专题:电磁感应导体棒问题
导体棒在磁场中的运动问题

导体棒在磁场中的运动问题近十年的高考物理试卷和理科综合试卷中,电磁学的导体棒问题复现率很高,且多为分值较大的计算题。
为何导体棒问题频繁复现,原因是:导体棒问题是高中物理电磁学中常用的最典型的模型,常涉及力学和热学问题,可综合多个物理高考知识点,其特点是综合性强、类型繁多、物理过程复杂,有利于考查学生综合运用所学的知识,从多层面、多角度、全方位分析问题和解决问题的能力;导体棒问题是高考中的重点、难点、热点、焦点问题。
导体棒问题在磁场中大致可分为两类:一类是通电导体棒,使之平衡或运动;其二是导体棒运动切割磁感线生电。
运动模型可分为单导体棒和双导体棒。
(一)通电导体棒问题通电导体棒题型,一般为平衡型和运动型,对于通电导体棒平衡型,要求考生用所学的平衡条件(包含合外力为零0F=∑,合力矩为零0M=∑)来解答,而对于通电导体棒的运动型,则要求考生用所学的牛顿运动定律、动量定理以及能量守恒定律结合在一起,加以分析、讨论,从而作出准确的解答。
【例8】如图3-9-8所示,相距为d 的倾角为α的光滑平行导轨(电源的电动势E 和内阻r ,电阻R 均为己知)处于竖直向上磁感应强度为B 的匀强磁场中,一质量为m 的导体棒恰能处于平衡状态,则该磁场B 的大小为 ;当B 由竖直向上逐渐变成水平向左的过程中,为保持导体棒始终静止不动,则B 的大小应是 ,上述过程中,B 的最小值是 。
【解析】此题主要用来考查考生对物体平衡条件的理解情况,同时考查考生是否能利用矢量封闭三角形或三角函数求其极值的能力.将图3-9-8首先改画为从右向左看的侧面图,如图3-9-9所示,分析导体棒受力,并建立直角坐标系进行正交分解,也可采用共点力的合成法来做.根据题意0F =∑,即0,0xyFF==∑∑,即:sin 0x B F F N α=-= ① c o s 0y F F m g α=-= ②由①②得:t a n BF mgα=③ 由安培力公式:B F BId = ④由闭合电路欧姆定律EI R r=+⑤ 联立③④⑤并整理可得:()tan mg R r B Edα+=(2)借助于矢量封闭三角形来讨论,如图3-9-10所示在磁场由竖直向上逐渐变成水平的过程中,安培力由水平向右变成竖直向上,在此过程中,由图3-9-10看出B F 先减小后增大,最终0,B N F mg ==,因而磁感应强度B 也应先减小后增大.(3)由图3-9-10可知,当B F 方向垂直于N 的方向时B F 最小,其B 最小,故:sin B F mgα= ⑥而:B F BId = ⑦ EI R r=+ ⑧ 联立⑥⑦⑧可得:sin Emg Bd R rα=+, 即min ()sin mg R r B Bdα+=【答案】()tan mg R r Edα+,先减小后增大()sin mg R r Bdα+点评:该题将物体的平衡条件作为重点,让考生将公式和图象有机地结合在一起,以达到简单快速解题的目的,其方法是值得提倡和借鉴的。
导体棒问题归类分析

l
N sn i 1
生 是否 能 利 用矢 量 封 闭三
电 滑 轨类 的特 点 在 于 棒 生 电 ,作 切 割 磁感 线 运 动 的那 部 分 导 体 相 当 于 电 源 电 动 势 ,其 电 阻 即 为 内 电 阻 . 当 金 属 棒 上 有 感 应 电 流 通 过 时 ,导 体 受 到 安 培 力 作 用 , 安 培 力充 当 阻力 , 以反 抗 产 生 感 应 电 流 的 外 力 ,导 体 作 加 速 度 逐 渐 减 小 的 变 速 运 动 . 导体 受 到 的 安 培 力 当
④ ⑤
文 综 篱 寮
此 时 杆 受到的安培力 : = =2 . 0 N
⑥ ⑦ ⑧
⑨
( )从 初 始 至 两 棒 达 到 速 度 相 同 的 过 程 中 ,两 棒 1 组 成 的 系统 动量 守 恒 ,则 有 m o2 v V= m ①
由牛 顿第 二定 律 得 : F m . 卜 = a 则 F maF - .N = + '7 . 0
地解答.
( ) 由 图 3
(- — )可 知 , 当 方 向垂 直 于 Ⅳ的 方 向 时 最 小 , 113
其 最 , i , 8@ ,( B 小 故s 鲁 ① 而 =d , r nm Ⅱ 1 =+
③ ,联 立 ① ② ③ 可 得 m s = gi B n
(±) !
做 匀 加 速 直线 运 动 .
③
情况 ,是否能熟练将力 电关系式综合在一起 ,再根据
图像得 出其 a和 I值 . 中找 出有用 的隐含 条件是 n 从图
解 答本 题 的关 键 .
故金属杆的加速度应恒定 ,即金属杆应水平 向右
( ) 由第 ( ) 问 的结 果 可得 : 2 I
专题67 电磁感应现象中的单棒问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题67 电磁感应现象中的单棒问题特训目标 特训内容目标1 阻尼式单棒问题(1T —5T ) 目标2 电动式单棒问题(6T —10T ) 目标3发电式单棒问题(11T —15T )一、阻尼式单棒问题1.如图所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置且静止,导轨的电阻不计。
某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为22I mC .通过导体棒ab 横截面的电荷量为I BLD .导体棒ab 运动的位移为22IRB L 【答案】C【详解】A .导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab受到向左的安培力,向右减速运动,由22B L vma R r =+可知,由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动直至停止运动,A 错误;B .导体棒减少的动能22211()222k I I E mv m m m ===根据能量守恒定律可得k E Q =总又根据串并联电路知识可得22()R R I R Q Q R r m R r ==++总,B 错误; C .根据动量定理可得0BIL t mv -=-;I mv =;q I t =可得Iq BL=,C 正确; D .由于E BLxq I t t R r R r R rΦ====+++将I q BL =代入可得,导体棒ab 运动的位移22()I R r x B L +=,D 错误。
故选C 。
2.如图所示,一根直导体棒质量为m 、长为L ,其两端放在位于水平面内、间距也为L 的光滑平行金属导轨上,并与之接触良好,导体棒左侧两导轨之间连接一可控电阻,导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。
电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型引言电磁感应是指导体内的电荷受到磁场变化的影响而发生运动的现象。
当导体与磁场相互作用时,导体内部将产生感应电流。
本文将讨论关于电磁感应导体棒切割磁感线的题型,并探讨有关问题。
电磁感应基础知识回顾在讨论电磁感应导体棒切割磁感线的题型之前,我们首先回顾一些基础知识。
电磁感应定律电磁感应定律是描述电磁感应现象的基本定律。
它可以用以下公式表达:ε=−dΦdt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。
该定律表明,当磁场发生变化时,导体内部将产生感应电动势,通过闭合回路可以产生感应电流。
磁感线磁感线是描述磁场分布的线条。
磁感线的方向表示磁场的方向,磁感线的密度表示磁场强度。
在磁场的分布中,磁感线形成一个封闭的回路。
电磁感应导体棒切割磁感线问题在实际问题中,我们经常遇到关于电磁感应导体棒切割磁感线的题型。
这类问题要求计算感应电动势、感应电流或导体受到的力等。
我们将通过以下几个方面来探讨这类问题。
导体切割磁感线产生的感应电动势当导体切割磁感线时,根据电磁感应定律,导体内将产生感应电动势。
感应电动势的大小可以根据切割磁感线的速度、磁感线的密度和导体的长度等因素来计算。
根据右手定则,我们可以确定感应电动势的方向。
导体切割磁感线产生的感应电流如果导体是一个闭合回路,切割磁感线产生的感应电动势将产生感应电流。
根据欧姆定律,我们可以计算产生的感应电流的大小,并根据导体形状和电源方向确定感应电流的方向。
感应电流会产生磁场,与外部磁场相互作用。
导体受到的力通过切割磁感线产生的感应电流,导体将受到一个力,称为洛伦兹力。
洛伦兹力的大小与感应电流、磁感线的强度以及导体的长度和形状等有关。
根据洛伦兹力的方向规则,我们可以确定导体受到的力的方向。
导体切割磁感线的应用导体切割磁感线的现象广泛应用于发电机、电动机和变压器等电磁设备中。
通过切割磁感线产生感应电流,可以实现能量转换和能量传输。
各种电磁设备的工作原理都涉及到导体切割磁感线的现象。
电磁感应导体棒问题

(2008•东莞模拟)如图(a)所示,两根足够长的光滑平行金属导轨相距为L,导轨平面与水平面成θ角,上端通过导线连接阻值为R的电阻,阻值为r的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处在垂直导轨平面向上的磁场中,若所加磁场的磁感应强度大小恒为B,使金属棒沿导轨由静止向下运动,金属棒运动的v-t图象如图(b)所示,当t=t时刻,物体下滑距离为s.已知重力加速度为g,导轨电阻忽略不计.试求:(1)金属棒ab匀速运动时电流强度I的大小和方向;(2)导体棒质量m;时间内电阻R产生的焦耳热.(3)在t如图所示,两根足够长不计电阻的光滑平行金属导轨相距为L=1m,导轨平面与水平面成θ=300,上端通过导线连接阻值为R=3Ω的电阻,阻值为r=1Ω的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处在垂直导轨平面向上的匀强磁场中,磁场的磁感应强度B=2T,使金属棒沿导轨由静止向下运动,t0时刻,金属棒下滑距离为s=3m,此时金属棒恰好以速度v0=5m/s匀速运动.g=10m/s2.试求:(1)金属棒ab匀速运动时电流强度I的大小和方向;(2)求导体棒质量m;(3)在t0时间内产生的总热量Q.如图所示,足够长的光滑平行金属导轨MN、PQ固定在一水平面上,两导轨间距L=0.2m,在两导轨左端M、P间连接阻值R=0.4Ω的电阻,导轨上停放一质量m=0.1kg、电阻r=0.1Ω的金属杆CD,导轨电阻可忽略不计,整个装置处于方向竖直向上磁感应强度B=0.5T的匀强磁场中.现用一垂直金属杆CD的拉力F沿水平方向拉杆,使之由静止开始向右运动.(1)若拉力F恒为0.5N,求F的最大功率;(2)若在拉力F作用下,杆CD由静止开始作加速度a=0.5m/s2的匀加速运动,求在开始运动后的2s时间内通过电阻R的电量.如图所示,两根水平放置的平行光滑导轨上,有两根可以移动的、垂直导轨的导体棒ab和cd,导轨的间距为25cm,ab棒和cd棒的阻值均为2Ω,导轨的电阻不计.现将cd棒用一根绝缘细绳水平拉住,细绳所能承受的最大拉力为2N.整个装置处于竖直向上的匀强磁场中,磁感应强度为4T.今在棒ab上作用一个与导轨平行向右的恒力F,直到细绳被拉断.则细绳被拉断时,求:(1)cd棒中电流强度的大小(2)ab棒的速度大小.如图所示,在一对平行的金属导轨的上端连接一阻值为R的定值电阻,两导轨所决定的平面与水平面成30°角,若将一质量为m、长为L的导体棒ab垂直于两导轨放在导轨上,并使其由静止开始下滑,已知导体棒电阻为r,整个装置处在垂直于导轨平面的匀强磁场中,磁感应强度为B,求导体棒最终下滑的速度及电阻R最终的发热功率分别为多少.(导轨足够长,磁场足够大,不计导轨电阻和摩擦)。
电磁感应4(两根导体棒问题)

电磁感应4(两根导体棒问题)1.如图A 、B 两导轨水平放置且光滑,ab 、cd 导体棒如图静止放置于导轨上,导体棒cd 在拉力F 的作用下向右运动/过程中ab 、cd 棒受的安培力大小相等,方向相反/2.如图所示,两根相距为L 的竖直平行金属导轨位于磁感应强度为B 、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab 、cd 质量均为m ,电阻均为R.若要使cd 静止不动,则ab 杆应向_____________运动,速度大小为_________,作用于ab 杆上的外力大小为___________.3.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三金属光滑圆环,两圆环面平行且竖直。
在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计。
整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中。
当用水平向右的恒力F=3 mg 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流;(2)杆a 做匀速运动时的速度;(3)杆b 静止的位置距圆环最低点的高度。
4.如图所示,宽为L 、光滑的导电轨道的弧形部分处于磁场外,轨道的水平部分处于垂直轨道平面向上、磁感强度为B 的匀强磁场中,质量为2m 的金属杆cd 静止在水平轨道上,另一质量为m 的金属杆ab ,从弧形轨道上h 高处由静止开始下滑。
设ab 杆和cd 杆始终与轨道垂直,且接触良好,ab 杆与cd 杆不会相碰,ab 和cd 杆的电阻均为R ,轨道电阻不计。
求:(1)回路abcd 内电流的最大值。
(2)在ab 杆运动的整个过程中回路可产生的热量。
F。
专题 电磁感应力电综合之双杆模型

——双动式导体棒同向运动
电磁感应力电综合——双动式导体棒同向运动
电磁感应中,“导体棒”切割磁感线问题 是高考常见命题。其中,双导体棒切割磁感线 考查内容覆盖面广,涵盖力学、电磁学、电路 及能量等方面的知识,对学生能力要求高,本 节就双导体棒在平行等间距与平行不等间距导 轨中同向切割磁感线做一分析
电磁感应力电综合——双动式导体棒同向运动
变式1.足够长的固定金属轨道位于同一水平面内,两 导轨间的距离为L,导轨上面横放着两根导体棒ab和 cd,构成矩形回路,如图所示,两根导体棒的质量为 m1,m2,电阻均为R,回路中其余电阻不计,匀强磁场 垂直整个导轨平面,磁感应强度为B,设两导体棒均 可沿导轨无摩擦的滑行,开始两棒静止,瞬间给cd棒 向右的初速度v0 (1)试分析两导体棒的运动情况,画出v-t图;
BILt BqL m1v
q It m1m2 v0 (m1 m2 )BL
电磁感应力电综合——双动式导体棒同向运动
(4)整个过程中,安培力所做的功
Wcd
1 2
m2v2
1 2
m2v02
cd 动能减小量等于它克服安培力做的功;
Wab
1 2
m1v 2
安培力对ab 做功等于它动能增加量;
电磁感应力电综合——双动式导体棒同向运动
例题.足够长的固定金属轨道位于同一水平面内,两 导轨间的距离为L,导轨上面横放着两根导体棒ab和 cd,构成矩形回路,如图所示,两根导体棒的质量为 m1,m2,电阻均为R,回路中其余电阻不计,匀强磁场 垂直整个导轨平面,磁感应强度为B,不计一切摩擦。 现将ab棒固定,瞬间给cd棒向右的初速度v0 (1)分析cd棒的运动情况,画出v-t图 (2)计算cd棒运动的距离x (3)整个过程中,安培力做了多少功?有哪些能量 转化?
导体棒在磁场中运动问题

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。
往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等.导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。
1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。
由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡. 【基本模型】说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计.动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。
外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计.外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。
若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。
当ab 棒速度为v 时,其产 生感应电动势E =BLv 。
⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
1
图专题:电磁感应导体棒问题
电磁感应导体棒问题涉及力学、功能关系、电磁学等一系列基本概念、基本规律和科学思维方法。
分清不同性质的导轨,熟悉各种导轨中导体的运动性质、能量转化特点和极值规律,对于吃透基本概念,掌握基本规律,提高科学思维和综合分析能力,具有重要的意义。
主干知识
一、发电式导轨的基本特点和规律
如图1所示,间距为l 的平行导轨与电阻R 相 连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止
开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。
求:棒下滑的最大速度. 1、 电路特点
导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为 E=Blv 2、 安培力的特点
安培力为运动阻力,并随速度按正比规律增大。
F B =BI l =v r
R v
l B l r R Blv B
∝+=+22 3、 加速度特点
加速度随速度增大而减小,导体做加速度减小的加速运动
m
r R v l B mg mg a )
/(cos sin 22+--=
θμθ 4、 两个极值的规律
f
a
R b
e
B
d
c r
当v=0时,F B =0,加速度最大为a m =g (sin θ-μcos θ) 当a=0时,ΣF=0,速度最大,根据平衡条件有
mgsin θ=μmgcos θ+)
(2
2r R v l B
m +
所以,最大速度为 :2
2)
)(cos (sin l B r R mg v m
+-=
θμθ
5、 匀速运动时能量转化规律
当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。
P G =P F +P f ⎪⎪
⎩⎪⎪⎨⎧=+=+====θμθ
cos )(sin 2
2
m f
m m m m m m F m G mgv P r R I r R E E I v F P mgv P
当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。
mgv m sin θ=F m v m =I m E m )(2
2
r R I r
R E m m +=+=
例1、如图所示,两根平行金属导轨abcd,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在的平面垂直,导轨的电阻可忽略不计。
一阻值为R 的电阻接在导轨的bc 端。
在导轨上放一根质量为 m ,长为L ,电阻为r 的导体棒ef ,它可在导轨上无摩擦滑动,滑动过程中与导轨接触良好并保持垂直。
(1)若导体棒从静止开始受一恒定的水平外力F 的作用求:导体棒获得的最大速度时,ef 的位移为S,整个过程中回路产生的焦耳热。
(2)若金属棒ef 在受到平行于导轨,功率恒为P 的水平外力作用下从静止开始运动。
求:金属棒ef 的速度为最大值一半时的加速度a 。