熵值法的原理及实例讲解.doc

合集下载

熵值法简要介绍

熵值法简要介绍

熵值法在信息论中熵是对系统的一种不确定性度量,若某一个指标的信息量越大,信息越明确,则表明该指标的不确定性就越小,变异程度就越小,熵就越小;反之信息量越的指标小,其指标变异度就越大,熵就越大。

熵值法求解权重的一般步骤如下:设有m 个备选方案,n 项评价指标,原始指标数据矩阵为()ij m nX x ⨯=。

111212122212m m n n nm x x x x x x X x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中,xij 为第i 个评价指标下的第j 个评价对象的数值()1,2,;1,2,i n j m ==(1)对原始指标数据矩阵进行标准化处理将最优指标标准化后为1,最劣指标标准化后为0,ij r 为标准化后的指标。

对于成本型指标:max max min ij ij i ij ij ij i i x x r x x -=- (1-5)对于效益型指标:min max min ij ij i ij ij ij i i x x r x x -=- (1-4)依据熵权法的理论,可计算得出第i 个评价指标下第j 个评价对象占该指标的比重p 1,2,, 1,2,, ij i n j m =⋯=⋯=(;) ()1p ij ij m ijj r r ==∑ (1-5)(2)计算信息熵第j 项指标的熵值j H 的计算公式如下:()11ln ln mj ij ij j H p p m ==-∑ (1-6)式中,若0ij p =,则ln 0ij ij p p =。

(3)计算权系数第j 项指标的权系数j β的计算公式如下:()111jj m j j H H β=-=-∑ (1-7)。

(完整word版)熵值法的原理及实例讲解

(完整word版)熵值法的原理及实例讲解

(完整word版)熵值法的原理及实例讲解熵值法1.算法简介熵值法是⼀种客观赋权法,其根据各项指标观测值所提供的信息的⼤⼩来确定指标权重。

设有m 个待评⽅案,n 项评价指标,形成原始指标数据矩阵n m ij x X ?=)(,对于某项指标j x ,指标值ij X 的差距越⼤,则该指标在综合评价中所起的作⽤越⼤;如果某项指标的指标值全部相等,则该指标在综合评价中不起作⽤。

在信息论中,熵是对不确定性的⼀种度量。

信息量越⼤,不确定性就越⼩,熵也就越⼩;信息量越⼩,不确定性就越⼤,熵也越⼤.根据熵的特性,我们可以通过计算熵值来判断⼀个⽅案的随机性及⽆序程度,也可以⽤熵值来判断某个指标的离散程度,指标的离散程度越⼤,该指标对综合评价的影响越⼤!因此,可根据各项指标的变异程度,利⽤信息熵这个⼯具,计算出各个指标的权重,为多指标综合评价提供依据!2.算法实现过程2.1 数据矩阵mn nm n m X X X X A ?????? ??=1111其中ij X 为第i 个⽅案第j 个指标的数值 2.2 数据的⾮负数化处理由于熵值法计算采⽤的是各个⽅案某⼀指标占同⼀指标值总和的⽐值,因此不存在量纲的影响,不需要进⾏标准化处理,若数据中有负数,就需要对数据进⾏⾮负化处理!此外,为了避免求熵值时对数的⽆意义,需要进⾏数据平移:对于越⼤越好的指标:m j n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max(),,,min(212121' ==+--=对于越⼩越好的指标:m j n i X X X X X X X X X X X nj j j nj j j ijnj j j ij ,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121' ==+--=为了⽅便起见,仍记⾮负化处理后的数据为ij X2.3 计算第j 项指标下第i 个⽅案占该指标的⽐重),2,1(1m j XX P n i ijijij ==∑= 2.4 计算第j 项指标的熵值1e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则⼀般令有关,与样本数。

指标权重确定方法之熵值法

指标权重确定方法之熵值法

指标权重确定⽅法之熵值法01⽇常⼯作中,经常需要确定各指标的权重,利⽤熵值法确定权重属于客观赋权法,从数据出发,避免过强的主观性,那我们详细了解下其原理及其是如何运作的吧。

什么是信息熵熵是热⼒学的⼀个物理概念,是体系混乱度(或⽆序度)的量度。

熵越⼤说明系统越混乱,携带的信息越少,熵越⼩说明系统越有序,携带的信息越多。

信息熵则借鉴了热⼒学中熵的概念 (注意:信息熵的符号与热⼒学熵应该是相反的),⽤于描述平均⽽⾔事件信息量⼤⼩。

所以数学上,信息熵其实是事件所包含的信息量的期望。

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。

根据上⾯期望的定义,我们可以设想信息熵的公式⼤概是这样的⼀个格式:信息熵=∑每种可能事件的概率*每种可能事件包含的信息量02如何理解信息熵信息熵的基本思想是从指标的⽆序程度,即指标熵的⾓度来反映指标对评价对象的区分程度,某指标的熵值越⼩,该指标的样本数据就越有序,样本数据间的差异就越⼤,对评价对象的区分能⼒也就越⼤,相应的权重也就越⼤。

相反,某个指标的信息熵越⼤表明指标的变异程度越⼩,提供的信息量也就越少,在综合评价中所起的作⽤也就越⼩,其权重也就越⼩。

03熵值法如何实现1、假设数据有n⾏记录,m个变量,数据可以⽤⼀个n*m的矩阵A表⽰(n⾏m列,即n⾏记录数,m个特征列)2、数据的归⼀化处理:xij表⽰矩阵A的第i⾏j列元素3、计算第j项指标下第i个记录所占⽐重4、计算第j项指标的熵值5、确定各指标的权重04熵值法赋权实例案例:某医院为了提⾼⾃⾝的护理⽔平,对拥有的11个科室进⾏了考核,考核标准包括9项整体护理,并对护理⽔平较好的科室进⾏奖励。

下表是对各个科室指标考核后的评分结果。

由于各项护理的难易程度不同,因此需要对9项护理进⾏赋权,以便能够更加合理的对各个科室的护理⽔平进⾏评价。

具体步骤如下:1) 数据标准化根据原始评分表,对数据进⾏标准化后可以得到下列数据标准化表:02) 计算权重03) 求各指标的信息熵根据信息熵的计算公式,可以计算出9项护理指标各⾃的信息熵如下:04) 计算各指标的权重根据指标权重的计算公式,可以得到各个指标的权重,如下表所⽰:05) 对各个科室进⾏评分根据计算出来的指标权重,及对11个科室的9项护理⽔平的评分,则,各个科室的最终得分如下表所⽰:如有⼩伙伴们对如上的拆解过程还是感觉有困惑的,可以联系我索要源⽂档呀,欢迎⼀起探讨!。

熵值法原理

熵值法原理

熵值法原理
熵值法原理是利用熵的概念对系统不确定性进行度量,并以此判断系统的有序程度。

熵值法原理在信息论中,熵是对不确定性的一种度量,信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。

根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大。

因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。

熵值法的原理及实例讲解

熵值法的原理及实例讲解

熵值法1. 算法简介熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。

设有m个待评方案,n项评价指标,形成原始指标数据矩阵X (x ij )m n ,对于某项指标x j ,指标值X ij 的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。

在信息论中,熵是对不确定性的一种度量。

信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!2. 算法实现过程2.1 数据矩阵X11 AX n1 X1m其中X j为第i个方案第j个指标的数值X nm n m2.2 数据的非负数化处理由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:对于越大越好的指标:X ij min (X1j,X2j, ,X nj) X ijmax(X1j,X2j, ,X nj) min (X1j,X2j,人),i 1,2 ,n; j 1,2 ,m 对于越小越好的指标:max( X1 j, X 2 j, , X nj) X jX ijmax(X1j,X2j, ,X nj) min (X^X j, ,X nj),i 1,2 ,n; j 1,2 ,m 为了方便起见,仍记非负化处理后的数据为X ij2.3 计算第j项指标下第i个方案占该指标的比重P j —X iji 1(j 1,2, m)2.4 计算第j项指标的熵值e jnk* R j log(R j),其中k 0,ln为自然对数,e ji 10。

熵值法计算公式范文

熵值法计算公式范文

熵值法计算公式范文熵值法是一种多指标综合评价方法,通过计算指标之间的信息熵来确定各指标的权重。

其基本原理是:指标权重越大,其信息熵越小。

在熵值法中,通过计算每个指标的熵值和权重来得到综合评价结果。

熵值法的计算步骤如下:步骤一:确定评价指标和数据首先,确定需要评价的指标和相应的数据。

评价指标可以是与问题相关的任意指标,比如环境影响指标、经济指标等。

步骤二:标准化数据对于每个指标的数据,需要进行标准化处理。

标准化可以采用线性变换或者归一化处理。

使得指标取值在0到1之间,方便后续计算。

步骤三:计算熵值计算每个指标的熵值。

熵值表示指标的波动程度和变异程度,熵值越小表示该指标的信息量越大。

熵值的计算公式如下:$$E_j = -\frac{1}{\ln(n)}\sum_{i=1}^{n}p_{ij}\ln(p_{ij})$$其中,$E_j$表示第j个指标的熵值,n表示评价指标个数,$p_{ij}$表示第i个指标的标准化值。

步骤四:计算权重根据指标的熵值,计算每个指标的权重。

权重越大表示该指标对综合评价结果的影响越大。

权重的计算公式如下:$$w_j = \frac{{1-E_j}}{{n-\sum_{j=1}^{n}(1-E_j)}}$$其中,$w_j$表示第j个指标的权重。

步骤五:计算评价结果根据每个指标的权重,对各指标进行加权求和,得到综合评价结果。

评价结果的计算公式如下:$$Y_i = \sum_{j=1}^{n}w_jx_{ij}$$其中,$Y_i$表示第i个样本的评价结果,$w_j$表示第j个指标的权重,$x_{ij}$表示第i个样本的第j个指标值。

综上所述,熵值法通过计算指标的熵值和权重来进行多指标综合评价,可以通过熵值法来确定指标的重要性,从而作出科学合理的决策。

熵权法(客观赋权法)超详细解析

熵权法(客观赋权法)超详细解析

熵权法(客观赋权法)超详细解析熵权法熵权法是一种客观赋权方法。

(客观= 数据本身就可以告诉我们权重)依据的原理:指标的变异程度越小,所反映的信息量也越少,其对应的权值也应该越低。

文章目录•熵权法•o一、方法介绍o二、熵权法的计算步骤o三、模型扩展(★)o四、模型总结一、方法介绍熵权法就是根据一项指标的变化程度来分配权重的,举个例子:小张和小王是两个高中生,小张学习好回回期末考满分,小王学习不好考试常常不及格。

在一次考试中,小张还是考了满分,而小王也考了满分。

那就很不一样了,小王这里包含的信息就非常大,所对应的权重也就高一些。

上面的小例子告诉我们:越有可能发生的事情,信息量越少。

越不可能发生的事情,信息量就越多。

其中我们认为概率就是衡量事情发生的可能性大小的指标。

那么把信息量用字母 I \bf I I 表示,概率用 p \bf p p 表示,那么我们可以将它们建立一个函数关系:那么,假设 x 表示事件 X 可能发生的某种情况,p(x)表示这种情况发生的概率情况如上图所示,该图像可以用对数函数进行拟合,那么最终我们可以定义: I ( x ) = − ln ⁡ ( p ( x ) ) I(x) = -\ln(p(x)) I(x)=−ln(p(x)),因为0 ≤ p ( x ) ≤ 1 0 ≤ p(x) ≤ 1 0≤p(x)≤1,所以 I ( x ) ≥ 0 I(x) ≥ 0 I(x)≥0。

接下来引入正题:信息熵的定义假设 x 表示事件 X 可能发生的某种情况,p(x) 表示这种情况发生的概率我们可以定义: I ( x ) = − ln ⁡ ( p ( x ) ) I(x)=-\ln(p(x)) I(x)=−ln(p(x)) ,因为0 ≤ p ( x ) ≤ 1 0≤p(x)≤1 0≤p(x)≤1 ,所以I ( x ) ≥ 0 I(x)≥0 I(x)≥0 。

如果事件 X 可能发生的情况分别为: x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn ,那么我们可以定义事件 X X X 的信息熵为:H ( X ) = ∑ i = 1 n [ p ( x i ) I ( x i ) ] = −∑ i = 1 n [ p ( x i ) ln ⁡( p ( x i ) ) ] H(X)=\sum_{i=1}^{n}[p(x_i)I(x_i)]=-\sum_{i=1}^{n}[p(x_i)\ln(p(x_i))] H(X)=i=1∑n[p(xi)I(xi)]=−i=1∑n [p(xi)ln(p(xi))]那么从上面的公式可以看出,信息上的本质就是对信息量的期望值。

建模-熵值法

建模-熵值法

建模-熵值法问题学校举办教学技能大赛,有10位选手进入决赛,评委对选手的教案设计,模拟授课,现场答辩三个环节进行打分.请你根据成绩单对选手进行综合评价.熵值赋权法熵值法的基本原理熵值法的计算方法及步骤实例应用方法评价①熵的概述熵,英文为entropy,是德国物理学家克劳修斯在1850年创造的一个术语,它用来表示一种能量在空间中分布的均匀程度。

熵是热力学的一个物理概念,是体系混乱度(或无序度)的量度,用S表示。

应用在系统论中,熵越大说明系统越混乱,携带的信息越少,熵越小说明系统越有序,携带的信息越多。

熵值法是一种客观赋权方法,它通过计算指标的信息熵,根据指标的相对变化程度对系统整体的影响来决定指标的权重,相对变化程度大的指标具有较大的权重,此方法现广泛应用在统计学等各个领域,具有较强的研究价值。

主要精髓:熵值效用价值权重(与指标的相对变化程度正相关)熵值赋权法熵值法的基本原理熵值法的计算方法及步骤实例应用方法评价熵值法的计算方法及步骤一.原始数据的收集与整理二.数据处理—标准化处理三.计算指标信息熵值和信息效用值四.计算评价指标权重五.计算样本的评价值一.原始数据的收集与整理假定需要评价一个由m 个样本组成,用n 个指标做综合评价的问题,便可以形成评价系统的初始数据矩阵:=mn m m n n x x x x x x x x x X 212222111211其中表示第个样本第项评价指标的数值ij x i j二.数据处理—标准化处理①由于各指标的量纲、数量级均有差异,所以为消除因量纲不同对评价结果的影响,需要对各指标进行标准化处理。

方法一正指标:jj j ij ij x x x x x ...min max min --='负指标:j j ij j ij x x x x x ...min max max --='表示标准后的值.ijx 'jjij ij S x x x ..'-=方法二其中,二.数据处理—标准化处理②计算第j 项指标下第i 个样品值的比重y ij)10(''1≤≤=∑=ij m i ijijij y x x y 由此,可以得到数据的比重矩阵nm ij y Y ?=}{三.计算指标信息熵值和信息效用值①计算第j 项指标的信息熵值的公式为:nj y y K e mi ij ij j ,,2,1,ln 1 =-=∑=.式中,为玻耳兹曼常数,K mK ln 1=②某项指标的信息效用价值取决于该指标的信息熵e j 与1之间的差值,它的值直接影响权重的大小,信息效用值d j 越大,对评价的重要性就越大,权重也就越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熵值法
1.算法简介
熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。

设有m 个待评方案,n 项评价指标,形成原始指标数据矩阵n m ij x X ⨯=)(,对于某项指标j x ,指标值ij X 的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。

在信息论中,熵是对不确定性的一种度量。

信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!
2.算法实现过程
2.1 数据矩阵
m
n nm n m X X X X A ⨯⎪⎪⎪⎭⎫ ⎝⎛=ΛM M
M Λ1111其中ij X 为第i 个方案第j 个指标的数值 2.2 数据的非负数化处理
由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移:
对于越大越好的指标:
m j n i X X X X X X X X X X X nj j j nj j j nj j j ij ij ,,2,1;,,2,1,1),,,min(),,,max()
,,,min(212121'ΛΛΛΛΛ==+--=对于越小越好的指标:
m j n i X X X X X X X X X X X nj j j nj j j ij
nj j j ij ,,2,1;,,2,1,1),,,min(),,,max(),,,max(212121'ΛΛΛΛΛ==+--=为了方便起见,仍记非负化处理后的数据为ij X
2.3 计算第j 项指标下第i 个方案占该指标的比重
),2,1(1m j X
X P n i ij
ij
ij Λ==∑= 2.4 计算第j 项指标的熵值
1
e 0,ln 10ln ,0,)log(*1≤≤=≥>-=∑=则一般令有关,
与样本数。

式中常数为自然对数,其中m k m k e k P P k e j n
i ij ij j 2.5 计算第j 项指标的差异系数。

对于第j 项指标,指标值ij X 的差异越大,对方案评价的作用越大,熵值就越小
j j e g -=1 , 则:j g 越大指标越重要
2.6 求权数
m j g
g W m j j
j
j Λ2,1,1==∑= 2.7计算各方案的综合得分
),2,1(*1n i P W
S ij m j j i Λ==∑=
3.熵值法的优缺点
熵值法是根据各项指标指标值的变异程度来确定指标权数的,这是一种客观赋权法,避免了人为因素带来的偏差,但由于忽略了指标本身重要程度,有时确定的指标权数会与预期的结果相差甚远,同时熵值法不能减少评价指标的维数!
理解熵值法
1. 1
学习熵值法,熵值法是一种理论的数学方法,从计算机科学角度上看,属于一种算法。

要运用熵值法当然要理解它,搞懂它。

2. 2
熵值法原理:熵的概念源于热力学,是对系统状态不确定性的一种度量。

在信息论中,信息是系统有序程度的一种度量。

而熵是系统无序程度的一种度量,两者绝对值相等,但符号相反。

根据此性质,可以利用评价中各方案的固有信息,通过熵值法得到各个指标的信息熵,信息熵越小,信息的无序度越低,其信息的效用值越大,指标的权重越大。

3. 3
具体的方法步骤见附图课件。

END
利用Excel进行熵值法计算求解
1.给出算例,题干是购买教车的一个决策矩阵,给出了四个方案供我们进行
选择,每个方案中均有相同的六个属性,我们需要利用熵值法求出各属性的权重,级在方案中的贡献度。

2.一:求第j个属性下第i个方案Ai的贡献度,公式为附图一,在excel
中,先求出各列的和,然后用每行的数值比上列和,形成新的矩阵,如附图2所示。

3.求出所有方案对属性Xj的贡献总量,用附图一所示的算法。

在excel操
作中,将刚才生成的矩阵每个元素变成每个元素与该ln(元素)的积,如附图2所示。

4.求出常数k,k为1/ln(方案数),本例中有4个方案,4中车的类型,所
以求得k为
0.721348,再求k与新矩阵每一列和的乘积,这样获得的6个积为所有方案
对属性xj的贡献度。

至此所有的Ej就求出来了。

5.dj为第j属性下各方案贡献度的一致性程度。

dj=1-Ej,利用上面求得的
Ej,可以得到dj。

相关文档
最新文档