SPI协议
spi通信协议

spi通信协议SPI(Serial Peripheral Interface)串行外设接口是一种同步的、全双工的通信协议,常用于单片机和外部设备之间的通信。
SPI协议定义了一种主从模式的通信方式,其中一个设备充当主设备,负责发起通信,而其他设备则充当从设备,负责接收和处理通信数据。
SPI通信协议由四根线组成:时钟线(CLK)、片选线(SS)、主设备发出数据(MOSI)和主设备接收数据(MISO)。
在SPI通信中,主设备通过时钟线提供时钟脉冲,通过片选线选择和控制不同的从设备。
在通信开始时,主设备将片选线拉低,选择需要通信的从设备。
然后,主设备在每个时钟脉冲中,通过MOSI线发送数据给从设备,同时从设备通过MISO线将数据发送回主设备。
SPI通信协议的通信方式为全双工,即主设备和从设备可以同时发送和接收数据。
在通信过程中,主设备和从设备通过时钟的同步来保持数据的一致性。
主设备在上升沿将数据发送到MOSI线上,而从设备在下降沿将数据从MISO线上读取。
通过时钟的同步,主从设备可以准确地发送和接收数据。
在SPI通信中,数据的传输是串行的,即每个数据位都按顺序传输。
通信的起始位和终止位可以由主设备和从设备约定。
通常情况下,通信的起始位由主设备发起,并在时钟上升沿进行传输。
终止位可以由主设备或从设备发起,并在时钟下降沿进行传输。
SPI通信协议的速度可以通过调整时钟频率来控制。
时钟频率越高,数据传输的速度越快。
然而,时钟频率的增加也会增加信号的噪声和功耗。
因此,在选择时钟频率时,需要权衡速度和可靠性的要求。
SPI通信协议还支持多个从设备的通信。
每个从设备都有一个独立的片选线,主设备可以通过选择不同的片选线来与不同的从设备进行通信。
这种多从设备的通信方式使SPI协议更加灵活,可以同时与多个外部设备进行数据交换。
综上所述,SPI通信协议是一种常用的串行通信协议,使用主从模式进行数据交换。
它具有简单、可靠、高速的特点,适用于单片机和外部设备之间的通信。
SPI协议解析高速串行通信的协议标准

SPI协议解析高速串行通信的协议标准SPI(Serial Peripheral Interface)是一种高速串行通信协议,被广泛应用于各种数字设备的通信接口传输中。
本文将对SPI协议进行详细解析,介绍其协议标准,以及相关的特性和应用。
I. 介绍SPI协议是一种同步协议,常用于微控制器和外部外设之间的通信。
它通过四根信号线(时钟线、数据线、主从选择线、片选线)实现全双工通信,并且支持多主机和多从机的通信方式。
SPI协议具有高速传输、简单易用、灵活性强等特点,被广泛用于各种应用领域。
II. 协议标准SPI协议的通信规范主要包括以下几个方面:1. 时钟极性与相位SPI协议定义了两种类型的时钟极性和相位设置,分别为CPOL和CPHA。
CPOL用于控制时钟信号的极性,可以是低电平为开始(CPOL=0),或高电平为开始(CPOL=1)。
CPHA用于控制数据采样的时机,可以是时钟信号的上升沿采样(CPHA=0),或下降沿采样(CPHA=1)。
根据不同的设备要求,可以通过组合CPOL和CPHA来实现精确的时序控制。
2. 数据传输顺序SPI协议支持全双工传输,数据通信可以是单向的,也可以是双向的。
数据传输的顺序由设备的主从模式决定,主机先发送数据,然后从机进行响应。
在全双工通信中,数据可以同时双向传输,主机和从机同时发送和接收数据。
3. 主从设备选择SPI协议使用一根主从选择线(SS)来选择通信的主机或从机。
当某个从机被选中时,通过使能该从机的片选线,使其进入工作状态,其他从机则处于非工作状态。
主机可以通过控制主从选择线来选择不同的从机进行通信。
4. 数据帧格式SPI协议的数据传输是以数据帧的形式进行的。
每个数据帧由一个字节(8位)的数据组成,包括发送的数据和接收的数据。
数据帧可以是单向的,也可以是双向的。
5. 传输速率SPI协议支持各种传输速率,可以根据需要进行调整。
传输速率由时钟信号频率决定,可以通过调整时钟频率来达到不同的传输速率。
spi 协议

spi 协议SPI(Serial Peripheral Interface)是一种同步、全双工、串行通信协议,常用于连接微控制器和外设芯片之间的通信。
该协议在硬件的支持下,可以实现高速、可靠的数据传输,广泛应用于各个领域。
SPI协议的核心原理是通过主设备和从设备之间的数据传输,以实现设备之间的通信。
它主要包括四根信号线:SCLK(时钟线)、MOSI(主设备输出、从设备输入线)、MISO(主设备输入、从设备输出线)和SS(片选线)。
其中,时钟线由主设备产生,用于同步数据传输;主设备通过 MOSI 向从设备发送数据,从设备则通过 MISO 向主设备发送数据;片选线用于选择要与主设备通信的从设备。
SPI协议的通信过程如下:首先,主设备拉低某一从设备的片选线,选定要通信的从设备。
然后,主设备通过时钟线产生时钟信号,从而驱动数据的传输。
在每个时钟信号的上升沿或下降沿,主设备向 MOSI 线发送一个数据位,从设备则通过MISO 线返回一个数据位。
在数据传输过程中,主设备和从设备的数据位一一对应,通过时钟信号的同步,实现了数据的可靠传输。
最后,主设备拉高片选线,结束与从设备的通信。
SPI协议具有以下几个优点:首先,由于采用了同步通信方式,数据传输速度快,可以满足对实时性要求较高的应用;其次,SPI协议不需要复杂的协议栈,简化了通信的实现过程;再次,SPI协议支持全双工通信,主设备和从设备可以同时发送和接收数据;最后,SPI协议可以同时连接多个从设备,通过片选线选择要通信的设备,提高了系统的扩展性。
SPI协议的主要应用领域包括微控制器和外设的通信、存储器的读写、显示屏的控制等。
在微控制器中,利用SPI协议可以与各类外设芯片(如传感器、存储器、显示器等)进行通信,实时地获取和控制数据。
在存储器的读写中,SPI协议可以实现高速的数据传输,提升系统的读写性能。
在显示屏的控制中,SPI协议可以通过与显示屏的通信,实现图像的传输和显示。
spi协议

spi协议SPI(Serial Peripheral Interface)是一种串行外设接口协议,通常用于微控制器与外部设备之间进行通信。
它可以实现高速的数据传输和简化的通信交互,被广泛应用于各种嵌入式系统中。
SPI协议是一种主从架构的通信方式,其中一个设备作为主设备,控制整个通信过程,其他设备则作为从设备响应主设备的指令。
SPI协议采用四根信号线,分别为时钟线(SCK)、数据输入线(MISO)、数据输出线(MOSI)和片选线(SS)。
主设备通过控制这些信号线与从设备进行通信。
在SPI协议中,通信是基于字节的,主设备通过将数据位逐个串行地发送到MOSI线上,同时通过SCK时钟线推动数据的传输。
从设备在接收到位的同时将其逐个保存,并根据SCK时钟线的信号抽取数据。
在接收数据时,从设备将数据位逐个传输到MISO线上,主设备通过该线路接收倒数第二个时钟周期中的数据位。
为了确保通信的顺利进行,SPI协议定义了一系列的规则和时序。
首先,在通信开始之前,主设备需要选择要与之通信的从设备,这是通过拉低片选线(SS)来实现的。
同时,主设备还需要确定通信的传输速率,这是通过调整SCK的频率来实现的。
SPI协议还规定了数据传输的顺序,主设备先发送数据位,然后从设备传输数据位。
如果主设备发送太多的数据位,从设备可能无法及时读取和处理。
因此,在设计SPI通信时,需要确保主从设备之间的数据位数一致。
SPI协议还定义了一些数据传输模式,用于确定数据的传输顺序和时钟极性。
最常用的模式是模式0和模式3。
在模式0中,数据的传输采用下降沿锁存(falling edge latch)的方式,数据样本在上升沿时变化。
在模式3中,数据的传输采用上升沿锁存(rising edge latch)的方式,数据样本在下降沿时变化。
SPI协议具有一些优点,使其在许多应用中得到了广泛应用。
首先,由于采用了串行传输,SPI协议可以实现高速的数据传输。
SPI(SerialPeripheralInterface)协议

SPI(SerialPeripheralInterface)协议SPI是串⾏外设接⼝(Serial Peripheral Interface)的缩写,是Motorola推出的⼀种同步串⾏接⼝技术,是⼀种⾼速的、全双⼯、同步的通信总线。
全双⼯:host能与外围从设备之间的发送线和接收线各⾃独⽴,能同时进⾏发送数据和接收数据。
源同步传输⽂章内容SPI介绍SPI协议通信时序详解SPI数据传输⽅式SPI总线优缺点1、SPI介绍应⽤场景SPI协议主要⽤于短距离的通信系统中,特别是嵌⼊式系统:存储器:RAM,EEPROM,Flash等数模转换器:A/D, D/A转换器等驱动接⼝:LED显⽰驱动器,I/O接⼝芯⽚,UART接收器等。
主从模式控制:SPI以主从⽅式进⾏⼯作,这种模式通常包含⼀个master和⼀个或多个slave,需要⾄少4根线(在单向传输时3根也可以),分别为:SDO/MOSI(master output slave input):主设备数据输出,从设备数据输⼊;SDI/MISO(master input slave output):主设备数据输⼊,从设备数据输出;SCLK:时钟信号,由主设备产⽣;CS/SS:⽚选信号,主设备控制并⽤于选择与其通信的从设备。
多Slave的SPI协议SPI协议可以操作在⼀个master对应⼀个或者多个slave的条件下,此时有多个CS/SS⽚选信号,但是⼀个时间只能有⼀个⽚选信号有效。
slave的输出端⼝MISO都是三态驱动;⾼电平,低电平和不选中时输出为⾼阻态。
数据交换(data exchanges)SPI设备之间的数据传输称为数据交换⽽不是数据传输。
这是因为SPI设备不能在进⾏数据通信的过程中仅充当transmitter和recieiver的⾓⾊,⽽是在每个时钟周期内,主从SPI设备都会发送1bit⼤⼩的数据,相当于主从设备进⾏了1bit的数据交换。
在数据的传输过程中,每次接收到的数据必须在下⼀次数据传输之前被采样,如果之前接收的数据没有被采样,那么这些已经收到的数据可能被丢弃,导致 SPI 模块最终失效,因此,在程序中,⼀般都会在 SPI 传输完数据之后,去读取 SPI 设备⾥⾯的数据,即使这些数据是在我们程序中是没有⽤的。
spi通讯协议

spi通讯协议SPI(Serial Peripheral Interface)是一种同步串行通信协议,常用于连接微控制器和外部设备,如传感器、存储器、显示器等。
它采用主从结构,通过时钟信号和数据线进行双向通信,具有高速传输、简单灵活的特点,广泛应用于各种嵌入式系统。
SPI通信协议使用四根线进行通信:CLK(时钟线)、MOSI (主输出从输入线)、MISO(主输入从输出线)和SS(从选择线)。
时钟线由主设备产生,用于同步数据传输。
MOSI和MISO线负责数据传输,MOSI线由主设备输出数据,MISO线由从设备输出数据。
SS线由主设备控制,用于选择特定的从设备进行通信。
SPI通信协议是一种全双工通信方式,数据可以同时在MOSI和MISO线上传输。
通信过程中,主设备通过产生时钟信号控制数据传输的时序,每个时钟周期传输一个比特位。
主设备将数据送入MOSI线上,并将其与时钟信号同步,从设备通过MISO线上的数据响应主设备。
SPI通信协议中可以有多个从设备存在,但每个从设备都需要一个单独的片选信号控制。
主设备通过拉低某个从设备的片选信号(SS线),来选择特定的从设备进行通信。
通信结束后,主设备释放片选信号,并选择其他从设备进行通信。
这样可以实现多个从设备与一个主设备之间的并行通信。
SPI通信协议的速度可以根据实际需求进行调整,由主设备产生的时钟信号决定了数据传输的速率。
时钟信号的频率可以在主设备中设置,通常可以选择几十kHz至几十MHz的范围。
通信速度越快,数据传输的速率越高,但同时也会增加功耗和干扰的风险。
SPI通信协议具有以下优点:首先,它具有高速传输的优势,可以满足大部分实时性要求较高的应用场景。
其次,SPI通信协议的硬件实现比较简单,可以使用几个GPIO口实现。
最后,SPI通信协议支持全双工通信,可以同时进行数据的发送和接收,提高通信效率。
综上所述,SPI通信协议是一种快速、灵活且简单的串行通信协议,广泛应用于各种嵌入式系统。
SPII2CUART三种串行总线协议及其区别
SPII2CUART三种串行总线协议及其区别SPI(Serial Peripheral Interface)是一种常见的串行总线协议,主要用于单片机和外部设备之间的通信。
SPI协议需要同时使用多个信号线,包括时钟信号、主从选择信号、数据输入信号和数据输出信号。
SPI协议是一种全双工的通信方式,数据可以双向传输。
SPI通信协议的特点包括以下几点:1.时钟信号:SPI协议中的设备之间使用了共享的时钟信号,时钟信号用于同步数据传输。
时钟信号由主设备控制,并且时钟频率可以根据需要调整。
SPI协议没有固定的时钟频率限制,可以根据实际需求进行调整。
2.主从选择信号:SPI协议中的从设备需要通过主从选择信号进行选择。
主设备通过拉低从设备的主从选择信号来选择与之通信的从设备。
可同时与多个从设备通信。
3.数据传输:SPI协议是一种由主设备控制的同步通信协议,数据在时钟的边沿上升移位。
主设备在时钟的上升沿将数据发送给从设备,从设备在时钟的下降沿将数据发送给主设备。
SPI协议的优势在于速度快、可靠性高,适合于需要高速传输的应用,如存储器、显示器驱动等。
I2C(Inter-Integrated Circuit)是一种常见的串行总线协议,主要用于集成电路之间的通信。
I2C协议仅需要两根信号线:序列时钟线(SCL)和串行数据线(SDA)。
I2C协议是一种半双工通信方式,数据只能单向传输。
I2C通信协议的特点包括以下几点:1.序列时钟线(SCL):SCL是在主设备和从设备之间共享的信号线,用于同步数据传输。
主设备通过拉高和拉低SCL来控制数据传输的时钟频率。
2.串行数据线(SDA):SDA负责数据的传输。
数据在SCL的上升沿或下降沿变化时,主设备或从设备将数据写入或读取出来。
3.地址寻址:I2C协议使用7位或10位的地址寻址,从设备可以根据地址进行选择。
I2C协议的优势在于可以连接多个设备,节省了引脚,适用于多设备之间的通信,如传感器、温度传感器、压力传感器等。
spi 协议
spi 协议SPI协议。
SPI(Serial Peripheral Interface)是一种同步串行数据通信协议,通常用于在微控制器和外围设备之间进行通信。
SPI协议是一种全双工、点对点、串行通信协议,它使用四根线进行通信,包括时钟线(SCLK)、数据线(MOSI)、数据线(MISO)和片选线(SS)。
SPI协议的工作原理是通过主从模式进行通信,一个主设备可以连接多个从设备。
在通信过程中,主设备通过时钟线产生时钟信号,控制数据的传输速率,同时通过片选线选择要与之通信的从设备。
从设备在接收到片选信号后,根据时钟信号同步数据的传输,从而实现数据的传输和接收。
SPI协议的通信方式较为灵活,数据传输的速率可以根据具体的应用需求进行调整。
同时,SPI协议的通信是全双工的,主设备和从设备可以同时发送和接收数据,提高了通信效率。
此外,SPI协议的硬件连接简单,只需要四根线即可完成通信,因此在一些资源受限的应用场景中具有一定的优势。
在使用SPI协议进行通信时,需要注意一些问题。
首先,由于SPI协议是一种同步通信协议,主设备和从设备之间的时钟频率需要一致,否则会导致通信错误。
其次,由于SPI协议是一种点对点通信协议,因此在连接多个从设备时,需要合理设计片选信号的分配,避免片选信号的冲突。
最后,SPI协议在传输过程中没有错误检测和纠正机制,因此在一些对通信可靠性要求较高的应用场景中,需要额外考虑数据的校验和重传机制。
总的来说,SPI协议是一种灵活、高效的串行通信协议,适用于在微控制器和外围设备之间进行数据通信。
在实际应用中,需要根据具体的应用需求合理选择通信协议,并结合硬件设计和软件开发进行系统设计。
希望本文对SPI协议有一个清晰的认识,并能够在实际应用中发挥作用。
spi协议
同步串行外设接口(S PI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。
SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。
SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。
通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。
总线协议该总线通信基于主-从(所有的串行的总线均是这样,USB,IIC,SPI等)配置,而且下面提到的方向性的操作合指代全部从主设备的角度说得。
它有以下4个信号:MOSI:主出/从入MISO:主入/从出SCK:串行时钟SS:从属选择;芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。
在SPI传输中,数据是同步进行发送和接收的。
数据传输的时钟基于来自主处理器的时钟脉冲(好像也可以是IO上的电平的模拟时钟),摩托罗拉没有定义任何通用SPI的时钟规范。
然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。
CPOL和CPHA的设置决定了数据取样的时钟沿。
数据方向和通信速度SPI传输串行数据时首先传输最高位。
波特率可以高达5Mbps,具体速度大小取决于SPI硬件。
例如,Xicor公司的SPI串行器件传输速度能达到5MHz。
SPI总线接口及时序SPI总线包括1根串行同步时钟信号线以及2根数据线。
SPI协议串行外设接口协议的解析
SPI协议串行外设接口协议的解析SPI(Serial Peripheral Interface)协议是一种串行外设接口协议,常用于在微控制器和外部设备之间进行数据通信。
本文将对SPI协议的基本原理、通信格式以及常见应用进行解析。
一、SPI协议概述SPI协议是一种同步的全双工通信协议,其核心思想是通过使用四根线(片选信号、时钟、输入数据、输出数据)来实现设备之间的通信。
SPI可以同时支持单主机和多从机的通信方式,能够实现高速数据传输,并且相对简单易用。
二、SPI工作原理SPI工作在主-从模式下,一个主设备可以与一个或多个从设备进行通信。
SPI协议中的主设备控制时钟信号,指示数据传输的开始和结束,从设备根据时钟信号来读取或写入数据。
SPI通信时,主设备通过选择片选信号来选择要与其通信的从设备。
三、SPI通信格式1. 时钟极性(CPOL)和相位(CPHA):SPI通信协议的时钟极性和相位可以根据设备的要求进行设置,以适应不同设备的通信模式。
CPOL定义了在空闲状态下(时钟未激活)时钟信号的电平,高电平或低电平;CPHA定义了数据采样的时机,以时钟的上升沿还是下降沿为准。
2. 数据位顺序:SPI通信中数据传输的位顺序可以是LSB(Least Significant Bit,最低有效位)或MSB(Most Significant Bit,最高有效位)。
3. 传输速度:SPI通信的速度由主设备的时钟频率控制,可以根据从设备的要求和系统的稳定性来进行设置。
四、SPI应用场景SPI协议广泛应用于各种外设和传感器之间的通信,以下是几个常见的应用场景:1. 存储器芯片:SPI协议被广泛应用于存储器芯片(如Flash和EEPROM)和微控制器之间的通信,实现数据的读写操作。
2. 显示模块:很多液晶屏和OLED显示模块都采用SPI协议与主控制器进行通信,传输图像数据和命令。
3. 传感器:许多传感器(如温度传感器、加速度传感器等)通过SPI协议与控制器进行数据传输,实现实时数据采集和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPI接口规程
目的
这篇文章说明了在单轴SCA61T和双轴SCA100T倾角仪中使用的SPI接口。
SPI接口
外围串行接口(SPI)是一种四线同步串行接口。
数据通信在从器件选择或片选信号(CSB)为低时有效。
数据由串行数据输入(MOSI),串行数据输出(MISO)和串行时钟信号(SCK)组成的三线接口进行传输。
每个SPI系统由一个主机,一个或多个从机构成。
主机是提供SPI时钟信号的微控制器,从机是接收SPI信号的任何集成电路。
图1 典型SPI接口连接图
该ASIC的SPI接口是支持绝大多数用软件实现SPI总线的微控制器。
然而它不支持用硬件实现SPI的微型控制器(这种控制器在许多商用控制器中很普遍)。
该产品的SPI接口用于检测、校准及最后的应用中。
在常规应用中,一些检测和校准命令是无效的,因而这里没有相关文档。
在主从操作模式中,该ASIC 总是作为从器件来操作的。
主机(如uP检测机等)与ASIC间使用四线串行系统实现传输。
MOSI 主机出从机入 uP —〉 ASIC
MISO 主机入从机出 ASIC—〉 uP
SCK 串行时钟 uP —〉 ASIC
CSB 片选(低有效) uP—〉 ASIC
每次数据传输开始于CSB信号的下降沿,结束于其上升沿。
数据传输过程中,命令和数据由SCK和CSB信号控制,并遵循下列规则:
1. 命令和数据传输时,高位在前,低位在后
2. 每个输出数据/状态位在SCK下降沿移出(MISO线)
3. SCK信号的上升沿数据输出(MOSI线)
4. 器件在CSB信号为低被选中,同时收到一个八比特命令。
该命令指定了、将要进行的操作。
5. CSB信号上升沿时结束所有的数据传输,并复位内部计数器和命令字寄存器。
6. 如果接收到无效命令,则不会有数据写入IC,MISO将保持高阻直至CSB 下降沿,并对串行通信重新初始化。
7. 除了表1中所列的SPI命令之外,为了能够执行其它命令,锁存器的内容须正确设置。
如果其他命令输入时,锁存器的内容不正确,则数据不会传送到芯片上,并且在CSB信号下降沿到来之前,MISO线一直处于高阻态。
8. 发送完命令后,主机的的数据传送立即进行(在MOSI线),数据将写入ASIC的内部寄存器中。
9. 在SCK的上升沿,SPI命令的最后一位输入后,则在紧接的SCK的下降沿到来时,数据开始由MISO线输出。
10. 最高数据传输速率可超过1MHZ。
SPI命令可以是独立的指令也可以是指令与数据的组合。
在指令与数据一起发送时,输入数据直接跟在指令之后,输出数据与主机的输入数据平行进行。
图2 SPI总线上的命令与数据的传输
上电后,电路以测量模式启动,这是在最终应用中使用的操作模式。
数字接口说明
表1 数字参数
参数条件最小值典型值最大值单位
数字输出 @500kHz 1 nF SPI时钟频率500 kHz 内部AD频率150 us 数据传输时间 @500kHz 38 us
注:最小SPI频率取决于主控制器时钟频率
SPI命令
SPI接口使用8比特指令(或命令)寄存器。
用户使用的一组命令列于表6中。
表2 SPI命令
命令名称命令格式描述
MEAS 00000000
测量模式(上电后,常规操作模式)
读写温度数据寄存器
RWTR 00001000
激活X通道自检
STX 00001110
STY 00001111
激活Y通道自检
通过SPI总线读X通道加速度值
RDAX 00010000
通过SPI总线读Y通道加速度值
RDAY 00010001
注:斜体命令仅用于双轴SCA100T中
测量模式(MEAS):上电后的标准操作模式。
在常规操作中,MEAS命令是退出自检的命令。
读写温度数据寄存器(RWTR):在常规操作中,可以在不影响电路操作的情况下读写温度数据寄存器,温度数据寄存器每隔150us加载一次,在CSB为低时,不能进行加载。
因而为了保证数据正确,在执行RWTR命令前,CSB信号至少要保持150us的高电平。
数据传输如图3所示,MSB在前。
在常规操作中,执行RWTR 命令时,什么数据写入温度数据寄存器并不重要,因而建议全部输入0。
对X通道自检(STX):STX命令能激活X通道(通道1)自检功能。
内部电荷管道被激活,高电压施加到加速度传感器的电极上,从而产生静电力,使敏感梁偏离平衡位置,产生正向的加速度。
输入MEAS命令后,自检无效。
对Y通道自检(STY):STY命令能激活Y通道(通道2)自检功能。
内部电荷管道被激活,高电压施加到加速度传感器的电极上,从而产生静电力,使敏感梁偏离平衡位置,产生正向的加速度。
输入MEAS命令后,自检无效。
读X通道加速度(RDAX):RDAX命令能够访问X通道(通道1)A/D转换器加速度信号,加速度信号存储在X通道加速度数据寄存器中。
在常规操作中,加速度数据寄存器每隔150us加载一次。
当CSB信号为低时,不能进行加载操作,因而为了保证数据正确,执行RDAX命令前,CSB信号应至少保持150us的高电平。
数据输出是11比特的数字量,MSB在前,LSB在后。
读X通道加速度(RDAX):RDAX命令能够访问Y通道(通道2)A/D转换器加速度信号,加速度信号存储在Y通道加速度数据寄存器中。
在常规操作中,加速度数据寄存器每隔150us加载一次。
当CSB信号为低时,不能进行加载操作,因而为了保证数据正确,执行RDAY命令前,CSB信号应至少保持150us的高电平。
数据输出是11比特的数字量,MSB在前,LSB在后。
注意:此命令仅对双轴SCA100T 有效。
图3 SPI接口RDAX命令与数据的传送过程
图4 SPI总线时序图
SPI接口的直流特性
5V供电(特别标明的除外),流入电路的电流为正值。
表3 SPI接口的直流特性
参数条件符号最小值典型值最大值单位
CSB输入端
截止电流V
IN =0V I
PU
13 22 35 uA
输入高电平V
IH 4 V
dd
+0.3 V
输入低电平V
IL
-0.3 1 V
滞后电压V
HYST 0.23*V
dd
V
输入电容C
IN
2 pF
MOSI,SCK输入端
灌电流V
IN =5V I
PD
9 17 29 uA
输入高电平V
IH 4 V
dd
+0.3 V
输入低电平V
IL
-0.3 1 V
滞后电压V
HYST 0.23*V
dd
V
输入电容C
IN
2 pF
MISO输出端
输出高电平 1>-1mA V
OH V
dd
-0.5 V
输出低电平 1<1mA V
OL 0.5
V
三态漏电流 0<V
MISO < V
dd
I
LEAK
5 100
pA
表4 SPI接口的交流特性
参数条件符号最小值典型值最大值单位
CSB,SCK端
由CSB(10%)信号到SCK(90%)信号的时间T
LS1
120 ns
由SCK(10%)信号到CSB(90%)信号的时间T
LS2
120 ns SCK端
SCK信号低电平时间MISO线
的分布
电容小
于2nF
T
CL
1 uS
SCK信号高电平时间MISO线
的分布
电容小
于2nF
T
CH
1 uS
MOSI,SCK端
由 MOSI(10%)信号到SCK(90%)信号的时间,数据建立时间T
SET
30 ns
由SCK(90%)信号到MOSI(10%,90%)信号的时间,数据持续时间T
HOL
30 ns
MISO,CSB端
由CSB(10%)信号到稳定的MISO(10%,90% )的时间MISO
线的
分布
电容
小于
15pF
T
VAL1
10 100 ns
由CSB(90%)信号到高阻态的MISO的时间MISO
线的
分布
电容
小于
15pF
T
LZ
10 100 ns
MISO,SCK端
由SCK(10%)信号到稳定的MISO(10%,90%)的时间MISO
线的
分布
电容
小于
15pF
T
VAL2
100 ns
CSB端
一个SPI周期,CSB信号高电平时间(90%)T
LH
15 uS。