高考数学万能公式口诀大全

合集下载

高三重点知识点口诀

高三重点知识点口诀

高三重点知识点口诀一、数学1. 二次函数口诀:顶点公式求自变量,y轴对称走一个倒。

开口向上a正号,向下则正变成负。

2. 数列知识点:首何值可用通项求,末何等于首加上组。

公差为固定差,首项和公差求。

3. 圆的公式口诀:圆心套观点,方程不再恐。

半径直接r,圆心化中常。

圆心距离求,弧长由角通。

弦长全靠定值,通用求切线。

4. 概率公式口诀:事件概率求容斥,条件概率转全概。

乘法放心用相乘,和事件加起来。

独立等价于加和,概率算得到。

二、物理1. 运动学口诀:初速加末速,除以二就是等。

路程等于速度乘,时间常乘在身边。

加速时间缩一倍,路程是原来的四倍。

自由落体往上取,加速度取十。

2. 电路知识点:并联电阻分,倒数加加。

串联电阻求,直接相加。

3. 光学易混淆:反射镜分虚实,凸镜物和像同方向。

凹镜物与像反,焦点看曲率。

4. 动能定律口诀:物体的动能请用半mv平方。

流速公式大导就,液体密度常加乘。

机械能守恒教导,损失等于劳动得。

三、化学1. 酸碱反应口诀:酸加碱,盐和水;氧化还原,电子转。

2. 元素周期表:期见封新鲜,近似保持共价;希求氧和氮,硒硫班要放弃。

3. 合成反应口诀:氧亏别添氧,氢亏赶快加,盐分明记号,尤其要涨记真。

4. 动力学口诀:起速和末速同朝向,功与热看方向。

端看平衡,大也小也平衡。

四、英语1. 时态口诀:一般现在时,现在的事情。

一般过去时,过去的事情。

一般将来时,未来的事情。

现在完成时,先过后现在。

过去进行时,两个过去事情。

将来进行时,要未来进行。

2. 名词复数规则:普通的加‘s’,以o结尾加‘es’。

以y结尾变‘y’为‘i’,复数不变加‘s’。

特殊单词见的少,没有规定按常用。

3. 冠词使用口诀:特指用定冠词,前边有只用不定。

泛指不用冠词,具体加定冠词。

用数词的一定要,非复数不用冠。

4. 宾语从句口诀:特殊用法不丢弃,陈述可连引语。

一般疑问句脱引,此时动词提升。

特殊疑问提前放,语序默认陈述。

以上口诀总结了高三阶段数学、物理、化学和英语的重点知识点,希望对你的学习有所帮助。

高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货一:几何初等函数1.古典三角形:角平分线平行,等腰直角比定理。

2.矩形内角和:四个等边,和为全是360°。

3.三角形内角和:三个直角全等,和为180°。

4.外心内接圆:三角的内接圆两条邻边夹,外心即两角平分线夹。

5.等腰三角形:最大角等于中角,最小边等于两边之和。

6.锐角三角形:最大角大于中角,最小圆大于四分之一。

7.平行四边形:两个对角等于边之和,外心则是两角平分线之和。

8.直角三角形:两条直角等腰,直角大于两角小于90°。

9.梯形内角和:三角形的两个角和一个平角,和为180°。

10.直线的垂直交点:两条直线垂直相交,交点即两角平分线夹。

二:代数初等函数11.二次根式:二次根式的解法,一正一负要多除。

12.简化指数:指数运算把它拆,系数即是乘积啊。

13.分类联立:解三元一次方程,联立好可分析情况。

14.一次函数:一次函数的特征,斜率及截距说明。

15.一元二次:一元二次公式的解法,定理及变量要多算。

16.分式简化:分式的约分乘除,最大公因数要多求。

17.分数分母:分数乘除连除化,分母在最后要求。

18.交互消去:线性联立统一求,直接把变量交换消去。

19.完全平方:平方差和完全平方,两者的系数个数差别大。

20.二次方程:二次方程解决比较复,分类讨论得一套。

三:几何欧氏空间21.向量加减:向量加减法则规律,角平分头尾夹定理。

22.点线距离:点线距离公式的用,要知道夹角及长度。

23. 内积外积:内积叉积的多角度,余弦定理及正弦值。

24.向量积:向量积的乘积和,方向及大小要推算。

25.向量坐标:向量坐标的变换,从任意坐标转换。

26.向量的点积:向量的点积公式求,余弦定理和已知参数。

27.平面向量:平面向量的方向角,余弦及正弦定理求。

28.点在直线上:点在直线上确定位置,向量的夹角来判断。

29.直线平行:两直线平行向量点积,结果余弦定理明确。

成人高考数学万能公式

成人高考数学万能公式

成人高考数学万能公式一、函数部分。

1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)。

- 当b = 0时,y=kx是正比例函数。

2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 对称轴方程x =-(b)/(2a)。

- 二次函数的求根公式x=frac{-b±√(b^2)-4ac}{2a}(当y = 0时,求方程ax^2+bx + c = 0的根)。

3. 反比例函数y=(k)/(x)(k≠0)- k = xy(x≠0,y≠0),即图象上任意一点的横纵坐标之积等于k。

二、三角函数部分。

1. 同角三角函数的基本关系。

- sin^2α+cos^2α = 1。

- tanα=(sinα)/(cosα)。

2. 两角和与差的三角函数公式。

- sin(A± B)=sin Acos B±cos Asin B。

- cos(A± B)=cos Acos Bmpsin Asin B。

- tan(A± B)=(tan A±tan B)/(1mptan Atan B)。

3. 二倍角公式。

- sin2α = 2sinαcosα。

- cos2α=cos^2α-sin^2α = 2cos^2α - 1=1 - 2sin^2α。

- tan2α=(2tanα)/(1-tan^2)α。

三、数列部分。

1. 等差数列。

- 通项公式a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。

- 前n项和公式S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。

2. 等比数列。

- 通项公式a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠1)。

- 前n项和公式S_n=frac{a_1(1 - q^n)}{1 - q}。

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。

2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。

3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。

4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。

二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。

2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。

3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。

4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。

三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。

2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。

3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。

4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。

四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。

2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。

3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。

4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。

5. 期望•期待其,乘以概率求;•如此则,累加其结果。

五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。

2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。

3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。

高中数学口诀

高中数学口诀

高中数学口诀高中数学口诀一、代数基础口诀:1. 二次方程求根公式:delta = b^2 - 4ac, x = (-b ± √delta) / 2a。

2. 一元二次方程的解:两根相等,delta = 0,两根相反,delta > 0,无解,delta < 0。

3. 四则运算优先顺序:括号,乘除,加减。

4. 和差化积:(a ± b)² = a² ± 2ab + b²。

5. 因式分解基本公式:a² - b² = (a + b)(a - b)。

二、函数与图像口诀:1. 一次函数的图像:y = kx + b,直线斜率为k,截距为b。

2. 幂函数“开口”:幂指数为正的开口向上,为负的开口向下。

3. 对称轴分析:二次函数的对称轴公式,x = -b /(2a)。

4. 函数图像平移:y = f(x ± a),横向右移a单位,纵向上移a单位。

5. 一次函数与一次函数相交,解得交点;一次函数与二次函数相交,解二次方程。

三、解三角函数口诀:1. 正弦函数正比例,余弦函数余比例,正割函数倒正弦,余割函数倒余弦,负弦余切亦是然。

2. 正弦余弦周期为2π,正切余切周期为π。

3. 锐角三角函数值,必然均在0到1之间;钝角正切值,以后再求再思量。

4. 归一化:将角度转为弧度,范围在[-π, π]之间。

5. 三角函数关系:tan = sin / cos,cot = cos / sin。

四、几何基础口诀:1. 三角形的外角和等于360°,内角和等于180°。

2. 同位角、内错角、同旁内角,两对角相等。

3. 正弦定理:a / sinA = b / sinB = c / sinC。

4. 余弦定理:c² = a² + b² - 2ab*cosC。

5. 平行线相交定理:同位角相等、内错角相等、同旁内角互补。

高中数学常用口诀

高中数学常用口诀

高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。

下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。

2.正负所在那一限,正弦正切是正的。

3.根号三只友正弦,二的根号二友余弦。

二、圆的口诀:
1.圆周率尺规法,一圆项。

千千根号重:π=3.14159,记忆个不轻。

2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。

3.圆周角邻直角,同弦近圆交。

外切内稳势精顾,辅角对顶三逢亲。

三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。

相似方幅求来比,等比等品
君得跟。

2.圆的曲面独一元,求面积头一招君。

高下残积主罕省,内长径尔
再添。

四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。

增长差变须记证,指事牵牛开辟门。

2.多项减副主法兰,微分为证铺金殿。

商显骤忽元幡摇,商商商手绕十课。

以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。

数学公式顺口溜高中

数学公式顺口溜高中

数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。

三角函数正弦余弦,正切余切,割和余割,联立解三角形。

数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。

排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。

函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。

立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。

微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。

以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。

- 1 -。

高考数学32条秒杀公式数学暴强秒杀型推论

高考数学32条秒杀公式数学暴强秒杀型推论

高考数学32条秒杀公式数学暴强秒杀型推论一、代数运算基本原则1.绝对值的性质a+b,≤,a,+,ba-b,≥,a,-,b2.平方差公式(a+b)² = a² + 2ab + b²(a-b)² = a²-2ab + b²3.平方和公式a² + b² = (a+b)² - 2ab4.两点间距离公式(a₁-a₂)²+(b₁-b₂)²=d²5.二次根式的乘法根号ab = 根号a * 根号b6.二次根式的除法根号a/根号b = 根号a/根号b * 根号b/根号b = 根号(ab)/b二、函数公式7.一次函数的表达式y = kx + b8.一次函数的性质直线的斜率k=(y₂-y₁)/(x₂-x₁)9.斜率与两点坐标的关系k=(a₁-a₂)/(b₁-b₂)10.一次函数图像与方程的关系若 (x₁,y₁) 为函数 y=kx+b 的一组解,则 y-kx = y₁-kx₁11.二次函数的表达式y = ax² + bx + c12.二次函数图像与方程的关系若 (x₁,y₁) 为函数y=ax²+bx+c 的一组解,则 y-a(x-x₁)² = y₁ - a(x₁-x)²三、几何与三角函数公式13.等腰三角形的性质等腰三角形的底角相等14.直角三角形的勾股定理a²+b²=c²15.三角函数的基本关系式sin²x+cos²x = 116.三角函数的正负性sinx ≤ 1-cosx ≤ 1tanx ≤ 117.两角和差公式sin(x±y) = sinxcosy ± cosxsinycos(x±y) = cosxcosy ∓ sinxsinytan(x±y) = (tanx±tany)/(1∓tanxtany) 18.二倍角公式sin2x = 2sinxcosxcos2x = cos²x - sin²xtan2x = 2tanx/(1-tan²x)19.倍角公式sin(2x+y) = sin2xcosy + cos2xsinycos(2x+y) = cos2xcosy - sin2xsinytan(2x+y) = (tan2x+tany)/(1-tan2xtany) 20.半角公式sin(x/2) = ± √[(1-cosx)/2]cos(x/2) = ± √[(1+cosx)/2]tan(x/2) = ± √[(1-cosx)/(1+cosx)]四、三角函数的高级应用21.一角和差公式sin(x+y) = sinxcosy + cosxsinycos(x+y) = cosxcosy - sinxsinytan(x+y) = (tanx+tany)/(1-tanxtany)22.一角积分公式(1+sin2x)dx = x / 2 + (sin2x)/4 + C(1-cos2x)dx = x / 2 - (cos2x)/4 + C23.立体角的比例公式两个角的正弦函数的值之比等于这两个角对应的两个夹角的正弦函数的值之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

1.诱导公式???sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中 tan(c)=baa?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2公式分类公式表达式乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)解|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b三角不等式|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a的解根与系数的关X1+X2=-b/a X1*X2=c/a注:韦达定理系判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有一个实根b2-4ac<0注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'S=1/2(c+c')l=pi(R+r圆台侧面积球的表面积S=4pi*r2)l圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*la是圆心角的弧度数扇形面积公式s=1/2*l*r弧长公式l=a*rr >0锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h圆柱一生受用的数学公式坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。

相关文档
最新文档