一个清晰的认识,并能够在实际应用中发挥作用。
SPI协议简介
SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如P89LPC900.SPI,是一种高速的,全双工,同步的通信总线,其工作模式有两种:主模式和从模式,无论那种模式,都支持3Mbit/s的速率,并且还具有传输完成标志和写冲突保护标志。
到目前为止,我使用过的具有SPI 总线的器件,就是存储芯片Eprom:at25128,在使用过程中,发现的确是有这种总线的优点。
下面以P89LPC900单片机的SPI总线来解释SPI总线的通用使用规则。
LPC900单片机的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO是主机的输入,从机的输出。
/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。
在一个SPI通信系统中,必须有主机。
SPI总线可以配置成单主单从,单主多从,互为主从。
今以互为主从模式作为讲解:要进行SPI互为主从操作,必须遵照以下步骤:1 对A、B进行初始化,均设为主机(需要进行以下操作)。
a) SPI端口初始化为准双向。
b) SPCTL配置为0x50,SSIG=0,SPEN=1,MSTR=1。
c) 清除SPSTAT中的SPIF及WCOL标志位为0。
d) 如果需要使用SPI中断,可使能相应中断位。
2 将A上一个引脚连接到B的/SS引脚上,然后拉低/SS,可将B强行置为从机模式,同时B机会发生以下变化:a) B机的MSTR位自动清0。
SPI协议串行外设接口协议的解析
SPI协议串行外设接口协议的解析SPI(Serial Peripheral Interface)协议是一种串行外设接口协议,常用于在微控制器和外部设备之间进行数据通信。
本文将对SPI协议的基本原理、通信格式以及常见应用进行解析。
一、SPI协议概述SPI协议是一种同步的全双工通信协议,其核心思想是通过使用四根线(片选信号、时钟、输入数据、输出数据)来实现设备之间的通信。
SPI可以同时支持单主机和多从机的通信方式,能够实现高速数据传输,并且相对简单易用。
二、SPI工作原理SPI工作在主-从模式下,一个主设备可以与一个或多个从设备进行通信。
SPI协议中的主设备控制时钟信号,指示数据传输的开始和结束,从设备根据时钟信号来读取或写入数据。
SPI通信时,主设备通过选择片选信号来选择要与其通信的从设备。
三、SPI通信格式1. 时钟极性(CPOL)和相位(CPHA):SPI通信协议的时钟极性和相位可以根据设备的要求进行设置,以适应不同设备的通信模式。
CPOL定义了在空闲状态下(时钟未激活)时钟信号的电平,高电平或低电平;CPHA定义了数据采样的时机,以时钟的上升沿还是下降沿为准。
2. 数据位顺序:SPI通信中数据传输的位顺序可以是LSB(Least Significant Bit,最低有效位)或MSB(Most Significant Bit,最高有效位)。
3. 传输速度:SPI通信的速度由主设备的时钟频率控制,可以根据从设备的要求和系统的稳定性来进行设置。
四、SPI应用场景SPI协议广泛应用于各种外设和传感器之间的通信,以下是几个常见的应用场景:1. 存储器芯片:SPI协议被广泛应用于存储器芯片(如Flash和EEPROM)和微控制器之间的通信,实现数据的读写操作。
2. 显示模块:很多液晶屏和OLED显示模块都采用SPI协议与主控制器进行通信,传输图像数据和命令。
3. 传感器:许多传感器(如温度传感器、加速度传感器等)通过SPI协议与控制器进行数据传输,实现实时数据采集和处理。
spi总线协议
spi总线协议SPI总线协议。
SPI(Serial Peripheral Interface)是一种用于在数字集成电路之间进行通信的同步串行通信协议。
它通常用于连接微控制器和外围设备,例如存储器芯片、传感器、显示器和无线模块等。
SPI总线协议具有简单、高效、灵活等特点,因此在许多嵌入式系统中得到广泛应用。
本文将对SPI总线协议的基本原理、通信方式、时序特性以及应用进行介绍。
SPI总线协议基本原理。
SPI总线由四根信号线组成,分别为时钟信号(SCLK)、主设备输出(MOSI)、主设备输入(MISO)和片选信号(SS)。
在SPI总线中,通信的主设备通过SCLK信号产生时钟脉冲,控制数据的传输。
MOSI信号用于主设备向从设备发送数据,MISO信号用于从设备向主设备发送数据。
片选信号用于选择从设备,使得主设备可以与多个从设备进行通信。
SPI总线协议通信方式。
SPI总线协议采用全双工通信方式,即主设备和从设备可以同时发送和接收数据。
通信开始时,主设备通过片选信号选择从设备,并在时钟信号的控制下,通过MOSI信号向从设备发送数据,同时从设备通过MISO信号向主设备发送数据。
通信结束后,主设备通过片选信号取消对从设备的选择,从而完成一次数据传输。
SPI总线协议时序特性。
在SPI总线协议中,数据的传输是在时钟信号的控制下进行的。
通常情况下,数据的传输是在时钟的上升沿或下降沿进行的,具体取决于SPI设备的工作模式。
此外,SPI总线协议还可以通过调整时钟信号的极性和相位来适应不同的外设要求,从而实现更灵活的通信方式。
SPI总线协议应用。
SPI总线协议在各种嵌入式系统中得到广泛应用,例如单片机、嵌入式系统、传感器网络等。
在单片机中,SPI总线协议通常用于连接外部存储器、显示器、通信模块等外围设备。
在嵌入式系统中,SPI总线协议可以用于连接各种外设,实现系统的功能扩展和升级。
在传感器网络中,SPI总线协议可以用于连接各种传感器节点,实现数据的采集和传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
External Signal Description
Memory Map/Register Definition
Address Use Access
$___0 $___1
$___2 $___3 $___4 $___5
SPI Control Register 1 (SPICR1) SPI Control Register 2 (SPICR2)
SPICR1
CPOL — SPI Clock Polarity Bit(SPI时钟极性控制位) 该位选择反相或非反相SPI时钟。 要在SPI模块之间传输数据,SPI模块必 须具有相同的CPOL值。 在主模式下,该位的更改将中止正在进行的传输, 并强制SPI系统进入空闲状态。 1 = 低电平时钟有效,在空闲状态SCK为高电平。 0 = 高电平时钟有效,在空闲状态SCK为低电平。
SPICR2
双向引脚配置
SPI Baud Rate Register(SPIBR)
Register Address: $___2
Read : anytime Write : anytime; writes to the reserved bits have no effect
SPIBR
SPPR2–SPPR0 — SPI Baud Rate Preselection Bits (波特率预分频位) SPR2–SPR0 — SPI Baud Rate Selection Bits ( SPI波特率选择位)
General
Master Mode
当MSTR置位时,SPI工作在主模式。 只有SPI主机可以传输数据。 数 据传输通过对主机SPI数据寄存器写入开始。 如果移位寄存器为空,则字 节立即传送到移位寄存器。 字节在串行时钟的控制下开始在MOSI引脚上 移出。
• S-clock SPI波特率寄存器中的波特率选择位SPR2,SPR1和SPR0及波特率预分 频位SPPR2,SPPR1和SPPR0控制波特率发生器及决定传输速度。 SCK引脚 就是是SPI时钟输出。 主机的波特率发生器通过SCK引脚控制外围从机的 移位寄存器。
Register Descriptions
SPI Control Register 1
SPI Control Register 2 SPI Baud Rate Register SPI Status Register SPI Data Register
SPI Control Register 1(SPICR1)
SPICR2
SPISWAI — SPI Stop in Wait Mode Bit(SPI等待模式停止位) 该位用于在等待模式下降低功耗。 1 = 在等待模式下停止产生SPI时钟 0 = 在等待模式下SPI时钟正常工作
SPICR2
SPC0 — Serial Pin Control Bit 0(串行控制位0) 该位使能双向引脚配置。 在主模式下,该位的更改将中止正在进行的传 输,并强制SPI系统进入空闲状态。
LSBFE — LSB-First Enable(最低有效位使能位) 该位不影响数据寄存器中MSB和LSB的位置。 对数据寄存器的读和写包含 MSB( Bit 7 )。在主模式下,该位的更改将中止正在进行的传输,并强 制SPI系统进入空闲状态。 1 = 数据传输从最低有效位开始。 0 = 数据传输从最高有效位开始。
SPIDR
当SPIF置位时,SPIDR中的接收的数据是有效的。 如果SPIF清零且接收到一个字节,接收到的字节将从接收移位寄存器 传送到SPIDR,且SPIF被置位。 如果SPIF置位且未服务,并且接收到第二个字节,则第二个接收字节 在接收移位寄存器中保持为有效字节直到下一次传输开始。 期间在SPIDR 中的字节不更改。 如果SPIF置位且接收移位寄存器中有一个有效字节,并且在第三次传 输开始前SPIF服务,则接收移位寄存器中的字节将传输到SPIDR中,SPIF 保持置位。 如果SPIF置位且接收移位寄存器中有一个有效字节,并且在第三次传 输开始后SPIF服务,则接收移位寄存器中的字节变为无效,并且不会传 输到SPIDR中。
Register Address: $___0
Read : anytime Write : anytime
SPICR1
SPIE — SPI Interrupt Enable Bit(SPI中断使能位) 如果SPIF或MODF状态标志位置位,则该位控制SPI中断请求。 1 = SPI中断使能 0 = SPI中断禁用
Master Mode
Master Mode
注意:在主模式下,CPOL,CPHA,SSOE,LSBFE,MODFEN,SPC0及 BIDIROE(SPC0置位)的变化,SPPR2-SPPR0及SPR2-SPR0的更改将中止正 在进行的传输,并强制SPI进入空闲状态。 远处的从机无法检测到这一点, 因此主机必须保证远处从机进入空闲状态。 另外,在从模式下,CPOL,CPHA,SSOE,LSBFE,MODFEN,SPC0 及BIDIROE(SPC0置位)的更改,将破坏正在进行的传输,必须避免。
SPICR1
SPTIE — SPI Transmit Interrupt Enable(SPI传输中断使能位) 如果SPTEF标志位置位,则该位控制SPI传输中断。 1 = SPI中断使能 0 = SPIr/Slave Mode Select Bit(SPI主/从模式选择位) 该位用于选择SPI工作在主模式还是从模式。让SPI从主模式转换到从模式 或者反过来也可以强制SPI系统进入空闲状态。 1 = SPI工作在主模式 0 = SPI工作在从模式
SPICR1
CPHA — SPI Clock Phase Bit(SPI时钟相位控制位) 该位用于选择SPI时钟格式。在主模式下,该位的更改将中止正在进行的 传输,并强制SPI系统进入空闲状态。 1 = 在每个周期的第二个时钟沿采样数据 0 = 在每个周期的第一个时钟沿采样数据
SPICR1
SPICR1
SPI Control Register 2(SPICR2)
Register Address: $___1
Read : anytime Write : anytime; writes to the reserved bits have no effect
SPICR2
SPICR2
BIDIROE — Output enable in the Bidirectional mode of operation (双向模式输出使能位) 当处于双向工作模式(SPC0置位)时,该位控制SPI的MOSI和MISO输出 缓冲器。在主模式下,该位控制MOSI端口的输出缓冲器。在从模式下该 位控制MISO端口的输出缓冲器。在主模式下,且SPC0置位时,该位的更 改将中止正在进行的传输,并强制SPI进入空闲状态。 1 = 输出缓冲器使能 0 = 输出缓冲器禁用
SPI Baud Rate Register (SPIBR) SPI Status Register (SPISR) Reserved SPI Data Register (SPIDR)
Read / Write
Read / Write
$___6 $___7
Reserved Reserved
NOTES: 1.某些位是不可写的。 2.对该寄存器的写操作将被忽略。 3.从此寄存器读取全部返回零。
SPI Block Diagram
Features
主模式和从模式 双向模式 从选择输出 模式错误标志,具有CPU中断能力 双缓冲数据寄存器 串行时钟的极性和相位可编程 对SPI在等待模式期间的操作控制
Modes of Operation
• Run Mode
基本运行模式
SPISR
SPI Data Register(SPIDR)
Register Address: $___5
Read : anytime; normally read only when SPIF is set Write : anytime
SPIDR
SPI数据寄存器既是SPI数据的输入寄存器也是数据的输出寄存器。当对该 寄存器进行写操作时允许将数据字节排队并传输。当SPI被配置为主机时, 排队的数据字节在上一个传输完成后立即传输。SPISR 中的SPTEF 用于表 明SPIDR是否准备好接收新数据。
SPIBR
SPI Status Register(SPISR)
Register Address: $___3
Read : anytime Write : has no effect
SPISR
SPIF — SPIF Interrupt Flag(SPIF中断标志位) 该位在接收到的数据字节传输到SPI数据寄存器后置位。 该位通过 读取SPISR寄存器(SPIF置位),随后读SPI数据寄存器来清零。 1 = 新数据已复制到SPIDR 0 = 传输尚未完成
SPISR
SPTEF — SPI Transmit Empty Interrupt Flag(SPI传输空中断标志) 如果置位,该位表明传输数据寄存器为空。要清零该位并将数据放入传 输数据寄存器,SPISR必须被读且SPTEF = 1,然后写入SPIDR。任何写入 SPIDR没有读SPTEF = 1,会被忽略。 1 = SPI数据寄存器为空 0 = SPI数据寄存器不为空
SPICR1
SPE — SPI System Enable Bit(SPI系统使能位) 该位用于控制SPI系统使能和SPI端口引脚用于SPI系统功能。 如果SPE清零, SPI被禁用并强制进入空闲状态,SPISR寄存器中的状态位被复位。 1 = SPI使能,端口引脚用于SPI功能 0 = SPI禁用(低功耗)
• Stop Mode
SPI在停止模式下是空闲的,以降低功耗。 如果SPI被配置为主机,则 任何传输都被停止,但在CPU进入运行模式后恢复。 如果SPI被配置为从 机,则继续接收和发送字节,以使从机与主机保持同步。