湍流模型

合集下载

湍流模型

湍流模型

第六章湍流模型湍流模型湍流运动中动量与能量交换主要受大尺度涡的影响湍流的基本方程无论湍流运动多么复杂,非稳态的连续方程和Navier-stokes 方程对于瞬时运动仍然是使用的。

对不可压流动:=01+=-+(grad )1+=-+(grad )1+=-+(grad )u p u v u t x v p v v t y w p w v w t zρρρ∇∂∂∇∇∂∂∂∂∇∇∂∂∂∂∇∇∂∂u u u u ()(v )()一、“雷诺平均”模式(RANS)根据湍流统计平均理论,湍流的速度、压强都可以分解为平均量和脉动量'i i iu u u=+p p p '=+其中,,i u p 为系综统计平均量,任意变量ф的时间平均值定义为:1()t ttt dt t φφ+∆=∆⎰,i u p ''为脉动量一、“雷诺平均”模式(RANS)对N-S 方程做系综平均()0i iu x ∂=∂遵循求导和系综平均可交换的原则,上式的线性项可直接写出:i iu u t t∂∂=∂∂21()i i i j i j i j ju u pu u f t x x x x νρ∂∂∂∂+=-++∂∂∂∂∂一、“雷诺平均”模式(RANS)对非线性对流项()()(()())()()i j i j j i i j i j i j i j i j j j j j i j i j ju u u u u u u u u u u u u u u u x x x x u u u u x ∂∂∂∂''''''==++=+++∂∂∂∂∂''=+∂将以上方程代入N-S 方程的系综平均中:'2'''''''2'''''''2=01+=-+(grad )+[---]1+=-+(grad )[---]1+=-+(grad )[---]u p u u v u w u v u t x x y z v p u v v v w v v v t y x y z w p u w v w w w v w t zx y z ρρρ∇∂∂∂∂∂∇∇∂∂∂∂∂∂∂∂∂∂∇∇+∂∂∂∂∂∂∂∂∂∂∇∇+∂∂∂∂∂u u u u ()()()()0i iu x ∂=∂21()()i i i j i j iji j j i u p u u u v u u f t x x x x x ρ∂∂∂∂∂''+=-+-+∂∂∂∂∂∂()ij i j R u u ρ''=-为雷诺应力项一、“雷诺平均”模式(RANS)()0i iu t x ρρ∂∂+=∂∂()1()[()]i i i j i j i ji j j u p u u u u u s t x x x x ρρμρρ∂∂∂∂∂''+=-+-+∂∂∂∂∂()()[()]j i j j i ju u s t x x x φρφρφρφ∂∂∂∂''+=Γ-+∂∂∂∂RANS方程和原N-S方程在形式上很相似,只是多了雷诺应力项(6个)。

9个湍流模型介绍

9个湍流模型介绍

9个湍流模型介绍
好的,为你介绍9个湍流模型:
1. Reynolds平均的NS方程(Reynolds-Averaged Navier-Stokes,RANS):Reynolds 提出了平均法,将“瞬时值=平均值+脉动值”带入不可压缩流体控制方程中,得到了一个更复杂的方程。

对于可压缩流体,假设瞬时密度的变化对流动影响不大,忽略其影响。

2. Reynolds应力模型(RSM):模仿控制方程的样子,搞出一个针对Reynolds应力的输运方程。

3. 代数应力模型(ASM):简化Reynolds应力方程的对流项和扩散项。

此外,还有一些其他湍流模型,如Spalart-Allmaras模型、k-双方程模型等。

这些模型都有各自的特点和适用范围,可根据具体问题选择合适的湍流模型进行计算。

湍流模型 种类

湍流模型 种类

湍流模型的种类:
1. Spalatrt-Allmaras模型:一种一方程模型,通常用于粘性模拟,适用于无分离、可压/不可压流动问题,以及复杂几何的外部流动。

2. k-epsilon模型:广泛应用于粘性模拟,一般问题,适用于无分离、可压/不可压流动问题,复杂几何的外部流动。

有realizable k-epsilon,RNG k-epsilon等多种变体模型。

3. k-omega模型:广泛应用于粘性模拟,一般问题,适用于内部流动、射流、大曲率流、分离流。

4. transition k-kl-omega模型:应用于壁面约束流动和自由剪切流,可以应用于尾迹流、混合层流动和平板绕流、圆柱绕流、喷射流。

5. transition SST模型:在近壁区比标准k-w模型具有更好的精度和稳定性。

6. Scale Adaptive Simulation(SAS模型):用于分离区域,航天领域。

不稳定流动区域计算类似于LES,稳态区域计算类似于RANS。

7. Detached Eddy Simulation(DES模型):用于外部气动力,气动声学,壁面湍流。

拓展资料
湍流模型是微分方程类型,常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。

第三章_湍流模型

第三章_湍流模型

第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图Direct Numerical Simulation包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models第二节 平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

四种湍流模型介绍

四种湍流模型介绍

四种湍流模型介绍湍流是一种自然界中的非常普遍的现象,它的产生非常复杂且难以完全理解。

然而,对于一些科学领域来说,湍流是非常重要的,比如气象学、海洋学、工程学等。

湍流的模拟对于这些领域中的许多问题都是至关重要的。

本文将介绍四种湍流模型的基本概念及其应用。

1. DNS(直接数值模拟)DNS模型是把流体问题看做一组微分方程的解,对流体流动的每个细节都进行了计算。

这种模型的重要性在于它能够提供非常详细的流场信息,而且可以完全地描述流体力学问题,因此它也被称为“参考模型”。

然而,DNS模型也有一些局限性。

由于湍流的分子尺度是非常小的,因此在模型计算时需要高分辨率的计算网格,这使得计算时间和存储空间要求非常高。

此外,由于瞬时的湍流性质非常不稳定,因此DNS模型的计算过程也非常复杂。

因此,在实际应用中,DNS模型的应用受到了很大的限制。

2. LES(大涡模拟)LES模型是将湍流分解成大尺度的大涡和小尺度的小涡,并通过计算大涡的运动来获得流场的信息。

相比于DNS模型,LES模型计算的时间和存储空间要求比较低。

但是,这种模型仍然需要计算小涡的贡献,因此计算时仍然需要很高的分辨率。

在工程学中,这种模型常用于模拟湍流流动问题,比如气动噪声、汽车的气动流动、空气污染等问题,因为模型能够更好地反映流场的基本特性,提供比较准确的结果。

3. RANS(雷诺平均纳维-斯托克斯方程模型)RANS模型通过对湍流流场的平均速度和压力场进行求解,以获得平均情况下的流动情况。

该模型在计算湍流流场时,只需要考虑平均的流态,不需要计算流动中的小且不稳定的涡旋,因此计算效率比较高。

这种模型常用于一些基于大规模的工程计算,如风力发电机、涡轮机、船舶的流动等。

研究发现,在这些问题中,相比于LES模型,RANS模型所得到的结果精度略低,但是在很多领域中已经被广泛地应用。

4. VLES(小尺度大涡模拟)VLES模型是LES模型和RANS模型的结合体,通过计算流场中的大尺度涡旋和小尺度涡旋来提高计算的准确性。

湍流模型

湍流模型

湍流模型推导对纳维斯托克斯方程做时间平均处理,即采用雷诺平均法(RANS :Reynolds-Averaged Navier-Stokes ),可以得到湍流基本方程。

对于任意变量φ,按照雷诺时间平均法,可以拆分为如下格式:φφφ'+=“-” 表示对时间的平均,上标“’”代表脉动量。

按照dt TTt tφφ⎰∆+∆=1计算平均值,将流动变量i u 和p 转换成时间平均和脉动值之和u u u i '+=,p p p '+=为了使方程组更具有封闭性,必须模化雷诺应力,引入模型使方程组封闭。

其方法之一是湍流粘性系数法。

按照基于Boussinesq 的涡粘假设湍流粘性系数法有ij i i t i jj i t j i x u k x u xu u u δμρμρ⎪⎪⎭⎫ ⎝⎛∂∂+-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''-32 上述方程式中t μ为涡粘系数,i u 为时均速度,ij δ是Kronecker 符号,k 为湍流动能(当j i =时,1=ij δ;当j i ≠时,0=ij δ)。

2i i u u k ''=确定涡粘性系数t μ就是整个湍流模型的目标关键,确定湍流粘性系数法具体可以分为零方程模型、一方程模型、和二方程模型等等。

一 零方程模型零方程模型也可称作代数模型,直接建立雷诺应力和时均值的代数关系,从而把涡粘系数和时均值联系到一起的模型。

1 混合长度模式混合长度模式是基于分子运动的比拟,在二维剪切层中导出的。

混合长度l 类比分子运动自由程,在经历混合长度的横向距离上,脉动速度正比于混合长度及流向平均速度梯度,即:yUlu ∂∂∝' (1.1-1) 而粘性系数应当正比于脉动速度和混合长度之积(分子粘性系数正比于自由程和分子热运动速度之积),从而涡粘系数有如下的估计式:yUl l u v t ∂∂∝'∝2(1.1-2) 在湍流输运中,涡粘系数和沃扩散系数之比定义为普朗特数t Pr ,即:t t t v κ=Pr (1.1-3)工程计算中通常采用0.1~8.0Pr =t 。

湍流模型方程

湍流模型方程

湍流模型方程
湍流模型方程是用来描述湍流流动的数学方程。

其中最经典的湍流模型方程是雷诺平均纳维-斯托克斯方程,也称为RANS方程。

雷诺平均纳维-斯托克斯方程是对流体流动进行平均处理后得到的方程,可以描述湍流的运动规律。

其方程形式如下:
∂(ρu_i)/∂t + ∂(ρu_iu_j)/∂x_j = - ∂p/∂x_i + ∂(τ_ij)/∂x_j + ρg_i + F_i
其中,ρ是流体的密度,u_i是速度分量,t是时间,x_i是空间坐标,p是压力,τ_ij是应力张量,g_i是重力分量,F_i是外力分量。

这个方程描述了流体的连续性、动量守恒和能量守恒。

湍流模型方程还包括了湍流模型,用来描述湍流的统计性质。

最常用的湍流模型是k-ε模型,它基于湍流运动的能量和湍流耗散率进行描述。

k-ε模型的方程如下:
∂(ρk)/∂t + ∂(ρku_i)/∂x_i = ∂(μ+μ_t)∂x_j ∂u_i/∂x_j - ρε + ρg_i + F_i
∂(ρε)/∂t + ∂(ρεu_i)/∂x_i = C_1εk/μ (∂(μ+μ_t)∂x_i ∂u_i/∂x_j) - C_2ρε^2/k + ρg_iu_i + F_i
其中,k是湍流能量,ε是湍流耗散率,μ是动力粘度,μ_t是湍流粘度,C_1和C_2是经验常数。

这个模型方程描述了湍流能量和湍流耗散率的传输过程,可以用来计算湍流流动的各种统计量。

湍流模型

湍流模型
S Sk Gk
T k xk

由量纲分析 S 方程的源项可模拟为 S k k 方程 S (c1Gk c2 )
k
( ) ( k ) ( ) (c1Gk c2 ) t xk xk xk k
YM 2 M t
2
(25)
其中,Mt是湍流Mach数, M t k / a 2 ; a是声速,a RT
标准k- 模型中的系数
在标准的k-ε模型中,根据Launder等的推荐值及 后来的实验验证,模型常数 C1、C2、C、 k、 的取值为:
C1 1.44,C2 1.92,C 0.09, k 1.0, 1.3 (26)
对于可压缩流体的流动计算中与浮力相关的系数 C3,当主流方向与重力方向平行时,有C3=1,当主 流方向与重力方向垂直时,有C3=0。
根据以上分析,当流体为不可压,且不考虑用户自定义源 G 项时, b 0,YM 0,Sk 0,S 0,这时,标准k-ε模型变为:
k kui t xi x j
标准k- 模型的适用性
1)模型中的有关系数,主要根据一些特殊条件下的试验
结果而确定的,在不同的文献讨论不同的问题时,这些值
可能有出入。在数值计算的过程中,针对特定的问题,参 考相关文献,寻求更合理的取值。
2)上述k- 模型,是针对湍流发展非常充分的湍流流动来建
例如,在近壁区内的流动,湍流发展并不充分,湍流的脉动
i j k 2i 2 2 2( ) xk xi x j xk x j
– 左端第一,第二项分别为时间变化率及对流,右端第 一、第二、第三、第四项分别为湍流扩散、分子扩散、 产生项(涡旋拉伸)及粘性耗散项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量(笛卡尔坐标系)表示,即有:ij i j j i t j i k x u x u u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 ij δ为DELT 函数,一般i=j 时为1,否则为0.模型的任务就是给出计算湍流粘性系数t μ的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

(模拟大空间建筑空气流动)μt= 74ρvl (模拟通风空调室内的空气流动)比例系数由直接数值模拟的结果拟合而得,其中:v 为当地时均速度,l 为当地距壁面最近的距离。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。

参见:湍流模型的选择资料。

FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。

湍流模型种类示意图大涡模拟启动需要用命令:(rpsetvar 'les-2d #t)Reynolds-Stress ModelLarge-Eddy SimulationDirect NumericalSimulation包含更多物理机理 每次迭代计算量增加提供RANS-based models第二节 平均量输运方程输运过程的粘滞系数、扩散系数和热传导率,故称为输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。

对于速度,有:i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。

把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式:0)(=∂∂+∂∂i iu x t ρρ 3-5 ()j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du ''-∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+∂∂∂∂+∂∂-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。

他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。

额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。

如果要求解该方程,必须模拟该项以封闭方程。

如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。

这样才可以求解有密度变化的流动问题。

法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。

变量的密度加权平均定义为: ρρ/~Φ=Φ 3-7符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有:Φ''+Φ=Φ~。

很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即:0≠Φ'', 0=Φ''ρBoussinesq 近似与雷诺应力输运模型为了封闭方程,必须对额外项雷诺应力j i u u ''-ρ进行模拟。

一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32∂∂+-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。

Boussinesq 近似的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。

Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

另外的方法是求解雷诺应力各分量的输运方程。

这也需要额外再求解一个标量方程,通常是耗散率ε方程。

这就意味着对于二维湍流流动问题,需要多求解4个输运方程,而三维湍流问题需要多求解7个方程,需要比较多的计算时间,对计算机内存也有更高要求。

在许多问题中,Boussinesq近似方法可以得到比较好的结果,并不一定需要花费很多时间来求解雷诺应力各分量的输运方程。

但是,如果湍流场各向异性很明显,如强旋流动以及应力驱动的二次流等流动中,求解雷诺应力分量输运方程无疑可以得到更好的结果。

粘性面板参数说明:Cmu:(only for the standard or RNG - model or the RSM) is theconstant that is used to compute .C1-Epsilon:(only for the standard or RNG - model or the RSM) is the constant used in the transport equation for .C2-Epsilon:(only for the standard, RNG, or realizable - model or the RSM) is the constant used in the transport equation for .C1-PS(only for RSM) is the constant in Equation .C2-PS(only for RSM) is the constant in EquationC1'-PS(only for RSM) is the constant in Equation .C2'-PS(only for RSM) is the constant in EquationPrandtl Number(only for the Spalart-Allmaras model) is the constant in Equation .TKE Prandtl Number(only for the standard or realizable - model, the standard or SST - model, or the RSM) is the effective ``Prandtl'' number for transport of turbulence kinetic energy . This effective Prandtl number defines the ratio of the momentum diffusivity to the diffusivity of turbulence kinetic energy via turbulent transport.TKE (Inner) Prandtl #(only for the SST - model) is the effective ``Prandtl'' number for the transport of turbulence kinetic energy, , inside the near-wall region. See Section for details.TKE (Outer) Prandtl #(only for the SST - model) is the effective ``Prandtl'' number for the transport of turbulence kinetic energy, , outside the near-wall region. See Section for details.TDR Prandtl Numberis the effective ``Prandtl'' number for transport of the turbulent dissipation rate, , for the standard or realizable - model or the RSM. This effective Prandtl number defines the ratio of the momentum diffusivity to the diffusivity of turbulence dissipation via turbulent transport.For the standard - model, the TDR Prandtl Number is the effective ``Prandtl'' number for the transport of the specific dissipation rate, .SDR (Inner) Prandtl #(only for the SST - model) is the effective ``Prandtl'' number for the transport of the specific dissipation rate, , inside the near-wall region. See Section for details.SDR (Outer) Prandtl #(only for the SST - model) is the effective ``Prandtl'' number for the transport of the specific dissipation rate, , outside the near-wall region. See Section for details.Dispersion Prandtl Number(only for the - multiphase models) is the effective ``Prandtl'' number for the dispersed phase, . See Section for details.Energy Prandtl Number(for any turbulence model except the RNG - model) is the turbulent Prandtl number for energy, Pr , in Equation . (This item will not appear for premixed or partially premixed combustion models.)Wall Prandtl Number(for all turbulence models) is the turbulent Prandtl number at the wall, Pr in Equation . (This item will not appear for adiabatic premixed combustion or partially premixed combustion models.)Turb. Schmidt Number(for turbulent species transport calculations using any turbulence model except the RNG - model) is the turbulent Schmidt number, Sc , in Equation . PDF Schmidt Number(for non-premixed or partially premixed combustion calculations using any turbulence model) is the model constant in Equation .详细介绍请访问:第三节 湍流模型3.3.1 单方程(Spalart-Allmaras )模型 Spalart-Allmaras 模型的求解变量是ν~,表征出了近壁(粘性影响)区域以外的湍流运动粘性系数。

相关文档
最新文档