2014年卓越联盟自主招生数学试题(理科)及答案
2014年全国普通高等学校招生统一考试理科数学(山东卷带解析)试题

2014年全国普通高等学校招生统一考试理科(山东卷)数学试题1、【题文】已知,是虚数单位,若与互为共轭复数,则()A.B.C.D.2、【题文】设集合,则()A.B.C.D.3、【题文】函数的定义域为()B.A.C.D.4、【题文】用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根5、【题文】已知实数满足,则下面关系是恒成立的是()B.A.C.D.6、【题文】直线在第一象限内围成的封闭图形的面积为()A.B.C.D.47、【题文】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.188、【题文】已知函数若方程有两个不相等的实根,则实数的取值范围是()C.D.A.B.9、【题文】已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5 B.4 C.D.210、【题文】已知,椭圆的方程为,双曲线的方程为,与的离心率之积为,则的渐近线方程为()A.B.C.D.11、【题文】执行右面的程序框图,若输入的的值为1,则输出的的值为________.12、【题文】在中,已知,当时,的面积为________.13、【题文】三棱锥中,,分别为,的中点,记三棱锥的体积为,的体积为,则________.14、【题文】若的展开式中项的系数为20,则的最小值 .15、【题文】已知函数,对函数,定义关于的对称函数为函数,满足:对于任意,两个点关于点对称,若是关于的“对称函数”,且恒成立,则实数的取值范围是_________.16、【题文】(本小题满分12分)已知向量,,设函数,且的图象过点和点.(Ⅰ)求的值;(Ⅱ)将的图象向左平移()个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.17、【题文】(本小题满分12分)如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.(Ⅰ)求证:;(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.18、【题文】(本小题满分12分)乒乓球台面被球网分成甲、乙两部分,如图,甲上有两个不相交的区域,乙被划分为两个不相交的区域.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在上记3分,在上记1分,其它情况记0分.对落点在上的来球,队员小明回球的落点在上的概率为,在上的概率为;对落点在上的来球,小明回球的落点在上的概率为,在上的概率为.假设共有两次来球且落在上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.19、【题文】(本小题满分12分)已知等差数列的公差为2,前项和为,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.20、【题文】(本小题满分13分)设函数(为常数,是自然对数的底数). (Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在内存在两个极值点,求的取值范围.21、【题文】(本小题满分14分)已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.(Ⅰ)求的方程;(Ⅱ)若直线,且和有且只有一个公共点,(ⅰ)证明直线过定点,并求出定点坐标;(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.。
2014年华约自主招生数学试题(精校word版,有答案)-历年自主招生考试数学试题大全

名师解读,权威剖析,独家奉献,打造不一样的教育!
1 2014年华约自主招生数学试题
1.12345,,,,x x x x x 是正整数,任取四个其和组成的集合为{44,45,46,47},求这五个数.
2.乒乓球比赛,五局三胜制.任一局甲胜的概率是1()2p p >,甲赢得比赛的概率是q ,求p 为多少时,q p -取得最大值.
3.函数2()(cos sin )sin()2sin (0)24
f x x x x a x b a π=
-+-+>的最大值为1,最小值为4-,求,a b 的值.
4.(1)证明(())y f g x =的反函数为11(())y g f x --=;
(2)1()(),()()F x f x G x f x -=-=,若()G x 的反函数是()F x ,证明()f x 为奇函数.
5.已知椭圆22
221x y a b
+=与圆222x y b +=,过椭圆上一点M 作圆的两切线,切点分别为,P Q ,直线PQ 与,x y 轴分别交于点,E F ,求EOF S ∆的最小值.
6.已知数列{}n a 满足:110,n n n a a np qa +==+.(1)若1q =,求n a ;(2)若||1,||1p q <<,求证:数列{}n a 有界.
7.已知*,,n N x n ∈≤求证:2(1)n x x n n e x n
--≤.。
华约、北约、卓越2014大学自主招生模拟试题三数学含详细解答

4 1 三.求证:16< Σ <17. i=1 k 四.)设 l,m 是两条异面直线,在 l 上有 A,B,C 三点,且 AB=BC,过 A,B,C 7 分别作 m 的垂线 AD, BE, CF, 垂足依次是 D, E, F, 已知 AD= 15, BE=2CF= 10, 求 l 与 m 的距离. 五.设 n 是自然数,fn(x)= xn+1-x-n-1 1 (x0,± 1),令 y=x+ x. -1 x-x
n 1 n-2 n-1 i i n-i n-2i n 1 n-2 n-1 i i n-i
n
模拟三 一 1. 解 : y=((n+1)x - 1)(nx - 1) , ∴ 1 1 |AnBn|= n - n+1 , 于 是
1992 |A1B1|+|A2B2|++|A1992B1992|=1993,选 B. 2. 解:(x 1-y2)=0 表示 y 轴右边的半圆,(y+ 1-x2)=0 表示 x 轴下方的半圆, 故选 D. 4 4 4 3. 解: Σ Si≤4S,故 Σ Si≤4,又当与最大面相对的顶点向此面无限接近时, Σ i=1 i=1 i=1 Si 接近 2S,故选 A. 4. 解: x2=4x-4. 根为 x=2. ∴ C=2A, B=180° -3A, sinB=2sinA. sin3A=2sinA, 2 3-4sin A=2.A=30° ,C=60° ,B=90° .选 B. 2z1 π π 1 3 5. 解: z =cos3± isin3.∴ |z2|=8,z1、z2 的夹角=60° .S=2· 4· 8·2 =8 3.选 A. 2 6. 解:f(20-x)=f[10+(10-x)]=f[10-(10-x)]=f(x)=-f(20+x). ∴ f(40+x)=f[20+(20+x)]=-f(20+x)=f(x).∴ 是周期函数;
2014年自主招生考试模拟试题与答案 数学

2014年自主招生考试数学模拟试题一、一个赛跑机器人有如下特性:(1) 步长可以人为地设置成0.1米,0.2米,…,1.8米或1.9米;(2) 发令后,机器人第一步立刻迈出设置的步长,且每一步的行走过程都在瞬时完成; (3) 当设置的步长为a 米时,机器人每相邻两个迈步动作恰需间隔a 秒. 试问:机器人跑50米(允许超出50米)所需的最少时间是多少秒?.解:约定用x 轾犏表示不小于实数x 的最小整数. 设步长为a 米,{0.1,0.2,,1.9}a Î .机器人迈出50a 轾犏犏犏步恰可跑完50米,所需间隔次数为501a 轾犏-犏犏,于是,所需时间50()1f a a a 骣轾÷ç犏=?÷ç÷ç犏桫犏.计算得:(1.9)49.4,(1.8)48.6,(1.7)49.3,(1.6)49.6,(1.5)49.5f f f f f =====, 而 1.4a £时,50()15048.6(1.8)f a a a f a骣÷ç匙-=-?÷ç÷ç桫.于是,当机器人步长设置为1.8米时,跑50米所需时间最短,为48.6秒.二、在ABC中,求三角式)sin sin sin A B C ++的最大值。
解:因为)sin sin sin A B C ++s i n 2s i nc o s 22sin 22sin cos .22B CB CA AA A A +-=+?骣ç=+ç桫令sin2Ax =,则01x <<,于是()2sin cos 22A A f x 骣ç=+ç桫(2x =+ ( 01x <<)求导,得 ()('0f x x =+,得22x -=.在20,2x 骣-ç西çç÷桫上,有()'0f x >;在22x 骣-÷ç西ç÷ç÷桫上,有()'0f x <.所以(max 2()(32f x f -==+当22arcsin 2A -=时,三角式)sin sin sin A B C ++取得最大值(3+三、已知椭圆:C 22221(0)x y a b a b+=>>,椭圆短轴的一个端点与两个焦点构成的三角形的面积为3.已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. (1)若线段AB 中点的横坐标为12-,求斜率k 的值; (2)若点7(,0)3M -,求证:MA MB ⋅ 为定值.解:(1)因为22221(0)x y a b a b+=>>满足:222a b c =+,c a =122b c ⨯⨯=. (翻译,列出方程组) 解得2255,3a b ==,(代入消元法解方程组)所以,椭圆方程为221553x y +=.将(1)y k x =+代入221553x y +=中,得2222(13)6350k x k x k +++-=,4222364(31)(35)48200k k k k ∆=-+-=+>.设A ()11,x y 、B ()22,x y ,(设点坐标)则 2122631k x x k +=-+(韦达定理)因为AB 中点的横坐标为12-, 所以 2231312k k -=-+,解得 3k =±. (解方程)(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+,(韦达定理) 所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ (内积公式)2121277()()(1)(1)33x x k x x =+++++(代入消元)2221212749(1)()()39k x x k x x k =++++++2222222357649(1)()()313319k k k k k k k -=+++-++++(用韦达定理代入消元)4222316549319k k k k ---=+++ (代数变形) ()()222231549319k k k k ++=-+++4.9=(为定值). 四、经统计,某大型商场一个结算窗口每天排队结算的人数及相应的概率如下:(1)每天不超过20人排队结算的概率是多少?(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?解:(1)每天不超过20人排队结算的概率为:P=0.1+0.15+0.25+0.25=0.75,即不超过20人排队结算的概率是0.75.(2)每天超过15人排队结算的概率为 0.25+0.2+0.05=21,一周7天中,没有出现超过15人排队结算的概率为77)21(C ;一周7天中,有一天出现超过15人排队结算的概率为617)21)(21(C ;一周7天中,有二天出现超过15人排队结算的概率为5227)21()21(C ;所以有3天或3天以上出现超过15人排队结算的概率为:75.012899])21()21()21)(21()21([15227617707>=++-C C C ,所以,该商场需要增加结算窗口.五、数列{}n a 中,设3,121==a a ,且对所有自然数n N +∈,有n n n a n a n a )2()3(12+-+=++.(1)求通项n a ;(2)求使n a 能被11整除的所有自然数n 之值. 解:(1)由条件等式,得211(2)()n n n n a a n a a +++-=+-1(2)(1)()n n n n a a -=++-21(2)(1)43()(2)!n n a a n ==++⋅⋅⋅⋅-=+所以 )!2(12+=-++n a a n n .于是 )()()(123121--++-+-+=n n n a a a a a a a a=12!3!!(1)n n ++++≥ .(2)注意到 33!4!3!2!14=+++=a ,能被11整除,845!(1667678)a a =+++⋅+⋅⋅, 1089!(110)a a =++能被11整除,当11≥n 时,)!11!121(!1110n a a n ++++= 能被11整除。
2014年华约自主招生能力测试数学试题(纯word版,含详细答案)

2014年高水平大学自主选拔学业能力测试数学与逻辑(华约)一、(本小题满分10分)1x ,2x ,3x ,4x ,5x 为五个正整数,任取四个其和组成的集合为{}44,45,46,47,求i x (1i =,2, (5). 【解析】记51ii S x==∑,若12345,,,,x x x x x 两两不等,那么对{}(),1,2,3,4,5i j i j ∀∈≠都有i j S x S x -≠-,这样12345,,,,x x x x x 任取四个数求和一共有5个不同的值,这与条件矛盾。
于是12345,,,,x x x x x 中必有两个数相等,据对称性,不妨设12x x a ==,3x b =,4x c =,5x d =,则问题变为对正整数,,a b c d ,集合{}{},2,2,244,45,46,47a b c d a b c a b d a c d +++++++++=,注意到集合元素的表达形式关于a 对称,于是据对称性,只需要讨论a 在序列,,,a b c d 中的大小。
情形一:a b c d <<<,这时候由集合的对应原则得47244245246a b c d a b c a b d a c d +++=⎧⎪++=⎪⎨++=⎪⎪++=⎩,于是得到441a =,矛盾。
情形二:b a c d <<<,同情形一的证明可得11101213a b c d =⎧⎪=⎪⎨=⎪⎪=⎩。
情形三:b c a d <<<,同情形一亦有439b =,矛盾。
情形四:b c d a <<<,同情形一亦有438b =,矛盾。
综上所述,12345,,,,x x x x x 的值为1234511,10,12,13x x x x x =====及其轮换。
二、(本小题满分15分)乒乓球比赛,甲胜的概率是1()2p p >,若采用五局三胜制,甲获胜的概率是q ,求p 为多少时,p q -取得最大值.【解析】设比赛用了ξ局,当甲用3局取胜,则()33q p ξ==;当甲用4局取胜,则()()13341q C p p ξ==-当甲用5局取胜,则()()223451q C p p ξ==-。
2014卓越联盟预测试卷8

2014年卓越联盟自主招生数学模拟试题(Y.P.M 预测第八试卷)姓名 成绩 .一、选择题(本大题共4题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若非空集合A={x|2a+1≢x ≢3a-5},B={x|3≢x ≢22},则能使A ⊆A ∩B 成立的所有a 的集合是( )(A){a|1≢a ≢9} (B){a|6≢a ≢9} (C){a|a ≢9} (D)φ2.条件甲:θsin 1+=a;条件乙:sin2θ+cos2θ=a.则( )(A)甲是乙的充分必要条件 (B)甲是乙的必要条件 (C)甲是乙的充分条件 (D)甲不是乙的必要条件,也不是充分条件3.空间四点A 、B 、C 、D 满足:|AB |=3,|BC |=7,|CD |=11,|DA |=9,则BD AC ⋅的取值( ) (A)只有一个 (B)有二个 (C)有四个 (D)有无穷多个4.在1~2000中随机地取一个数,取到的整数能被6整除但不能被4整除的概率是( ) (A)41 (B)100083 (C)1000167 (D)43二、填空题(本大题共4小题,每小题6分,共24分,把答案填在答题卡的相应位置)5.△ABC 中,已知BC=4,AC=3,cos(A −B)=43,则△ABC 的面积为_____.6.已知定义域为R 的函数f(x)满足:2f(x 2+x)-f(x 2-3x+2)=40(x 2+5x)-68,则f(50)= .7.一个球的内接圆锥的最大体积与这个球的体积之比为_______.8.在1,3,5,7,…,99这50个连续奇数中任取k 个数,使得在这k 个数中必存在三个数,以这三个数为边长可以组成三角形,则k 的最小值是________.三、解答题(本大题共4小题,共56分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内)9.(本题13分)已知函数f(x)=ax 2+(b+1)x+c(a ≠0).求证:方程f(f(x))=x 有4个相异实根的充要条件是b 2-4ac>4;10.(本题13分)已知正方形ABCD 的顶点A,B,C 都在抛物线y=x 2上,求正方形ABCD 面积的最小值.11.(本题15分)已知数列{a n }的前n 项和S n 满足:S 1=1,且2S n =a n a n+1(n ∈N +). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)定义数列{b n }:b 1=1,当n ≣2时,b n =∑-=---nk kk n k a C 1111)1(.求证:对任意正实数M,必存在正整数m,使得b 1+b 2+…+b m >M 成立.12.(本题15分)求最小的正整数m,使得存在正整数n 满足2012|(m ×232n+26n).2014年卓越联盟自主招生数学模拟试题(Y.P.M 预测第八试卷)详解一、选择题(本大题共4题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若非空集合A={x|2a+1≢x ≢3a-5},B={x|3≢x ≢22},则能使A ⊆A ∩B 成立的所有a 的集合是( )(A){a|1≢a ≢9} (B){a|6≢a ≢9} (C){a|a ≢9} (D)φ解:因A ⊆A ∩B ⇔A ⊆B;①当A=∅时,2a+1>3a-5⇔a<6;②当A ≠∅时,A ⊆B ⇔2a+1≣3, 3a-5≢22,且3a-5≣2a+1⇔6≢a ≢9.故选(C).2.条件甲:θsin 1+=a;条件乙:sin2θ+cos2θ=a.则( )(A)甲是乙的充分必要条件 (B)甲是乙的必要条件 (C)甲是乙的充分条件 (D)甲不是乙的必要条件,也不是充分条件 解:因sin2θ+cos2θ=a ⇒1+sin θ=a 2⇒θsin 1+=|a|⇒/甲;θsin 1+=a ⇒|sin2θ+cos2θ|=a ⇒/乙.故选(D).3.空间四点A 、B 、C 、D 满足:|AB |=3,|BC |=7,|CD |=11,|DA |=9,则BD AC ⋅的取值( ) (A)只有一个 (B)有二个 (C)有四个 (D)有无穷多个解:设AB =a ,AC =b ,AD =c ,则|a |=3,|a -b |=7,|c -b |=11,|c |=9⇒a 2=9,a 2-2ab +b 2=49,c 2-2bc +b 2=121,c 2=81⇒b 2-2ab = 40,b 2-2bc =40⇒ab =bc ,BD AC ⋅=b (c -a )=bc -ab =0,选(A).4.在1~2000中随机地取一个数,取到的整数能被6整除但不能被4整除的概率是( ) (A)41 (B)100083 (C)1000167 (D)43解:设事件A 为“取到的数能被6整除”,事件B 为“取到的数能被4整除”.由333<62000<334,知P(A)=2000333.而6与4的最小公倍数为12,166<122000<167,所以,恰有166个数既能被6整除又能被4整除,即P(AB)=2000166.因此所求概率为P(A)-P(AB)=1000167.故选(C). 二、填空题(本大题共4小题,每小题6分,共24分,把答案填在答题卡的相应位置)5.△ABC 中,已知BC=4,AC=3,cos(A −B)=43,则△ABC 的面积为_____. 解:在BC 上取点D,使得AD=BD=x ⇒CD=4-x,在△ACD 中,(4-x)2=9+x 2-6xcos(A −B)⇒x=2⇒cosC=43⇒sinC=47⇒ △ABC 的面积=273. 6.已知定义域为R 的函数f(x)满足:2f(x 2+x)-f(x 2-3x+2)=40(x 2+5x)-68,则f(50)= . 解:令x 2+x=50⇒x=22011+-⇒x 2-3x+2=(x 2+x)-4x+2=50-2(-1+201)+2=54-2201,40(x 2+5x)-68=40[(x 2+x)+4x]- 68=40(48+2201)-68⇒2f(50)-f(54-2201)=40(48+2201)-68⇒f(54-2201)=2f(50)-40(48+2201)+68; 令x 2-3x+2=50⇒x=22013-⇒x 2+x=4x+48=54-2201,40(x 2+5x)-68=40(60-4201)-68⇒2f(54-2201)- 2f(50)=40(60-4201)-68⇒4f(50)-80(48+2201)+136-2f(50)=40(60-4201)-68⇒f(50)=2012. 7.一个球的内接圆锥的最大体积与这个球的体积之比为_______.解:记球半径为R,圆锥的半径为r,圆锥的高=h ⇒r 2=h(2R-h)⇒圆锥的体积=31πr 2h=31πh 2(2R-h)⇒比为8:27.8.在1,3,5,7,…,99这50个连续奇数中任取k 个数,使得在这k 个数中必存在三个数,以这三个数为边长可以组成三角形,则k 的最小值是________.解:{1,3,5,9,15,25,41,67}不满足条件⇒k ≣9.如果存在{a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9}(a i <a i+1)不满足条件⇒a 3≣a 1+a 2≣5⇒a 4≣a 2+a 3≣9⇒a 5≣a 3+a 4≣15⇒a 6≣a 4+a 5≣25⇒a 7≣a 5+a 6≣41⇒a 8≣a 6+a 7≣67⇒a 9≣a 3+a 8≣109,矛盾,故k=9.三、解答题(本大题共4小题,共56分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内)9.(本题13分)已知函数f(x)=ax 2+(b+1)x+c(a ≠0).求证:方程f(f(x))=x 有4个相异实根的充要条件是b 2-4ac>4; 解:由f(x)=ax 2+(b+1)x+c ⇒c=f(x)-ax 2-(b+1)x,所以,f(f(x))=x ⇔af 2(x)+(b+1)f(x)+c-x=0⇔af 2(x)+(b+1)f(x)+ f(x)-ax 2-(b+1)x-x=0⇔a[f 2(x)-x 2]+(b+2)[f(x)-x]=0⇔[f(x)-x][af(x)+ax+b+2]=0⇔(ax 2+bx+c)[a 2x 2+a(b+2)x+ac+b +2]=0⇔ax 2+bx+c=0,或a 2x 2+a(b+2)x+ac+b+2=0,其判别式=a 2(b+2)2-4a 2(ac+b+2)=a 2(b 2-4ac-4);若方程ax 2+bx+c=0与a 2x 2+a(b+2)x+ac+b+2=0有公共根x 0,则ax 02+bx 0+c=0,a 2x 02+a(b+2)x 0+ac+b+2=0⇒a(ax 02+bx 0)+2ax 0 +ac+b+2=0⇒x 0=-a b 22+⇒a(-a b 22+)2+b(-ab 22+)+c=0⇒b 2-4ac=4,矛盾. 10.(本题13分)已知正方形ABCD 的顶点A,B,C 都在抛物线y=x 2上,求正方形ABCD 面积的最小值. 解:设A(a,a 2),B(b,b 2),C(c,c 2),k AB =a+b=k,由AB ⊥BC ⇒k BC =c+b=-k1;由|AB|=|BC|⇒(a-b)2+(a 2-b 2)2=(c-b)2+(c 2-b 2)2⇒ (a-b)2[1+(a+b)2]=(c-b)2[1+(c+b)2]⇒(a-b)2(1+k 2)=(c-b)2(1+21k)(不妨设a>b>c ⇒k>0)⇒21k +(a-b)=211k +(b-c)(a=k-b,c=-k1-b)⇒21k +(k-2b)=211k +(2b+k 1)⇒b=)1(213+-k k k ⇒a=)1(21223+++k k k k ⇒a-b=)1(12++k k k 正方形ABCD 的面积=|AB|2=(a-b)2+(a 2-b 2)2=(a-b)2[1+(a+b)2]=(a-b)2(1+k 2)=2222)1()1(++k k k (1+k 2)≣222)1(4+k k k ×21(k+1)2=2. 当且仅当k=1时,等号成立.11.(本题15分)已知数列{a n }的前n 项和S n 满足:S 1=1,且2S n =a n a n+1(n ∈N +). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)定义数列{b n }:b 1=1,当n ≣2时,b n =∑-=---nk kk n k a C 1111)1(.求证:对任意正实数M,必存在正整数m,使得b 1+b 2+…+b m >M 成立. 解:(Ⅰ)由S 1=1,且2S n =a n a n+1⇒a 1=1,a 2=2,a n ≠0,2S n+1=a n+1a n+2⇒2a n+1=2S n+1-2S n =a n+1a n+2-a n a n+1⇒a n+2-a n =2;①当n 为奇数时,设n=2k-1(k ∈N +),则a 2k+1-a 2k-1=2⇒a 2k-1=1+2(k-1)=2k-1;②当n 为偶数时,设n=2k(k ∈N +),则a 2k+2-a 2k =2⇒a 2k =2+2(k-1)= 2k.综上,a n =n;(Ⅱ)当n ≣2时,b n =∑-=---nk k k n k a C 1111)1(=∑-=---n k k n k k C 1111)1(=1111)1(--=-⋅∑-k n n k k C k n n =k nn k k C n ⋅∑-=-11)1(=-n 1∑-=n k k n k C 1)1(=-n 1(∑-=n k k n k C 0)1(-1)= -n 1[(1-1)n-1]=n 1,且b 1=1适合该式,所以b n =n 1(n ≣1);由x>ln(1+x)⇒n 1>ln(1+n1)⇒b n >ln(n+1)-lnn ⇒b 1+b 2+…+b n > ln(n+1)>M ⇒n>e M-1,令m=[e M]即有b 1+b 2+…+b m >M.12.(本题15分)求最小的正整数m,使得存在正整数n 满足2012|(m ×232n+26n).解:因2012=4×503,所以2012|(m ×232n+26n)⇔4|(m ×232n+26n),且503|(m ×232n+26n)⇔m ×232n+26n≡0(mod4),且m ×232n+26n≡0(mod503)⇔m ×232n≡0(mod4),且m(503+26)n+26n≡0(mod503)⇔m ≡0(mod4),且m ×26n+26n≡0(mod503)⇔m ≡0(mod4),且(m+1)26n≡0(mod503)⇔m ≡0(mod4),且(m+1)≡0(mod503)⇔m=4k,且m+1=503t(k,t ∈N +)⇔4k+1=503t ⇔ k=41503-t ,验算知t 的最小值为3⇒最小的正整数m=503×3-1=1508.。
2014年3月北约自主招生数学试卷

2014北约理科数学试题1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 7、求证:tan3.Q ︒∉8、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.9、1213......a a a 是等差数列,{}|113,i j k M a a a i j k =++≤<<≤问:7160,,23是否可以同时在M中,并证明你的结论.10、()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏2014北约文科数学试题1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 7、等比数列{}(){}()411200,631200n n m m +≤≤-≤≤的公共项之和.8、梯形的对角线长分别为5和7,高是3,求梯形的面积.9、求证:tan3.Q ︒∉10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.2014北约理科数学试题(参考答案)1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 【解析】21,6,2,2S R R l R ααπ=⇒===扇从而圆锥底面周长为222,,67.r S r S πππππππ=⇒===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ⋅⋅=3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 【解析】值域问题.2440,1a a a ∆=-≥⇒≥或0.a ≤5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 【解析】均值不等式,对勾函数性质.()()110,4x y xy =-+-≥⇒<≤从而117.4xy xy +≥FEDBA6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 【解析】()00,arctan 2.f C =⇒=-下面证明:()()22224arctanarctan 2arctan 2arctan 20.14143x x f x f x C x x +-⎛⎫+-=++=--= ⎪-+⎝⎭7、求证:tan3.Q ︒∉【解析】反证法.假设tan3,Q ︒∈则tan6,tan12,tan 24,Q Q Q ︒∈⇒︒∈⇒︒∈从而tan30,Q ︒∈矛盾.tan3.Q ∴︒∉8、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.9、1213......a a a 是等差数列,{}|113,i j k M a a a i j k =++≤<<≤问:7160,,23是否可以同时在M中,并证明你的结论.【解析】数列中的项.分析M 中项的构成,若按照从小到大的顺序排列,最小的项为123a a a ++,第二项为124a a a ++,最大的项为111213,a a a ++设n a 公差为,d 则M 中项的公差也为d ,所以M 中共有111213123131++---+=项,假设7160,,23均为M 中的项,不妨设212121217167110,,,,030,23221k k d k d k k Z k k k -=-=⇒=∈<≤、、且1231,k k +≤这样的k 不存在,矛盾.所以7160,,23不可以同时在M 中.10、()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ≤=⎛⎫∑n i ≤∑n i ⎛⎫≤∑1n n i i n n ⎛⎫⎛⎫≤+=∑∑,即)1≤,即))1nni ix ≤∏法二:由11.n i ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n nii i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x⎫≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2014北约文科数学试题(参考答案)1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 【解析】21,6,2,2S R R l R ααπ=⇒===扇从而圆锥底面周长为222,,67.r S r S πππππππ=⇒===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ⋅⋅=3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 【解析】值域问题.2440,1a a a ∆=-≥⇒≥或0.a ≤5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 【解析】均值不等式,对勾函数性质.()()110,4x y xy =-+-≥⇒<≤从而117.4xy xy +≥6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 【解析】()00,arctan 2.f C =⇒=-下面证明:()()22224arctanarctan 2arctan 2arctan 20.14143x x f x f x C x x +-⎛⎫+-=++=--= ⎪-+⎝⎭7、等比数列{}(){}()411200,631200n n m m +≤≤-≤≤的公共项之和. 【解析】此题考察数的同余问题;设公共项为a ,1mod(4),3mod(6).a a ≡≡易得a 最小的数为9.4和6的最小公倍数为12,则912,.a k k N =+∈91242001,66.k k +=⨯+⇒=∴公共项之和为()67980127135.2S +==8、梯形的对角线长分别为5和7,高是3,求梯形的面积.【解析】如图,梯形面积为()()1122S AB CD h DF EC h =+=+,易求得4,DF EC == ()(1143622S DF EC h =+=+=+9、求证:tan3.Q ︒∉【解析】反证法.假设tan3,Q ︒∈则tan6,tan12,tan 24,Q Q Q ︒∈⇒︒∈⇒︒∈从而tan30,Q ︒∈矛盾.tan3.Q ∴︒∉10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.FEDBA。
2014年高考试题理科数学真题及答案(新课标II)Word版解析

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. - 4 - i【答案】A 【解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a,b 满足|a+b|a-b|=,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A. 0.8B. 0.75C. 0.6D. 0.45【答案】A【解析】.,8.0,75.06.0,Appp故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027D.13【答案】C【解析】..2710π54π34-π54π.342π944.2342π.546π96321Cvv故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】 D【解析】8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C. 2D. 3【答案】D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(Daffxaxfxaxxf故选联立解得且==′=∴+=′∴+=9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B 【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938 C. 6332 D. 94【答案】 D【解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.30D.2【答案】 C 【解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录1:2014年卓越联盟自主选拔考试学科基础测试一(理科)
选择题(每题5分,共20分)(注:原题是选择题) 1. 不等式3
2
210x x -+<的解集为_____________.
2. 在三棱锥P ABC -中,PA ⊥底面ABC ,AC BC ⊥,2AC =,二面角P BC A --的大
小为60︒,三棱锥P ABC -
,则直线PB 与平面PAC 所成的角的正弦值为________.
3. 当实数m 变化时,不在任何直线()2
21440mx m y m +
---=上的所有点()
,x y 形成的图形的面积为_____________.
4. 已知函数()()2
211,,,21ln 1,,2x x x f x x x ⎧+⎛
⎫∈-∞- ⎪⎪⎪⎝
⎭⎨⎡⎫
⎪+∈-+∞⎪⎢⎪⎣⎭⎩
.()244g
x x x =--.设b 为实数,若存
在实数a ,使()()0f a g b +=,则b 的取值范围是___________.
填空题(每题6分,共24分)
5. 已知01a <<,分别在区间()0,a 和()0,4a -内任取一个数,且取出的两数之和小于1
的概率为3
16
.则a 的值为_______________.
6. 设1e ,2e 为平面上夹角为θ(02
θπ
<≤
)的两个单位向量,O 为平面上的一个固定点,P 为平面上任意一点,
当12OP x y =+
e e 时,定义(),x y 为点P 的斜坐标.现有两个点A ,B 的斜坐标分别为()11,x y ,()22,x y .则A ,B 两点的距离为______________.
7. 若函数sin 4y x ωπ⎛
⎫=+ ⎪⎝
⎭的图象的对称中心与y 轴距离最小的对称轴为6x π=,则实数ω
的值为_____.
8. 已知集合A ,B 满足{}1,2,3,,8A B = ,A B =∅ .若A 中元素的个数不是A 中的
元素,B 中元素的个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为___________.
解答题(共56分)
9. (13分)设α∈R ,函数()()cos sin 2cos f x x x x αααα=++,
x ∈R .(1)若,42αππ⎡⎤∈⎢⎥⎣⎦
,求()f x 在区间0,4π⎡⎤
⎢⎥⎣⎦上的最大值.
(2)若()3f x =,求α与x 的值.
10. (13分)已知双曲线22
221x y a b
-=(0a >,0b >)的两条渐进线的斜率之积为3-,左
右两支上分别由动点A 和B .
(1)设直线AB 的斜率为1,经过点()0,5D a ,且AD DB λ=
,求实数λ的值.
(2)设点A 关于x 轴的对称点为M .若直线AB ,MB 分别与x 轴相交于点P ,Q ,O 为坐标原点,证明2OP OQ a ⋅=.
11. (15分)已知()f x 为R 上的可导函数,对任意的0x ∈R ,有()()000''4f x x f x x <+-<,
0x >.
(1)对任意的0x ∈R ,证明:()()()
000'f x x f x f x x
+-<
(0x >);
(2)若()1f x ≤,x ∈R ,证明()'4f x ≤,x ∈R .
12. (15分)已知实数列{}n a 满足11a =,1n n a q a +=,n +∈N ,
常数1q >.对任意的n +∈N ,有1
14n k n k a a +=≤∑.设C 为所有满足上述条件的数列{}n a 的集合.
(1)求q 的值;
(2)设{}n a ,{}n b C ∈,m +∈N ,
且存在0n m ≤,使00n n a b ≠.证明:1
1
m m
k k
k k a b ==≠∑∑;
(3)设集合{}1m m k n
k A a a C =⎧⎫
=∈⎨⎬⎩⎭
∑,m +∈N ,求m A 中所有正数之和.
附录2:2014年卓越联盟自主招生数学参考..
答案 选择题
1. 答案:11⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭
.提示:22x x =
,把原式视作x 的三次多项式分解因2.
3. 答案:4π.提示:原式视作m 的二次方程()22440ym x m y --+-=,判别式0<即可.
4. 答案:[]1,5-.提示:仔细算算. 填空题
5. 答案:4
.提示:可转化为“线性规划+几何概型”问题. 6.
7. 答案:2
.提示:仔细算算.
8. 答案:44.提示:按A 中元素个数(A =0,1,2,…)逐个进行分类讨论. 解答题
9. 答案:(1)2cos α+;(2)2k α=π,(k ∈Z );38x n π
=π+,n ∈Z .
提示:()2sin 2cos 4f x x ααπ⎛
⎫=+-+ ⎪⎝
⎭
.
10. 答案:(1)27λ=;(2)提示:
2222
22
A B B A A B B A A B B A P Q A B A B A B x y x y x y x y x y x y OP OQ x x y y y y y y -+-⋅=⋅=⋅=-+-,再带入2223A A y
x a =+,2223
B B y x a =+即可.
11. 提示:
(1)即证()()()000'0f x x f x f x x +-->,构造函数()()()()000'g x f x x f x f x x =+--,对()g x 求导证明()g x 在[)0,+∞上单增即可.
(2)由条件知()'f x 是R 上的单增函数,故()'f x 不可能恒等于零.
如果存在正实数0δ>,及实数0x ,使()0'f x δ=,则对任意0x >,()()
00f x x f x x δ+->.
则当()01max 0,f x x δ⎧⎫-⎪⎪
>⎨⎬⎪⎪⎩⎭
时,()()()()000
011f x f x x x f x f x δδδ-+>+>⋅+=,与条件矛盾.
如果存在正实数0δ>,及实数0x ,使()0'f x δ=-,则对任意0x <,存在()00,x x x ξ∈+,
满足()()()()000''f x x f x f f x x ξ+-=<.则当()01min 0,f x x δ⎧⎫-⎪⎪
<⎨⎬⎪⎪⎩⎭时,
()()()()()00001
1f x f x x x f x f x δδδ
-+>-+>-⋅+=,与条件也矛盾.
总之,题目中的条件永远不成立.故由于前提条件是假命题,从而不论结论是什么,都是真命题. 12. 提示:
(1)化简
11141n n q q q
+--≤-,可得()2
112n q q -≥-对任意正整数n 成立,左边在n 无穷大时是无穷小,所以2q =.
(2)方法一:假设l 是1,2,3,…,m 中满足n n a b ≠中的最大角标.则
1
1
1
1
1
1
1
1
1
1
222m
m
l
l
l l l l
k k k
k k
l l k k
k k k k k k k a b
a b
a b a b
---=======-=
-=--
-≥-=∑∑∑∑∑∑∑.
方法二:假设l 是1,2,3,…,m 中满足n n a b ≠中的最小角标,则
()111
1
2220m m
l l l k k
l l l l k k a b
a b a b ++==-≡-+-≡±±±≡/∑∑(1
mod 2l +)
. (3)显然{}n a 的前m 项和是正数,当且仅当0m a >,此时i a (1i =,2,…,1m -)的符号随意.即{}n a :1±,2±,4±,…,22m -±,12m -.这样的数列共有12m -个,若i a 与i b 符号相反,则进行配对(1i =,2,…,1m -).于是,m A 中所有元素之和为
1122222m m m ---⋅=.
说明:
(1)第11题中的条件永远是假命题,这一现象不知是出题者有意为之还是无意为之. (2)第12题第2问中,取角标最大则考虑通常意义下绝对值的差不能为零,取角标最小则考虑在适当的模下的差不能为零——这是常用的思路,应注意掌握.实际上,前者对应于Z 的欧几里得赋值,后者对应于Z 的p adic -赋值,这两个赋值数学本身的意义也很大.。