电解与极化作用

合集下载

电解与极化作用小结

电解与极化作用小结

(A)都溶解
(B)Fe(s)不溶,Cd(s)溶解
(C)都不溶解
(D)Fe(s)溶解,Cd(s)不溶
答 (B) 设构成电池 Cd(s)|Cd2+||Fe2+|Fe(s)
则 电池反应为 Cd(s) + |Fe2+ = Cd2+ + Fe(s)
E
=
EO

RT 2F
ln
a(Cd 2+ ) a( Fe2+ )
解:
(1)
ϕ Cd 2+/ Cd
+
RT
F
ln
a Cd
2+
= −0.403 +
RT ln 0.01 = −0.4621V 2F
ϕ Cu 2+ / Cu
=ϕO Cu 2+ / Cu
+ RT F
ln
a Cu
2+
= 0.337 +
RT ln 0.02 = 0.2868 V 2F
仍不会有 H2(g)析出,问溶液的 pH 值应控制在多少为好? 已知 H2(g)在 Zn(s)上的超电势为 0.72V,并设此值与溶液浓度无关。 (设 γ±=1)已知: ϕ O (Zn2+/Zn)=-0.7628V .
解: φ(Zn2+/Zn)= ϕ O (Zn2+/Zn) -RT/2F×ln 1/a(Zn2+) = -0.8811 V
例题 12 298K, pO 下,以 Pt 为阴极,电解含 FeCl2(0.01mol·kg-1)和 CuCl2(0.02mol·kg
-1)的水溶液。若电解过程中不断搅拌,并设超电势可略去不计,已知ϕ O (Fe2+/ Fe)

10-电解与极化作用

10-电解与极化作用

阳,析出 阳,可逆 阳
3、极化曲线的测定
超电势或电极电势与电流密度之间的关系曲线称
为极化曲线,极化曲线的形状和变化规律反映了电化
学过程的动力学特征。
+
测定超电势的装置
如右图所示:
A
电极1为待测电极,
测定分解电压时的电流-电压曲线
二、分解电压的测定
当外压增至2-3段,氢 气和氯气的压力等于大
气压力,呈气泡逸出,反电
动势达极大值 Eb,max。

E外 Eb,max IR
流 I
再增加电压,使I 迅速增 加。将直线外延至I = 0 处,
得E(分解)值,这是使电解 池不断工作所必需外加的
最小电压,称为分解电压。
(2)电化学极化
以铜电极为例: 电极反应进行缓慢
作为阴极:则由外电源输入阴 极的电子来不及消耗,即溶液 中Cu2+不能马上与电极上的电 子结合,变成Cu,结果使阴极 表面积累了多于平衡状态的电 子,导致电极电势比平衡电极 电势更小。
-
- 电源 +
e-
+
e-
Cu
Cu
CuSO4
电解池
作为阳极:类似的,作为阳极时,会使阳极表面的电 子数目小于平衡状态的电子,导致电极电势比平衡电 极电势更大。
Ag ,Ag
-
RT F
ln
1 c,e
c,e c0
阴,不可逆 阴,可逆
c'
扩散层
在浓度梯度作用下(ce’ < c0)Ag+向 电极表面的迁移
阴极浓差极化的结果是阴极电极电势比可逆时变小。
(1)浓差极化
阳极: Ag Ag++e , v扩<v反,c0 < ce`

第十章电解与极化作用

第十章电解与极化作用

(1)浓差极化——扩散过程的迟缓性而引起的极化。
浓差极化是在电流通过时,由于电极反应的反
应物或生成物迁向或迁离电极表面的缓慢而引起的
电极电势对其平衡值的偏离。
阴极:Ag++eAg,
v扩<v反,
m,<m=m
’ Ag


/ Ag


RT F
ln1 m' Nhomakorabea


即: 可 逆 > 不 可 逆 阴极极化的结果是阴 极电极电势变得更负。
η阳 j(电流密度)
E可逆 -ΔE不可逆
η阴
E可逆

电极电势

电解池中两电极的极化曲线
原电池与电解池极化的差别
当有电流通过电解池, 电解池的端电压大于平 衡电池电动势。
即:E = E平 +ηa +ηc
当有电流通过原电池, 原电池的端电压小于平 衡电池电动势。 即:E = E平 -ηa-ηc
影响超电势的因素
(1) 电流密度J 一般 , J越大 , 超电势越大。不同的物质,其 增大的规律不一样。 (2)电极材料及其表面状态 以氢电极为例:
J= 100 A/m2时,
若电极材料为Ag,η= 0.13V;
若电极材料为Pt(光滑),η= 0.16V;
若电极材料为Pt(镀有铂黑),η= 0.03V。
(3)温度 温度升高,超电势减小。 一般,每增高1度,超电势减小2mV。 除了以上因素外,电解质的性质、溶液中的杂 质对超电势均有影响。所以,超电势的重现性不好。 一般说来析出金属的超电势较小,而析出气体 (特别是氢、氧)的超电势较大。
§10.2 极化作用
§10.3 电解时电极上的竞争反应 §10.4 金属的电化学腐蚀、防腐与金属的钝化 §10.5 化学电源

物理化学(第五版傅献彩)第10_电解与极化作用

物理化学(第五版傅献彩)第10_电解与极化作用
9
无电流
ϕ可逆
= ϕy Ag+ |Ag

RT F
ln
1 aAg+
有电流
ϕ不可逆
= ϕy Ag+ |Ag

RT F
ln
1 aAg+ , e
η阴
= ϕ可逆
− ϕ不可逆
=
RT F
ln aAg+ aAg+ , e
>0
aAg+ , e < aAg+ ϕ不可逆 < ϕ可逆
阳极上的情况类似,但 ϕ不可逆 > ϕ可逆
的金属先在阴极析出,这在电镀工业上很重要 例如,利用氢的超电势,控制溶液的pH,实
现镀 Zn,Sn,Ni,Cr 等
25
阴极上发生还原反应
发生还原 (1) 金属离子 的物质: (2) 氢离子 (中性水溶液 aH+ = 10−7 ) 判断在阴极上首先析出何种物质,应把各 种可能还原的物质的电极电势求出来(气 体要考虑超电势,金属可不考虑超电势)
2H+ + 2e- = H2
ϕ可逆
=ϕΟ H+ |H2
− RT 2F
ln
pH2 / p Ο a2
H+
= −0.059pH = −0.414V
ϕ不可逆 = ϕ可逆 −η = −0.414V − 0.584V = −0.998V
Zn2+ + 2e- = Zn
ϕ可逆
=ϕΟ Zn2+ |Zn
− RT 2F
1 ln
=−
RT 2F
ln
aH2 a2
H+
−ηH2
设 pH2 = p Ο

11章电解池与极化作用全解

11章电解池与极化作用全解
第十一章 电解池与极化作用
可逆电池:电极反应是在电流趋于零的平衡条件 下进行的,此时的电极电势为可逆电 极电势或平衡电极电势。
实际上电池对外供电或进行电解时,都有一定的电流 通过电极,使电极反应在偏离平衡态下进行而成为不 可逆过程,导致电极电势也偏离平衡电极电势。现以 电解池为例讨论这种偏离现象产生的原因及在实际中 的意义。
由于化学反应本身的迟缓性而引起的的电极极化。
电极反应总是分若干步进行,若其中一步反应速
率较慢,需要较高的活化能。为了使电极反应顺利进
行所额外施加的电压称为称为活化超电势。
例:2H+ + e– H2
e
v反应 慢,阴极积累电子e- 2H+ + 2e– H2
电化学极化使阴极电势降低,使阳极电势升高
两种极化结果均使 阴极电势降低
7
§11.2 极化作用
1. 电极的极化
定义:电流通过电极时,电极电势偏离其平衡电极 电势的现象称为电极的极化。
阳极极化: E阳 E阳, 平 使 E阳 变大(正) 阴极极化: E阴 E阴, 平 使 E阴 变小(负)
离子扩散速率慢 浓差极化 极化产生的原因:
反应速率慢 电化学极化
8
(1) 浓差极化 由于电极表面附近薄液层的浓度和本体溶液的 浓度的差异所导致的电极极化。
所以标准氢电极中的 铂电极要镀上铂黑。
影响超电势的因素很多,如电极材料、电极表面状态、电
流密度、温度、电解质的性质、浓度及溶液中的杂质等。
14
Tafel 公式(Tafel’s equation)
早在1905年,Tafel 发现,对于一些常见的电 极反应,超电势与电流密度之间在一定范围内存 在如下的定量关系:

电解与极化作用

电解与极化作用

第九章 电解与极化作用前边讨论的电池与电极都是可逆的,那么应用能斯特公式来处理电化学体系时,它的前提就是该体系必须是处于热力学平衡态,但是对于一些现实的电化学过程来说一般都是不可逆过程,因此应用Nernst 公式研究电化学问题就具有很大的局限性。

事实上当原电池或电解池,只要有电流通过,就有极化作用发生,该过程就是不可逆过程。

研究不可逆电极反应及其规律性对电化学工业是十分重要的,所以我们要讨论不可逆电极过程。

在这一部分除了讨论电解池中的极化作用外,还要简单介绍一些电解在工业上的应用上及金属的防腐和化学电源等。

§9-1 电极的极化1、不可逆条件下的电极电势一个不可逆电池所具备的条件有两个:①电池反应在充电与放电时互为逆反应;②通过电池的电流I →0,即没有电流通过电池。

显然组成可逆电池的两个电极都是可逆电极,那么可逆电极的电极反应都是在可逆的条件下发生的。

这时电极所具有的电势就称为可逆电极电势。

可逆电极电势对许多电化学和热力学问题的解决是相当重要的。

但是在实践当中许多电化学过程,如进行电解和使用化学电源做电功时,并不是在可逆情况下进行的,也就是说要有电流通过电池或电解池,此时的电极反应就是不可逆的了,不可逆电极的电极电势用“I ϕ”表示,当然这个电极电势与可逆电极的电极电势r ϕ是不相同的,那么我们就把电极在有限电流通过时所表现的电极电位I ϕ与可逆电极电势产生偏差的现象叫做电极的极化。

偏差的大小(绝对值),称为“过电势”。

用“η”表示,||r I ηϕϕ=-,对于原电池,在可逆放电时,两电极的端电压是最大的,这个端电压就是电动势E ,它等于两个可逆电极的电位差。

()()()()r r r r E ϕϕϕϕ=-=-正阳阴负在不可逆条件下进行放电,两电极的端电压用E I 表示,它一定要小于原电池的电动势E ,E I <E ,E I =E-△E其电动势的降低主要是由于两个因素引起的,当有电流通过时, ①电池具有一定的内阻R 的消耗电位降IR ;②不可逆条件电极要产生极化,也会造成电动势下降,所以不可逆电池两电极的电位差通常就叫端电压。

物理化学课件6.3章电解与极化作用

物理化学课件6.3章电解与极化作用

实验材料
电解槽、电极、电源、电解质溶液等。
电解实验的设计与操作
实验步骤 1. 准备实验材料,配置电解质溶液。
2. 将电极插入电解槽中,连接电源。
电解实验的设计与操作
3. 观察并记录电极反应现象,测量电流和电压。 4. 分析实验数据,得出结论。
极化作用的实验研究方法
实验目的
通过实验研究,探究极化作用对电极反应的影响,理解极化作用的原理。
电解分离与提纯
总结词
电解分离和提纯是利用电解的原理将混 合物中的不同组分进行分离或提纯的方 法。
VS
详细描述
电解分离是通过电解过程中不同物质在电 极上的吸附、氧化还原反应等特性差异实 现分离。电解提纯则是利用电解过程将杂 质去除,实现物质的纯化。
05 极化作用的应用
电化学反应器
电解槽
利用电解原理进行物质转 化的设备,如氯碱工业中 的隔膜电解槽和电解水制 氢装置。
详细描述
电镀是将金属离子在电场作用下还原成金属并沉积在阴极表面,用于表面防护和装饰。电冶金则是利 用电解过程提取金属,从矿石或盐类等原料中分离和提纯金属。
电解制取气体
总结词
电解水是制取氢气和氧气的常用 方法,具有清洁、高效的特点。
详细描述
通过电解水可以将水分子分解成 氢气和氧气,分别在阴极和阳极 析出。电解水制取的气体可用于 燃料电池、医疗、潜水等领域。
电极反应的极化曲线
极化曲线是描述电极电势与电流密度之间关系的曲线,可以用来研究电极反应的动 力学过程和机理。
在极化曲线上,可以根据电流密度的大小来判断电极反应的速率快慢,以及电极电 势偏离可逆电势的程度。
通过测量不同温度下的极化曲线,可以研究电极反应的热力学性质和动力学过程。

电解与极化作用

电解与极化作用

物理化学论文电解与极化作用化工093班姓名:李寒萌学号:12 号电解与极化作用一、分解电压使电能转变成化学能的装置称为电解池。

当直流电通过电解质溶液,正离子向阴极迁移,负离子向阳极迁移,并分别在电极上起还原和氧化反应,从而获得还原产物和氧化产物。

若外加一电压在一个电池上,逐渐增加电压直至使电池中的化学反应发生逆转,这就是电解。

实验表明,对任一电解槽进行电解时,随着外加电压的改变,通过该电解槽的电流亦随之变化。

例如,使用两个铂电极电解HCl 溶液时,使用图9.1 的线路装置,改变可变电阻,记录电压表和电流表的读数,则可测量电解槽两端电位差与电流强度的关系曲线。

开始时,当外加电压很小时,几乎没有电流通过电解槽;电压增加,电流略有增加;当电流增加到某一点后,电流随电压增大而急剧上升,同时电极上有连续的气泡逸出。

在两电极上的反应可表示如下:阴极2H+(a H+)+2e.→H2(g, p)阳极2Cl-.(a Cl-)→Cl2(g, p)+2e. 图9.1 分解电压的测定装置当电极上有气泡逸出时,H2和Cl2的压力等于大气压力。

电解过程分析:当开始加外电压时,还没有H2和Cl2生成,它们的压力几乎为零,稍稍增大外压,电极表面上产生了少量的H2和Cl2,压力虽小,但却构成了一个原电池(自发地进行如下反应)(-) H2(p)→2H+ (a H+)+2e-(+) Cl2(g)+2e-→2Cl-(a Cl-)此时,电极上进行反应的方向正好与电解所进行的反应的方向相反。

它产生了一个与外加电压方向相反的反电动势E b。

由于电极上的产物扩散到溶液中了,需要通过极微小的电流使电极产物得到补充。

继续增大外加电压,电极上就有H2和Cl2继续产生并向溶液中扩散,因而电流也有少许增加,相当于图9.2 中I-E 曲线上的1-2段。

此时由于p H2和p Cl2不断增加,对应于外加电压的反电动势也不断增加,直至气体压力增至等于外界大气压力时,电极上就开始有气泡逸出,此时反电动势E b达到最大值E b, max将不再继续增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10.1 分解电压
使电能转变成化学能的装置称为电解池。当直流电通过电解质溶液,正离子 向阴极迁移,负离子向阳极迁移,并分别在电极上起还原和氧化反应,从而获得 还原产物和氧化产物。若外加一电压在一个电池上,逐渐增加电压直至使电池中 的化学反应发生逆转,这就是电解。
实验表明,对任一电解槽进行电解时,随着外加电压的改变,通过该电解槽 的电流亦随之变化。
图 10.2 测定分解电压时的电流-电压曲线 从理论上讲Eb, max应等于原电池的E(可逆),但实际上Eb, max却大于E(可逆)。 这是由两方面的原因引起的。一是由于电解液、导线和接触点都有一定的电阻, 欲使电流通过必须用一部分电压来克服IR电位降,这相当于把I2R的电触转化为 热。二是由于实际电解时在两个电极上进行的不可逆电极过程所引起,即要使正 离子在阴极析出,外加的阴极电势一定要比可逆电极电势更负一些,使负离子在 阳极析出,外加的阳极电势一定要比可逆电势更正一些。我们把由于电流通过电 极时,电极电势偏离可逆电极电势的现象称为极化现象。 实际上 I-E 曲线上分解电压的位置不能确定的很精确,且 I-E 曲线并没有十 分确切的理论意义,所得到的分解电压也常不能重复,但它却很有实用价值。 电解质的分解电压与电极反应有关。例如一些酸、碱在光滑铂电极上的分解 电压都在 1.7 V左右。它们的分解电压基本上和电解质的种类无关,这是因为这 些酸、碱的电解产物均是H2(阴极)和O2(阳极)。它们的理论分解电压都是 1.23 V,由此可见,即使在铂电极上,H2和O2都有相当大的极化作用发生。 氢卤酸的电压都较 1.7 V 小,而且其数值各不相同,这是因为在两电极上出 现的产物是氢卤酸的分解物。电极反应和电解产物不一样,自然,分解电压也就 有差异了。 小结:我们把使某种电解质开始电解反应时所必须施加的最小电压,称为该 电解质的分解电压。理论分解电压也称为可逆分解电压,等于可逆电池电动势。 但实际工作中电解以一定速率进行,过程已不可逆。这时的分解电压 E(实)> E(理),原因是:当电流通过时,电极有极化作用,电路有电阻。实验表明:电 解不同的电解质,如果电极反应相同,分解电压基本相同。
例如,使用两个铂电极电解 HCl 溶液时,改变可变电阻,记录电压表和电 流表的读数,则可测量电解槽两端电位差与电流强度的关系曲线。开始时,当外 加电压很小时,几乎没有电流通过电解槽;电压增加,电流略有增加;当电流增 加到某一点后,电流随电压增大而急剧上升,同时电极上有连续的气泡逸出。
在两电极上的反应可表示如下: 阴极 2H+(aH+)+2e→H2(g, p) 阳极 2Cl- (aCl-)→Cl2(g, p)+2e当电极上有气泡逸出时,H2和Cl2的压力等于大气压力。 电解过程分析:当开始加外电压时,还没有H2和Cl2生成,它们的压力几乎为 零ห้องสมุดไป่ตู้稍稍增大外压,电极表面上产生了少量的H2和Cl2,压力虽小,但却构成了 一个原电池(自发地进行如下反应) (-) H2(p)→2H+(aH+)+2e(+) Cl2(g)+2e-→2Cl-(aCl-)
此时,电极上进行反应的方向正好与电解所进行的反应的方向相反。它产生 了一个与外加电压方向相反的反电动势Eb。由于电极上的产物扩散到溶液中了, 需要通过极微小的电流使电极产物得到补充。继续增大外加电压,电极上就有 H2和Cl2继续产生并向溶液中扩散,因而电流也有少许增加,相当于I-E曲线上的 1-2 段。此时由于pH2和pCl2不断增加,对应于外加电压的反电动势也不断增加, 直至气体压力增至等于外界大气压力时,电极上就开始有气泡逸出,此时反电动 势Eb达到最大值Eb, max将不再继续增加。若继续增加外加电压只增加溶液中的电 位降(E外-Eb, max)=IR,从而使电流剧增,即相当于I-E曲线中 2-3 段的直线部分。 将直线部分外延到I=0 处所得的电压就是Eb, max,这是使某电解液能连续不断发 生电解时所必须的最小外加电压,称为电解液的分解电压。
第十章 电解与极化作用
教学目的: 通过本章学习使学生理解电极极化的原因及应用,并能计算一些简单的电解
分离问题。 教学要求:
了解分解电压的意义。 了解产生极化作用的原因。了解超电势在电解中的作用。能计算一些简单的 电解分离问题。 了解金属腐蚀的原因和各种防腐的方法。 了解化学电源的类型及应用。 教学重点和难点 电极极化的原因,实际析出电势的求算和电解分离。 教学内容:
§10.2 极化作用 一、极化现象
我们已经知道,无论是对水的电解,或是其它物质的电解,它们的分解电压 总是大于计算得到的可逆电动势。这是因为当电流通过电极时,每个电极的平衡 都受到破坏,使得电极电位偏离平衡电位值。这种在电流通过电极时,电极电位 偏离平衡值的现象,称为电极的极化。极化现象的出现,以及溶液中存在着一定 的欧姆电位降,这些都是分解电压大于可逆电动势的原因。
实际分解电压可表示为:E(分解)=E(可逆)+E(不可逆)+IR 式中,E(可逆)是指相应的原电池的电动势,即理论分解电压;IR 由于电池 内溶液、导线和接触点等电阻所引起的电势降;E(不可逆)则是由于电极极化所 致, E(不可逆)=η(阴)+η(阳), η(阴)和η(阳)分别表示阴、阳极上的超电势。 当电极上无电流通过时,电极处于平衡状态,此时的电势为φ(平)(平衡电 势),随着电极上电流密度(I/S)的增加,电极的不可逆程度愈来愈大,其电 势值为φ(平)的偏差也越大,通常可用极化曲线(即描述电流密度与电极电势间 关系的曲线)来描述这种偏离程度。 为了明确地表示出电极极化的状况,常把某一电流密度下的φ(不可逆)与φ (平)之间的差值称为超电势。由于超电势的存在,在实际电解时要使正离子在阴 极上析出,外加于阴极的电势须更负于可逆电极;要使负离子在阳极析出,外加 于阳极电势比可逆电极电势更正一些。 下面我们将讨论引起电极极化的原因。 当电流通过电极时,为什么会发生阳极电势升高、阴极电势降低的电极极化 现象呢?这是因为当有电流 I 过电极时,发生一系列的过程,并以一定的速率进 行,而每一步都或多或少地存在着阻力。要克服这些阻力,相应地各需要一定的 推动力,表现在电极电势上就出现这样那样的偏离。 按照极化产生的不同原因,通常可简单地把极化分为两类:电化学极化和浓 差极化。将与之相应的超电势称为电化学超电势(或活化超电势)和浓差超电势。 一般说来,可将产生超电势的原因归纳为以下三点: (1)浓差超电势:在电解过程中,由于电极表面附近的离子在电极上发生反应 而析出,结果使表面浓度与溶液体相浓度的不同所造成的反电动势叫做浓差超电 势。 (2)电化学超电势(或活化超电势):由于参加电极反应的某些粒子缺少足够 的能量来完成电子的转移,因此需要提高电极电势,这部分提高的电势叫做活化 超电势。它与电极反应中某一个最缓慢步骤的反应活化能有关,故有此名。 (3)电阻超电势:当电流通过电极时,在电极表面或电极与溶液的界面上往往 形成一薄层的高电阻氧化膜或其它物质膜,从而产生表面电阻电位降,这个电位 降称为电阻超电势。这种情况不具有普遍意义,因此我们只讨论浓差极化和电化 学极化。 二、浓差极化 当有电流通过电极时,若在电极—溶液界面处化学反应的速率较快,而离子 在溶液中的扩散速率较慢,则在电极表面附近有关离子的浓度将会与远离电极的 本体溶液中有所不同。 现以Ag|Ag+为例进行讨论。
相关文档
最新文档