熵值法的原理及实例讲解
熵值法简要介绍

熵值法在信息论中熵是对系统的一种不确定性度量,若某一个指标的信息量越大,信息越明确,则表明该指标的不确定性就越小,变异程度就越小,熵就越小;反之信息量越的指标小,其指标变异度就越大,熵就越大。
熵值法求解权重的一般步骤如下:设有m 个备选方案,n 项评价指标,原始指标数据矩阵为()ij m nX x ⨯=。
111212122212m m n n nm x x x x x x X x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中,xij 为第i 个评价指标下的第j 个评价对象的数值()1,2,;1,2,i n j m ==(1)对原始指标数据矩阵进行标准化处理将最优指标标准化后为1,最劣指标标准化后为0,ij r 为标准化后的指标。
对于成本型指标:max max min ij ij i ij ij ij i i x x r x x -=- (1-5)对于效益型指标:min max min ij ij i ij ij ij i i x x r x x -=- (1-4)依据熵权法的理论,可计算得出第i 个评价指标下第j 个评价对象占该指标的比重p 1,2,, 1,2,, ij i n j m =⋯=⋯=(;) ()1p ij ij m ijj r r ==∑ (1-5)(2)计算信息熵第j 项指标的熵值j H 的计算公式如下:()11ln ln mj ij ij j H p p m ==-∑ (1-6)式中,若0ij p =,则ln 0ij ij p p =。
(3)计算权系数第j 项指标的权系数j β的计算公式如下:()111jj m j j H H β=-=-∑ (1-7)。
(完整word版)熵值法的原理及实例讲解

(完整word版)熵值法的原理及实例讲解熵值法1.算法简介熵值法是⼀种客观赋权法,其根据各项指标观测值所提供的信息的⼤⼩来确定指标权重。
设有m 个待评⽅案,n 项评价指标,形成原始指标数据矩阵n m ij x X ?=)(,对于某项指标j x ,指标值ij X 的差距越⼤,则该指标在综合评价中所起的作⽤越⼤;如果某项指标的指标值全部相等,则该指标在综合评价中不起作⽤。
在信息论中,熵是对不确定性的⼀种度量。
信息量越⼤,不确定性就越⼩,熵也就越⼩;信息量越⼩,不确定性就越⼤,熵也越⼤.根据熵的特性,我们可以通过计算熵值来判断⼀个⽅案的随机性及⽆序程度,也可以⽤熵值来判断某个指标的离散程度,指标的离散程度越⼤,该指标对综合评价的影响越⼤!因此,可根据各项指标的变异程度,利⽤信息熵这个⼯具,计算出各个指标的权重,为多指标综合评价提供依据!2.算法实现过程2.1 数据矩阵mn nm n m X X X X A ?????? ??=1111其中ij X 为第i 个⽅案第j 个指标的数值 2.2 数据的⾮负数化处理由于熵值法计算采⽤的是各个⽅案某⼀指标占同⼀指标值总和的⽐值,因此不存在量纲的影响,不需要进⾏标准化处理,若数据中有负数,就需要对数据进⾏⾮负化处理!此外,为了避免求熵值时对数的⽆意义,需要进⾏数据平移:对于越⼤越好的指标:m j n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max(),,,min(212121' ==+--=对于越⼩越好的指标:m j n i X X X X X X X X X X X nj j j nj j j ijnj j j ij ,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了⽅便起见,仍记⾮负化处理后的数据为ij X2.3 计算第j 项指标下第i 个⽅案占该指标的⽐重),2,1(1m j XX P n i ijijij ==∑= 2.4 计算第j 项指标的熵值1e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则⼀般令有关,与样本数。
熵值法综合评价

熵值法综合评价熵值法是一种用来综合评价多个指标的方法,它通过对数函数将原始数据转换成熵值,消除了量纲和单位的限制,同时能够体现指标之间的差异度和权重。
因此,熵值法被广泛应用于各个领域的决策、评价和排名。
本文将介绍熵值法的基本原理、计算过程和应用场景,并且提供一些实用的指南,帮助读者更好地理解和运用熵值法。
一、基本原理熵是信息科学中的一个概念,指的是一个系统的混乱程度或不确定性。
而熵值法是借鉴了熵的概念,将每个指标的取值范围进行归一化处理,然后通过对数函数求出熵值,最后计算出每个指标的权重。
熵值法的基本思想是在综合考虑多个指标时,对于每个指标的实际取值,都应该与这个指标可能的最大取值进行比较,以此反映出各个指标之间的相对重要性。
而在计算熵值时,要求每个指标的取值在 [0,1] 范围内,这个过程称为标准化。
最后,将所有指标的熵值乘以对应的权重,得出每个指标的得分,最终进行综合评价。
二、计算过程熵值法的计算过程可以分为以下几个步骤:1. 标准化处理将每个指标的取值范围进行归一化处理,使得取值在 [0,1] 范围内。
常见的标准化方法包括极差法、标准差法和正态分布等。
2. 求出熵值通过对数函数计算每个指标的熵值,以此反映出各个指标之间的差异性。
3. 计算权重根据每个指标的熵值和权重计算公式,求出对应的权重系数。
4. 计算得分将每个指标的熵值乘以对应的权重系数,得出每个指标的得分。
最后进行综合评价。
三、应用场景熵值法广泛应用于各个领域的决策、评价和排名。
例如,在企业管理中,可以利用熵值法对各个业务指标进行综合评估,找出影响效益最大的业务,从而优化业务流程。
在环境评价中,也可以使用熵值法对不同污染指标进行权重分配,较为全面、合理地反映出污染物的危害程度和环境安全等级。
此外,在科学研究、教育评估、项目管理等领域也有着广泛的应用。
总之,熵值法作为一种有效可靠的综合评价方法,具有广阔的应用前景。
四、实用指南在运用熵值法进行综合评价时,有一些实用的指南可以帮助我们更好地应用熵值法。
熵值法例题

熵值法例题熵值法是热力学中一种计算热力学系统的自由度的方法,它可以用来计算热力学系统的熵。
下面是一些熵值法例题:1. 一个封闭系统的熵可以用以下公式计算:S = -k * T * log(2) / log(10)其中,k是常数,T是温度。
例如,假设温度为50摄氏度,则系统的熵为:S = -k * 50 * log(2) / log(10) ≈ -1289kcal/year2. 一个孤立系统的熵可以用以下公式计算:S = -k * T * log(2) / log(10)其中,k是常数,T是温度。
例如,假设温度为20摄氏度,则系统的熵为:S = -k * 20 * log(2) / log(10) ≈ -118kcal/year3. 一个开放系统的熵可以用以下公式计算:S = S0 + (n-1) * log(2) * A / T其中,S0是初始状态熵,n是系统的阶数,A是系统的体积,T是温度。
例如,假设系统有n=3阶,体积为200立方厘米,温度为50摄氏度,则系统的熵为:S = S0 + (n-1) * log(2) * 200 / 50 ≈ 370kcal/year4. 一个热力学系统的熵可以用以下公式计算:S = k * T * log(2) / log(10) + q * log(2) / log(10) + w *log(2) / log(10)其中,k,q,w是热力学常量和温度,单位为J/K。
例如,假设热力学系统的温度为100摄氏度,单位为开尔文,重力势能为0,则系统的熵为:S = k * 100 * log(2) / log(10) + q * log(2) / log(10) + w * log(2) / log(10) ≈ 765kcal/year总之,熵值法可以用来计算热力学系统的自由度和状态变量,从而推断系统的行为和性质。
熵值法原理及应用实践ppt课件

原则:剔除占样本总数不到1-2%但指标值贡献率超过
20-30%以上的极值样本
样本id
游戏流量 (K)
贡献率
…
…
…
981 6358 0.8%
982 6401 0.8%
983 6631 0.8%
984 6635 0.8%
985 7193 0.9%
986 7432 0.9%
987 7993 1.0%
988 8385 1.0%
熵
H 手游历史付费
i 1
ln n
类似,按此公式还可以继续计算出 H 手游访问次数 和 H 手游访问天数
权
w 手游历史付费
(1
(1
H 手游历史付费 ) (1
H ) 手游历史付费 H 手游访问次数 ) (1
H ) 手游访问天数
同理可以计算出 W 手游访问次数 W 和 手游访问天数
15
2/16/2024
1000 6107 0.9%
熵值法的一般步骤之三:归一化指标处理
案例解说
方法:指标归一化过程也称之为指标的无量纲化,即将指
标实际值转化为不受量纲影响的指标平价值。方法比较多
,具体见附录《无纲量化方法一览》;
原则:比较常用的是临界值法和Z-score法(更合理,保持了
数据的连续性,减少数据信息丢失),最终将所有指标转化为正
培训目标
1. 理解熵值法的原理 2. 学会使用熵值赋权 3. 领悟熵值应用实践
熵值法原理及应用实践
1 熵值法是做什么用的? 2 熵值法如何计算权重? 3 怎样合理应用熵值法?
日常工作中常常需要计算指标权重
多元回归赋权法 线性回归 逻辑回归 ……
3
2/16/2024
指标权重确定方法之熵值法

指标权重确定⽅法之熵值法01⽇常⼯作中,经常需要确定各指标的权重,利⽤熵值法确定权重属于客观赋权法,从数据出发,避免过强的主观性,那我们详细了解下其原理及其是如何运作的吧。
什么是信息熵熵是热⼒学的⼀个物理概念,是体系混乱度(或⽆序度)的量度。
熵越⼤说明系统越混乱,携带的信息越少,熵越⼩说明系统越有序,携带的信息越多。
信息熵则借鉴了热⼒学中熵的概念 (注意:信息熵的符号与热⼒学熵应该是相反的),⽤于描述平均⽽⾔事件信息量⼤⼩。
所以数学上,信息熵其实是事件所包含的信息量的期望。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
根据上⾯期望的定义,我们可以设想信息熵的公式⼤概是这样的⼀个格式:信息熵=∑每种可能事件的概率*每种可能事件包含的信息量02如何理解信息熵信息熵的基本思想是从指标的⽆序程度,即指标熵的⾓度来反映指标对评价对象的区分程度,某指标的熵值越⼩,该指标的样本数据就越有序,样本数据间的差异就越⼤,对评价对象的区分能⼒也就越⼤,相应的权重也就越⼤。
相反,某个指标的信息熵越⼤表明指标的变异程度越⼩,提供的信息量也就越少,在综合评价中所起的作⽤也就越⼩,其权重也就越⼩。
03熵值法如何实现1、假设数据有n⾏记录,m个变量,数据可以⽤⼀个n*m的矩阵A表⽰(n⾏m列,即n⾏记录数,m个特征列)2、数据的归⼀化处理:xij表⽰矩阵A的第i⾏j列元素3、计算第j项指标下第i个记录所占⽐重4、计算第j项指标的熵值5、确定各指标的权重04熵值法赋权实例案例:某医院为了提⾼⾃⾝的护理⽔平,对拥有的11个科室进⾏了考核,考核标准包括9项整体护理,并对护理⽔平较好的科室进⾏奖励。
下表是对各个科室指标考核后的评分结果。
由于各项护理的难易程度不同,因此需要对9项护理进⾏赋权,以便能够更加合理的对各个科室的护理⽔平进⾏评价。
具体步骤如下:1) 数据标准化根据原始评分表,对数据进⾏标准化后可以得到下列数据标准化表:02) 计算权重03) 求各指标的信息熵根据信息熵的计算公式,可以计算出9项护理指标各⾃的信息熵如下:04) 计算各指标的权重根据指标权重的计算公式,可以得到各个指标的权重,如下表所⽰:05) 对各个科室进⾏评分根据计算出来的指标权重,及对11个科室的9项护理⽔平的评分,则,各个科室的最终得分如下表所⽰:如有⼩伙伴们对如上的拆解过程还是感觉有困惑的,可以联系我索要源⽂档呀,欢迎⼀起探讨!。
指标权重确定方法之熵权法(计算方法参考
指标权重确定方法之熵权法一、熵权法介绍熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。
熵权法的基本思路是根据指标变异性的大小来确定客观权重。
一般来说,若某个指标的信息熵越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。
相反,某个指标的信息熵越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。
二、熵权法赋权步骤1.数据标准化将各个指标的数据进行标准化处理。
假设给定了k个指标,其中。
假设对各指标数据标准化后的值为,那么。
2.求各指标的信息熵根据信息论中信息熵的定义,一组数据的信息熵。
其中,如果,则定义。
3.确定各指标权重根据信息熵的计算公式,计算出各个指标的信息熵为。
通过信息熵计算各指标的权重:。
三、熵权法赋权实例1.背景介绍某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。
下表是对各个科室指标考核后的评分结果。
但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。
2.熵权法进行赋权1)数据标准化根据原始评分表,对数据进行标准化后可以得到下列数据标准化表表2 11个科室9项整体护理评价指标得分表标准化表科室X1X2X3X4X5X6X7X8X9A 1.000.00 1.000.000.50 1.00 1.00 1.00 1.00B 1.00 1.000.00 1.000.50 1.00 1.00 1.00 1.00C0.00 1.000.33 1.000.50 1.00 1.00 1.00 1.00D 1.00 1.000.00 1.000.50 1.000.87 1.00 1.00E 1.000.00 1.00 1.00 1.000.00 1.00 1.000.00F 1.00 1.00 1.00 1.000.50 1.00 1.000.00 1.00G 1.00 1.000.00 1.000.50 1.000.00 1.00 1.00H0.50 1.000.33 1.00 1.00 1.00 1.00 1.00 1.00I 1.00 1.000.67 1.000.00 1.00 1.00 1.00 1.00J 1.000.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 K 1.00 1.000.67 1.000.50 1.00 1.00 1.00 1.002)求各指标的信息熵根据信息熵的计算公式,可以计算出9项护理指标各自的信息熵如下:表3 9项指标信息熵表X1X2X3X4X5X6X7X8X9信息熵0.950.870.840.960.940.960.960.960.963)计算各指标的权重根据指标权重的计算公式,可以得到各个指标的权重如下表所示:表4 9项指标权重表W1W2W3W4W5W6W7W8W9权重0.080.220.270.070.110.070.070.070.073.对各个科室进行评分根据计算出的指标权重,以及对11个科室9项护理水平的评分。
熵值法的原理及实例讲解
熵值法的原理及实例讲解熵值法是一种多指标综合评价方法,其原理是通过计算各指标间的熵值来评估不同指标的重要性,进而确定各指标的权重,用于多指标决策问题的分析与决策。
该方法具有较强的定量分析能力和适用性,广泛应用于各类复杂问题的决策和评价。
熵值法的基本原理是基于信息论中的信息熵理论,即通过计算指标的熵值来度量指标的不确定性或信息量大小。
信息熵越大,代表指标的不确定性越高,包含的信息量也越大。
因此,指标的熵值越高,其权重越小,反之亦然。
熵值的计算公式为:E = - Σ(pi * ln(pi))其中,E表示指标的熵值,pi表示指标i的权重。
指标权重的计算需要将指标的实测值进行标准化处理,然后计算各指标的权重,并归一化处理才能得到实际的权重系数。
下面以企业综合评价为例来讲解熵值法的具体步骤和应用。
1.选择评价指标假设要对一家企业进行综合评价,我们选择了一组适合该企业的指标,包括销售收入、利润率、资产回报率、员工满意度等。
2.数据标准化对于每个指标的原始数据,需要进行标准化处理,将其转化为0-1之间的数值。
可以采用最小-最大标准化方法,即将原始数据减去最小值,再除以最大值减去最小值,得到标准化后的数据。
3.计算指标的熵值根据标准化后的数据,计算每个指标的熵值。
首先计算每个指标的权重,假设有n个指标,则每个指标的权重为:pi = xi / Σ(xi),其中xi表示指标i的标准化后的数值。
然后根据熵值公式,计算每个指标的熵值。
4.计算权重系数根据各指标的熵值,计算其权重系数。
首先计算指标的信息熵占总熵的比例,即指标的权重系数=w=(1-Ei)/(n-Σ(Ei)),其中Ei表示指标i的熵值,n表示指标的个数。
然后对权重系数进行归一化处理,得到权重系数的实际权重。
5.计算综合得分根据各指标的实际权重和标准化后的数据,计算出各指标的加权得分,并对各指标得分进行加权求和,得到企业的综合评价得分。
根据得分的大小,可以对企业进行等级评定或排序。
熵值法的原理及实例讲解
熵值法1. 算法简介熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。
设有m个待评方案,n项评价指标,形成原始指标数据矩阵X (x ij )m n ,对于某项指标x j ,指标值X ij 的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。
在信息论中,熵是对不确定性的一种度量。
信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!2. 算法实现过程2.1 数据矩阵X11 AX n1 X1m其中X j为第i个方案第j个指标的数值X nm n m2.2 数据的非负数化处理由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:X ij min (X1j,X2j, ,X nj) X ijmax(X1j,X2j, ,X nj) min (X1j,X2j,人),i 1,2 ,n; j 1,2 ,m 对于越小越好的指标:max( X1 j, X 2 j, , X nj) X jX ijmax(X1j,X2j, ,X nj) min (X^X j, ,X nj),i 1,2 ,n; j 1,2 ,m 为了方便起见,仍记非负化处理后的数据为X ij2.3 计算第j项指标下第i个方案占该指标的比重P j —X iji 1(j 1,2, m)2.4 计算第j项指标的熵值e jnk* R j log(R j),其中k 0,ln为自然对数,e ji 10。
熵值法
其中xj为第j项指标值,xmax为第j项指标的最大值, xmin为第j项指标的最小值, x’ij为标准化值。 若所用指标的值越大越好,则选用前一个公式 若所用指标的值越小越好,则选用后一个公式
数据标准化方法二:
数据标准化方法三:
n n 1 1 2 其中: xj xi, Sj ( x x j ) ij n i 1 n 1 i 1
5/7/2017
4
简单列表(在系统论中)
应用在系统论中,熵越大说明系统越混乱,携带的信 息越少,熵越小说明系统越有序,携带的信息越多。 在信息系统中的信息熵是信息无序度的度量,信息 熵越大,信息的无序度越高,其信息的效用值越小; 反之,信息熵越小,信息的无序度越低,其信息的 效用值越大。
熵大 越无序 信息少 效用值小 权重小
缺点:
一是缺乏各指标之间的横向比较; 二是各指标的权数随样本的变化而变化,权数 依赖于样本,在应用上受限制。
The end. Thank you!
5/7/2017
25
二、熵值法的计算方法及步骤
(一)原始数据的收集与整理 假定需要评价某城市m年的发展状况(也可推 广至多城市评价),评价指标体系包括n个指标。 这是个由m个样本组成,用n个指标做综合评价 的问题,便可以形成评价系统的初始数据矩阵:
x11 x1n X x x mn m1
总目标
一级指标
二级指标
建设用地年增长率X1 耕地年减少率X2 人均建设用地X3 人均耕地X4 粮食单产X5
特征
反映土地资源的利用状况 及发展潜力
资源指标U1
土 地 可 持 续 利 用 综 合 评 价 指 标 体 系
环境指标U2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熵值法
1.算法简介
熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。
设有m 个待评方案,n 项评价指标,形成原始指标数据矩阵n m ij x X ⨯=)(,对于某项指标j x ,指标值ij X 的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。
在信息论中,熵是对不确定性的一种度量。
信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!
2.算法实现过程
2.1 数据矩阵
m
n nm n m X X X X A ⨯⎪⎪⎪⎭⎫ ⎝⎛=
1111其中ij X 为第i 个方案第j 个指标的数值 2.2 数据的非负数化处理
由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:
对于越大越好的指标:
m j n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max()
,,,min(212121' ==+--=对于越小越好的指标:
m j n i X X X X X X X X X X X nj j j nj j j ij
nj j j ij ,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了方便起见,仍记非负化处理后的数据为ij X
2.3 计算第j 项指标下第i 个方案占该指标的比重
),2,1(1m j X
X P n i ij
ij ij ==∑= 2.4 计算第j 项指标的熵值
1
e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则一般令有关,
与样本数。
式中常数为自然对数,其中m k m k e k P P k e j n
i ij ij j 2.5 计算第j 项指标的差异系数。
对于第j 项指标,指标值ij X 的差异越大,对方案评价的作用越大,熵值就越小
j j e g -=1 , 则:j g 越大指标越重要
2.6 求权数
m j g
g W m j j
j
j 2,1,1==∑= 2.7计算各方案的综合得分
),2,1(*1n i P W
S ij m j j i ==∑=
3.熵值法的优缺点
熵值法是根据各项指标指标值的变异程度来确定指标权数的,这是一种客观赋权法,避免了人为因素带来的偏差,但由于忽略了指标本身重要程度,有时确定的指标权数会与预期的结果相差甚远,同时熵值法不能减少评价指标的维数!
理解熵值法
1. 1
学习熵值法,熵值法是一种理论的数学方法,从计算机科学角度上看,属于一种算法。
要运用熵值法当然要理解它,搞懂它。
2. 2
熵值法原理:熵的概念源于热力学,是对系统状态不确定性的一种度量。
在信息论中,信息是系统有序程度的一种度量。
而熵是系统无序程度的一种度量,两者绝对值相等,但符号相反。
根据此性质,可以利用评价中各方案的固有信息,通过熵值法得到各个指标的信息熵,信息熵越小,信息的无序度越低,其信息的效用值越大,指标的权重越大。
3. 3
具体的方法步骤见附图课件。
END
利用Excel进行熵值法计算求解
1.给出算例,题干是购买教车的一个决策矩阵,给出了四个方案供我们进行
选择,每个方案中均有相同的六个属性,我们需要利用熵值法求出各属性的权重,级在方案中的贡献度。
2.一:求第j个属性下第i个方案Ai的贡献度,公式为附图一,在excel
中,先求出各列的和,然后用每行的数值比上列和,形成新的矩阵,如附图2所示。
3.求出所有方案对属性Xj的贡献总量,用附图一所示的算法。
在excel操
作中,将刚才生成的矩阵每个元素变成每个元素与该ln(元素)的积,如附图2所示。
4.求出常数k,k为1/ln(方案数),本例中有4个方案,4中车的类型,所
以求得k为
0.721348,再求k与新矩阵每一列和的乘积,这样获得的6个积为所有方案
对属性xj的贡献度。
至此所有的Ej就求出来了。
5.dj为第j属性下各方案贡献度的一致性程度。
dj=1-Ej,利用上面求得的
Ej,可以得到dj
6.各属性权重为对应的dj与所有dj和的商。
dj的和为 0.22478 ,求得各
属性的权重为0.14 0.07 0.49 0.16 0.04 0.10
7.所以在购买汽车时,据所提供信息,利用熵值法计算得出的权重为油耗占
14%,功率占7%,费用占49%,安全性占16%,维护性占4%,操作性占10%。
故我们在进行购买决策时,更多是考虑车型的价格和安全性等重要因素。
这是从权重角度考虑的。
8.就本例而言,每个车型每个指标的得分与其权重的乘积之和为其综合评价
值,这样求得本田5.118分,奥迪18.32分,桑塔纳8.216分,别克12.495分。
所以综合评价排序为奥迪、别克、桑塔纳、本田。