广东省年中考数学试题(word版)

合集下载

广东省2021年中考数学试卷(含答案)

广东省2021年中考数学试卷(含答案)

20.如图,在
䰠 中,
,作 䰠 的垂直平分线交 䰠 于点 D,延长 䰠 至点 E,使


(1)若
ͷ ,求
䰠 的周长;
(2)若 䰠 ͷ 䰠 ,求 tan 䰠 的值.
21.在平面直角坐标系
中,一次函数
ቕ 的图象与 x 轴、y 轴分别交于 A、B 两点,
且与反比例函数
图象的一个交点为 ͷ, .
(1)求 m 的值; (2)若
的公式如出一辙,即三角形的三边长分别为 a,b,c,记
,则其面积
的最大值为( )
.这个公式也被称为海伦-秦九韶公式.若

,则此三角形面积
1
A.
B.4
C.
10.设 O 为坐标原点,点 A、B 为抛物线
上的两个动点,且
于点 C,则点 C 到 y 轴距离的最大值( )
A.ͷ
B.
C.
二、填空题
11.二元一次方程组
5
答案解析部分
1.【答案】A 【解析】【解答】解: π≈3.14, ≈1.414,|-2|=2, 3.14>3>2>1.414 π>3>|-2|> 故π最大。 故答案为:A. 【分析】本题考查实数的大小比较,需要记住常用的无理数的近似数,然后排序即可。 2.【答案】D 【解析】【解答】解: 51085.8 万 = 510858000=5.10858×108 故答案为:D. 【分析】考查科学记数法的表示方法,将一个大于 10 或小于 1 的整数表示为 a×10n(1≤|a|<10,n 为正整数) 的记数法叫做科学记数法。注意其中 a 的范围和小数点移动的位数。 3.【答案】B 【解析】【解答】 解:
A.1 个
B.2 个
C.3 个

广东省2021年中考数学试题含答案(word版)

广东省2021年中考数学试题含答案(word版)

广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A、47 B 、37 C 、34D 、137、如图7图,□ABCD 中,下列说法一定正确的是( ) A 、AC=BD B 、AC ⊥BDC 、AB=CD D 、AB=BC 题7图8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( ) A 、17 B 、15 C 、13 D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21AB D题10图C 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 题14图14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。

2024年广东省广州市中考真题数学试卷含答案解析

2024年广东省广州市中考真题数学试卷含答案解析

2024年广东省广州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个数10-,1-,0,10中,最小的数是( )A .10-B .1-C .0D .10【答案】A【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010-<-<< ,∴最小的数是10-,故选:A .2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是( )A .B .C .D .【答案】C【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是( )A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=4.若a b <,则( )A .33a b +>+B .22a b ->-C .a b -<-D .22a b<【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是( )A .a 的值为20B .用地面积在812x <≤这一组的公园个数最多C .用地面积在48x <≤这一组的公园个数最少D .这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为( )A .1.2110035060x +=B .1.2110035060x -=C .1.2(1100)35060x +=D .110035060 1.2x -=⨯【答案】A【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为( )A .18B .C .9D .∵90BAC ∠=︒,AB AC =∴45BAD B C ∠=∠=∠=︒∴ADE CDF V V ≌,S S S =+8.函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <-B .10x -<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l是5,则该圆锥的体积是()A B C.D【答案】D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r,则圆锥的底面周长为2rπ,根据弧长公式得出侧面展开图的弧长,进而得出1r=,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r,则圆锥的底面周长为2rπ,二、填空题11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .【答案】109︒【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为 .【答案】220【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE = .【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA∴∠=∠,3BE AE∴==,235DE AD AE∴=+=+=,故答案为:5.14.若2250a a--=,则2241a a-+=.【答案】11【分析】本题考查了已知字母的值求代数式的值,得出条件的等价形式是解题关键.由2250a a--=,得225a a-=,根据对求值式子进行变形,再代入可得答案.【详解】解:2250a a--=,225a a∴-=,()2224122125111a a a a∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()20a b aa ba b a⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x⊗=-,则x的值为.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ';④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;三、解答题17.解方程:1325x x =-.解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【详解】(1)解:如图,线段BO 即为所求;(2)证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(2)解:17AD =Q 22AC AD CD ∴=-=在BCD △中,C ∠=sin BC BDC BD∠= ,sin 36.87BC BD ∴=⋅︒15AB AC BC ∴=-=-23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x ...232425262728...身高(cm)y (156163)170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【详解】(1)解:如图所示:(2)解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b=+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-(3)解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【详解】(1)解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;(2)解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥, 60BCA ∠=︒,BA BC =,∴ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.∵直线2:l y m x n =+过点(3,1)C ,2C ,且122C C =+,∴A 在B 的左边,AD AC CD ++=∵C 在抛物线的对称轴上,∴CA CB =,∴345t =,解得:15t =,②∵()1122AEF A E S EF y y EF =⋅-= 当1y =时,232621ax ax a a --++∴22620x x a a --+=,。

数学九年级中考广东试卷【含答案】

数学九年级中考广东试卷【含答案】

数学九年级中考广东试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 32. 下列函数中,奇函数是:A. y = x³B. y = x²C. y = |x|D. y = x⁴3. 已知一组数据2, 3, 5, 7, 11, x,其平均数为6,则x的值为:A. 4B. 6C. 8D. 104. 若直线y = 2x + 1与y轴的交点为(0, b),则b的值为:A. 0B. 1C. 2D. 35. 二项式展开式(1 + x)⁵的系数和为:A. 1B. 2C. 32D. 64二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。

()7. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。

()8. 对角线互相垂直平分的四边形一定是菱形。

()9. 函数y = 2x + 3的图像是一条直线。

()10. 两个相互垂直的向量一定是零向量。

()三、填空题(每题1分,共5分)11. 已知三角形ABC中,∠A = 60°,AB = AC,则三角形ABC是____三角形。

12. 若函数f(x) = 3x 2,则f(-1) = ______。

13. 平方差公式:a² b² = _______。

14. 若一组数据2, 3, 5, 7, 11的平均数为6,则这组数据的方差是______。

15. 二项式定理中,(a + b)⁵展开后的项数为______。

四、简答题(每题2分,共10分)16. 解释什么是函数的单调性,并举一个例子。

17. 简述平行线的性质。

18. 什么是二次函数的顶点式?如何用顶点式求二次函数的最值?19. 简述等差数列和等比数列的定义。

20. 什么是坐标轴?如何用坐标轴表示一个点的位置?五、应用题(每题2分,共10分)21. 已知一元二次方程x² 5x + 6 = 0,求方程的解。

2020年广东省深圳市中考数学试题及参考答案(word解析版)

2020年广东省深圳市中考数学试题及参考答案(word解析版)

深圳市2020年初中毕业生学业考试数学试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解答过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答过程】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答过程】解:将150000000用科学记数法表示为1.5×108.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【知识考点】简单几何体的三视图.【思路分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【解答过程】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【总结归纳】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【知识考点】算术平均数;中位数.【思路分析】根据中位数、众数的计算方法,分别求出结果即可.【解答过程】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.【总结归纳】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答过程】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.【总结归纳】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【知识考点】平行线的性质.【思路分析】根据平角的定义和平行线的性质即可得到结论.【解答过程】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【总结归纳】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答过程】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【总结归纳】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和【知识考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【解答过程】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答过程】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根【知识考点】根的判别式;二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c 与直线y=n+1无交点,可对D进行判断.【解答过程】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【知识考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【思路分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答过程】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.【总结归纳】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答过程】解:m3﹣m=m(m2﹣1),=m(m+1)(m﹣1).【总结归纳】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【知识考点】概率公式.【思路分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答过程】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答过程】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.【知识考点】角平分线的性质;解直角三角形.【思路分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【解答过程】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.【总结归纳】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【解答过程】解:原式=3﹣2×+3﹣13﹣+﹣1=2.【总结归纳】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.【知识考点】分式的化简求值.【思路分析】先将分式进行化简,然后代入值即可求解.【解答过程】解:原式=÷=÷=×=当a=2时,原式==1.【总结归纳】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答过程】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【知识考点】三角形中位线定理;切线的性质.【思路分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解答过程】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【知识考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【解答过程】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【总结归纳】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【知识考点】相似形综合题.【思路分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠PAE=90°,连接EG,BD,由勾股定理可求出答案.【解答过程】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【总结归纳】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.【解答过程】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).【总结归纳】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。

广东数学中考试题及答案

广东数学中考试题及答案

广东数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正整数?A. -2B. 0C. 1D. 2答案:C2. 计算下列算式的结果:\[ \frac{1}{2} + \frac{1}{3} \]A. \(\frac{1}{5}\)B. \(\frac{5}{6}\)C. \(\frac{3}{5}\)D. \(\frac{5}{3}\)答案:C3. 一个三角形的三个内角分别是 \(\alpha\), \(\beta\), 和\(\gamma\),下列哪个选项是正确的?A. \(\alpha + \beta + \gamma = 180^\circ\)B. \(\alpha + \beta + \gamma = 90^\circ\)C. \(\alpha + \beta + \gamma = 360^\circ\)D. \(\alpha + \beta + \gamma = 270^\circ\)答案:A4. 如果一个数的平方是16,那么这个数是:A. 4B. 2C. -4D. -2答案:A、C5. 一个圆的半径是5厘米,那么它的周长是:A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:D6. 计算下列算式的结果:\[ 2^3 \times 3^2 \]A. 24B. 36C. 48D. 72答案:D7. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么它的高是:A. 4厘米B. 6厘米C. 8厘米D. 10厘米答案:A8. 一个数列的前3项是2, 4, 6,那么第4项是:A. 8B. 10C. 12D. 14答案:A9. 一个直角三角形的两条直角边长分别是3厘米和4厘米,那么斜边长是:A. 5厘米B. 6厘米C. 7厘米D. 8厘米答案:A10. 计算下列算式的结果:\[ (-2)^2 - 3 \times 2 \]A. 1B. 2C. 3D. 4答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数可以是________。

广东中考数学试题及答案

广东中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,最小的数是()A. -2B. -1C. 0D. 1答案:A2. 已知a=-3,b=2,则a+b的值为()A. -1B. 1C. -5D. 5答案:C3. 下列运算中,结果为正数的是()A. 3-5B. -3-5C. 3×(-2)D. 3×2答案:D4. 一个数的相反数是-5,则这个数是()A. 5B. -5C. 0D. 1答案:A5. 以下哪个选项是等腰三角形()A. 3,4,5B. 2,2,5C. 1,2,3D. 2,3,4答案:B6. 若x=2是方程2x-3=1的解,则k的值为()A. 1B. 2C. 3D. 4答案:B7. 函数y=-2x+3的图象不经过第()象限A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A8. 已知一个扇形的圆心角为60°,半径为6cm,则这个扇形的面积是()A. 6πcm²B. 9πcm²C. 12πcm²D. 18πcm²答案:B9. 一个数的立方根等于它本身,这个数是()A. 0B. 1C. -1D. 以上都是答案:D10. 已知一个多边形的内角和为900°,则这个多边形的边数是()A. 5B. 6C. 7D. 8答案:C二、填空题(本大题共6小题,每小题4分,共24分)11. 已知一个数的平方是49,这个数是_________。

答案:±712. 一个两位数,十位数字比个位数字大3,且这个两位数的4倍比原数大58,则这个两位数是_________。

答案:1213. 已知一个三角形的两边长分别为3和7,第三边长x满足的条件是_________。

答案:4<x<1014. 函数y=x²-6x+8的顶点坐标为_________。

答案:(3, -1)15. 已知一个扇形的弧长为6.28cm,半径为2cm,则这个扇形的圆心角的度数为_________。

广东省年中考数学真题试题(含解析)

【答案】B2019年广东省初中学业水平考试数学说明:1 •全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、名、考场号、座位号•用 2B 铅笔把对应该号码的标号涂黑.3 •选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使 用铅笔和涂改液•不按以上要求作答的答案无效.5 •考生务必保持答题卡的整洁•考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 10小题,每小题3分,共30分)在每小题列出的四个选项中,只有 一个是正确的,请把答题卡上对应题目所选的选项涂黑.12的绝对值是A. 2B• - 2C1 • 2D. ± 2【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0【考点】绝对值【解析】a x 10n 形式,其中0w |a| v 10.2.某网店2019年母亲节这天的营业额为221 000元,将数 221 000用科学记数法表示为6A. 2.21 X 10 5B • 2.21 X 10C • 221 X 1036D • 0.221 X 10【答案】C【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是ABC D【答案】A【解析】从左边看,得出左视图【考点】简单组合体的三视图4•下列计算正确的是6.3.23.3.9222A. b 十 b =b B . b • b =b C . a +a =2a【答案】C【解析】合并同类项:字母部分不变,系数相加减【考点】同底数幕的乘除,合并同类项,幕的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A B C【解析】轴对称与中心对称的概念3、3D . (a ) =a【考点】轴对称与中心对称A. 3【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数•【考点】中位数的概念7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是-2 - 1 0 1 2【答案】D【解析】a是负数,b是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识&化简,42的结果是A.- 4 B . 4 C . ± 4 D . 2【答案】B【解析】公式..a2二a .【考点】二次根式9. 已知X i、X2是一元二次方程了x2- 2x=0的两个实数根,下列结论错误的是2A. X i M X2 B . X i - 2x i=0 C . X I+X2=2 D . X i • X2=2A. a>b B . C . a+b>0 D . - <0b6•数据3、3、5、8、11的中位数是3【答案】D【解析】因式分解 x (x-2 ) =0,解得两个根分别为 0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10. 如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2以EB 为边在上方作正方形 EFGB 延长FG 交DC 于M 连接AM AF , H 为AD 的中点,连接FH 分别与AB AM 交于点 N K.则 下列结论:①△ ANH^A GNF ②/ AFN=/ HFG ③ FN=2NK ④ S A AFN :S △ ADM =1:4 .其中正确 的结论有A. 1个 B . 2个 C . 3个 D . 4个【解析】AH=GF=2 / ANH=/ GNF / AHN / GFN △ ANH^A GNF(AAS ,①正确;由①得AN=GN=1 •/ NGL FG NA 不垂直于 AF,「. FN 不是/ AFG 的角平分线,二/ AFN^Z HFG ②错误;由厶 AKH TA MKF 且 AH:MF=1:3,A KH:KF=1:3,又T FN=HN 二 K 为 NH 的中点,1 1 即 FN=2NK ③正确;S A AFN =—AN ・ FG=1,S AAD =— DM- AD=4, A S A AFN S A AD ^1:4,④正确.22【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积、填空题(本大题 6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题 卡相应的位置上. 11. 计算 2019°+( 1)「1 = 【解析】1+3=4【考点】零指数幕和负指数幕的运算E a【答案】CH I)12. _________________________________________ 如图,已知a// b,/ 1=75 °,则/ 2 =【答案】105°【解析】180° -75 ° =105° .【考点】平行线的性质13. 一个多边形的内角和是1080°,这个多边形的边数是______________【答8案】【解(n-2 )x 180°=1080°,解得n=8.析】【考n边形的内角和=(n-2 ) x 180°点】14.已知x=2y+3,则代数式4x - 8y+9的值是【答案】21【解析】由已知条件得x-2y=3,原式=4 (x-2y ) +9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC与实验楼BD的水平间距CD=15* 3米,在实验楼的顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45 °,则教学楼AC的高度是_________________ 米(结果保留根号).【答案】15+15.3【解析】AC=CD tan30 ° +CD ・ tan45 ° =15+15^3.【考点】解直角三角形,特殊三角函数值16•如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 ____________________________ (结果用含a 、 b 代数式表示).^16-1 图【答案】a+8b【解析】每个接触部分的相扣长度为( a-b ),则下方空余部分的长度为 a-2 (a-b ) =2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+ (2b-a ) =a+2b ; 5个拼出来的图形有 2 段空余长度,总长度=3a+2 (2b-a ) =a+4b ; 7个拼出来的图形有 3段空余长度,总长度 =4a+3 (2b-a ) =a+6b ; 9个拼出来的图形有 4段空余长度,总长度 =5a+4 (2b-a ) =a+8b.【考点】规律探究题型 三、解答题(一)(本大题 3小题,每小题6分,共18 分)1 __ nn■16-:图17•解不等式组:'「-[2(x +1)>4 ②【答案】解:由①得x > 3,由②得x> 1,•••原不等式组的解集为x > 3.【考点】解一元一次不等式组18•先化简,再求值:----- ----- 1罕△,其中x= .. 2 .lx-2 x-2 丿x2-4【答案】解:原式=x-1 x2x -2 -4x-1 x x 2 x-2x-2 x x-1x +2x原式2 2=乙土=1+.2 2 2【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ ABC中,点D是AB边上的一点.(1 )请用尺规作图法,在△ABC内,求作/ ADE 使/ ADEN B, DE交AC于E;(不要求写作法,保留作图痕迹)(2 )在(1)的条件下,若AD =2,DB 求铤的值.ECIf【答案】解:(1)如图所示,/ ADE为所求.(2)•••/ ADEN B••• DE// BCAE ADEC DB【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21 分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为 A B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示, 根据图表信息解答下列问题:ADDB=2AEEC=2I题20图衣(1)x = _______ , y = ______ ,扇形图中表示C的圆心角的度数为 _________ 度;(2 )甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】4解:(1)y=10 - 25%=40 x=40-24-10-2=4 , C 的圆心角=360°X 一=3640(2 )画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种P (甲乙)=—1答:同时抽到甲、乙两名学生的概率为丄.3【考点】数据收集与分析,概率的计算成绩等级頻数分信衣成绩等级频扇形兌计图成绩答级顺数A24B10C XD2合计y21 •某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x )个.由题意得70x+80 (60-x) =4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y个.由题意得70y < 80 (60-x ),解得y < 32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22. 在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ ABC的三个顶点均在格点上,以点A为圆心的E F与BC相切于点D,分别交AB、AC于点E、F.(1 )求厶ABC三边的长;(2)求图中由线段EB BC CF及FE所围成的阴影部分的面积.• S 阴影=20— 5 n【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式 五、解答题(三)(本大题 3小题,毎小题7分,共21 分)k 223.如图,一次函数y=k i x+b 的图象与反比例函解:(1)由题意可知,AB=.、22 62 =2. 10 , AC = 22 62 =2. 10 ,BC= 42 82 =4 一5(2)连接AD由(1)可知,AB2+AC2=BC 2 AB=AC•••/ BAC=90,且△ ABC 是等腰直角三角形•••以点A 为圆心的EF 与 BC 相切于点D• AD 丄 BC• AD=! BC=2 5 (或用等面积法 AB - AC=BC- AD 求出AD 长度) 2 S 阴影=Sx ABC — S 扇形 EAFS A AB (= — X 2.10 X 210 =202S 扇形EA F = 1 4■ : 2-5 2=5n【答4数 y= 2的图象相交于 A 、B 两点,其中点A x的坐标为(-1, 4),点B 的坐标为(4, n ).k(1)根据函数图象,直接写出满足k i x+b >二的x 的取值范围;x(2) 求这两个函数的表达式;(3) 点P 在线段AB 上,且AOP :S △BOP =1 : 2 ,求点P 的坐标.【答案】解:(1) x v -1 或 O v x v 4(2)•••反比例函数 y=^图象过点A (- 1 , 4)x••• 4=k 2,解得 k 2=- 4-1•反比例函数表达式为yx4• •反比例函数y =-图象过点B (4, n )x4•- n=-=- 1 ,.•• B (4,- 1)•••一次函数 y=k i x+b 图象过 A (- 1, 4)和 B (4,- 1)•/ AM L BC, PN L BCAP MN BP BN■/ MN=a+1 BN=4-aa=?• -a+3=7327 •••点P 坐标为(33"4 =也 +b-1 =4匕 +b解得/^-1Jb=3•••一次函数表达式为 y= - x+3(3)T P 在线段AB 上,设P 点坐标为(a , - a+3)•••△ AOP^n ^ BOP 的高相同AOP:S △ BO =1 : 2• AP : BP=1 : 2过点B 作BC// x 轴,过点 A 、P 分别作AM L BC, PN ^ BC 交于点M Na 1 4 -a2 2 | 2 2(或用两点之间的距离公式APq(a+1) +(-a + 3-4) , BP=$(4-a) +(-1+a-3),由AP 1解得a i= , a2=-6舍去)BP 2 3【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24. 如题24-1图,在△ ABC中,AB=AC O O是厶ABC的外接圆,过点C作/ BCD2 ACB交O0于点D,连接AD交BC于点E,延长DC至点F,使CF=AC连接AF.(1)求证:ED=EC(2) 求证:AF是O 0的切线;(3) 如题24-2图,若点G是厶ACD的内心,BC- BE=25,求BG的长.【答案】(1)证明:••• AB=AC•••/ BCD=/ ACB •••/ B=Z BCD•/ AC=AC••• ED=EC(2)证明:GSA24-1 谢连接AO并延长交O O于点G连接CG 由(1)得/ B=Z BCD• AB// DF•/ AB=AC CF=AC•AB=CF•四边形ABCF是平行四边形•••/ CAF=" ACB•/ AG为直径•/ ACG=90,即/ G+Z GAC=90 •••/ G=Z B,Z B=Z ACB•Z ACB+Z GAC=90•Z CAF+Z GAC=90 即Z OAF=90•/点A在O O上••• AF是O O的切线(3)解:迦24-2 N连接AG•••/ BCD" ACB / BCD" 1•••/ 1 = " ACB•••" B=" B•△ABE^A CBA•BE _ ABAB BC•/ BC- BE=25•A B"=25•AB=5•••点G是厶ACD的内心•••" 2=" 3•••" BGA" 3+ " BCA" 3+ " BCD" 3+" 1=" 3+ " 2=" BAG/• BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念, 相似三角形的应用,外角的应用,等量代换的意识25. 如题25-1图,在平面直角坐标系中,抛物线y -x2^^x -- 3与x轴交于点A B(点8 4 8A在点B右侧),点D为抛物线的顶点.点C在y轴的正半轴上,CD交x轴于点F,A CAD绕点C顺时针旋转得到厶CFE点A恰好旋转到点F,连接BE(1)求点A B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如题25-2图,过顶点D作DD丄x 轴于点D,点P是抛物线上一动点,过点P作PM丄x轴,点M为垂足,使得△ PAM W^ DDA相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?题25-1囲题25-2圏【答案】(1)解:由y= — x2—— x - 7 - =—- x 3 - 2灯3 得点D坐标为(-3,8 4 8 8令y=0 得x i=- 7, X2=1•••点A坐标为(-7, 0),点B坐标为(1 , 0)(2)证明:世25-1圈过点D作DGL y轴交于点G,设点C坐标为(0, m)•••/ DGC W FOC=90,/ DCG W FCODG CGFO CO由题意得CA=CF CD=CE Z DCA M ECF OA=1 , DG=3 CG=m2< 3•••COL FA• FO=OA=1(或先设直线CD的函数解析式为y=kx+b,用D F两点坐标求出y= 3 x+ .3, 再求出点C的坐标)•••点C坐标为(0, ,3 )• CD=CE= 32 3 2 3 2=63 = m U ,解得m=. 31 mCO••• tan / CFO= = 3FO•••/ CFO=60•••△ FCA是等边三角形•••/ CFO M ECF•EC// BA•/ BF=BO- FO=6•CE=BF•四边形BFCE是平行四边形(3)解:①设点P坐标为(m, —3 m2• 3 3 m-7 3),且点P不与点A、B、D重合.若8 4 8△卩人“与厶DDA相似,因为都是直角三角形,则必有一个锐角相等.由(1 )得AD=4, DD=2.. 3(A)当P在点A右侧时,m> 1(a)当厶PAMh^DAD1,则/ PAM M DAD i,此时P、A D三点共线,这种情况不存在AD1(b)当厶PAMh^ADD i,则/ PAM M ADD i,AM DD i2 3 3 7、3m m --& 4 8 4,解得m=-5(舍去),m=1 (舍去),这种不存在m-1 2、3 3(B) 当P在线段AB之间时,-7 v m< 1(a)当厶PAMh^ DAD1,则/ PAM M DAD1,此时P与D重合,这种情况不存在21(b)当厶PAMh A ADD1,则M PAM M ADD1,AD1AM DD12223 3 2 3、3 7-3m m -- •'•- — ------- 4 --------- 8— =—戸,解得 m=- 37 , m=1 (舍去)m -1 2、3 35 37综上所述,点P 的横坐标为-—,-11,- ,三个任选一个进行求解即可.3 3②一共存在三个点 P,使得△ PAM 与厶DDA 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想3 23.373m m -- 8 4 8 m -1 4 5,解得m=- , m 2=1 (舍去)2、3 3(C) 当P 在点B 左侧时,m<- 7(a )当厶 PAMh A DAD i , 贝PAM M DAD i ,此时 PMAM DD 1AD i.3 2 3.37.3m m ------- 8 4 8 m -1 243,解得 m=- 11, m=1 (舍去)2 43(b )当厶 PAMh ^ADD 1, 则/ PAM / ADD 1,此时 PM AM AD 1DD 1。

广东省茂名市中考数学试题(WORD版含答案)

茂名市初中毕业生学业考试 与高中阶段学校招生考试数 学 试 卷考生须知:1.全卷分第一卷(选择题,满分40分,共2页)和第二卷(非选择题,满分110分,共8页),全卷满分150分,考试时间120分钟.2.请认真填写答题卡和第二卷密封线内的有关内容,并在试卷右上角的座位号处填上自己 的座位号.3.考试结束,将第一卷、第二卷和答题卡一并交回.亲爱的同学:你好!数学就是力量,自信决定成绩.请你用心思考,细心答题,努力吧,祝你考出好成绩!第一卷(选择题,共2页,满分40分)一、精心选一选(本大题共10个小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的). 1.下列四个数中,其中最小..的数是( ) A .0B .4-C .π-D 22.下列运算正确..的是( ) A .2242x x x =· B .238()x x = C .422x x x ÷=D .428x x x =·3.如图所示的四个立体图形中,左视图是圆的个数是( )A .4B .3C .2D .14.已知一组数据2,2,3,x ,5,5,6的众数是2,则x 是( ) A .5 B .4 C .3 D .25.已知一个多边形的内角和是540°,则这个多边形是( )圆柱 圆锥 圆台 球 请你用2B 铅笔把每题的正确答案的字母代号对应填涂在答题卡上,填涂要规范哟!答在本...试卷上无效.....。

A .四边形B .五边形C .六边形D .七边形6.杨伯家小院子的四棵小树E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形 7.设从茂名到北京所需的时间是t ,平均速度为v ,则下面刻画v 与t 的函数关系的图象是( )8.分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3 B .2 C .1 D .09.如图,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是( )A .4π平方米B .2π平方米C .π平方米D .1π2平方米10.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-, A D H G C FE (第6题图) y t O y t O y t O y t O A . B . C . D . 2米 1米(第9题图)Oy1O B1B 1C1A11A -(,) 11C (,)(第10题C .四边形111O BA B 是矩形D .若连接OC ,则梯形11OCA B 的面积是3茂名市初中毕业生学业考试 与高中阶段学校招生考试数 学 试 卷第二卷(非选择题,共8页,满分110分)二、细心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方). 11.方程1112x x=+的解是x = . 12.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是 .13.若实数x y 、满足0xy ≠,则yx m x y=+的最大值是 . 14.如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米.15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:32101202121211⨯+⨯+⨯+⨯=.按此方式,则将十进制数6换算成二进制数应为 . 三、用心做一做(本大题共3个小题,每小题8分,共24分).16.化简或解方程组.(1)1323228-··(4分)(第12题(第14题20米乙CB A甲10米 米20米温馨提示:下面所有解答题都应写出文字说明,证明过程或演算步骤!(2)241x y x y +=⎧⎨+=⎩①②(4分)17.如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a b 、,把a b 、作为点A 的横、纵坐标.(1)求点()A a b ,的个数; (4分)(2)求点()A a b ,在函数y x =的图象上的概率.(4分)18.如图,方格中有一个ABC △,请你在方格内,画出满足条件1111A B AB B C BC ==,,1A A ∠=∠的111A B C △,并判断111A B C △与ABC △是否一定全等?1 4 32(第17题BA C(第18题四、沉着冷静,缜密思考(本大题共2个小题,每小题8分,共16分).19.某校在“书香满校园”的读书活动期间,学生会组织了一次捐书活动.如图(1)是学生捐图书给图书馆的条形图,图(2)是该学校学生人数的比例分布图,已知该校学生共有1000人.(1)求该校学生捐图书的总本数; (6分) (2)问该校学生平均每人捐图书多少本? (2分)20.设12x x 、是关于x 的方程2410x x k -++=的两个实数根.试问:是否存在实数k ,使得1212x x x x >+·成立,请说明理由.人均捐款 书数(本) 2年级图七年级八年级35%九年级 30%图(第19题温馨提示:关于x 的一元二次方程()200ax bx c a ++=≠,当240b ac -≥时,则它的两个实数根是21242b b acx a-±-=,.五、满怀信心,再接再厉(本大题共3小题,每小题10分,共30分). 21.(本题满分10分)出厂价 成本价 排污处理费 甲种塑料 2100(元/吨) 800(元/吨) 200(元/吨) 乙种塑料2400(元/吨)1100(元/吨)100(元/吨)每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式(注:利润=总收入-总支出);(6分)(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?(4分)22.(本题满分10分)已知:如图,直径为OA 的M ⊙与x 轴交于点O A 、,点B C 、把OA 分为三等份,连接MC 并延长交y 轴于点(03)D ,.(1)求证:OMD BAO △≌△; (6分)(2)若直线l :y kx b =+把M ⊙30k b +=.(4分)价目 品种yxCBA MO42 1 3()03D ,23.(本题满分10分)据茂名市某移动公司统计,该公司年底手机用户的数量为50万部,底手机用户的数量达72万部.请你解答下列问题:(1)求年底至底手机用户数量的年平均增长率; (5分) (2)由于该公司扩大业务,要求到底手机用户的数量不少于103.98万部,据调查,估计从底起,手机用户每年减少的数量是上年底总数量的5%,那么该公司每年新增手机用户的数量至少要多少万部?(假定每年新增手机用户的数量相同).(5分)六、灵动智慧,超越自我(本大题共2小题,每小题10分,共20分). 24.(本题满分10分) 如图,在Rt ABC△中,906024BAC C BC ∠=∠==°,°,,点P 是BC 边上的动点(点P 与点B C 、不重合),过动点P 作PD BA ∥交AC 于点D .(1)若ABC △与DAP △相似,则APD ∠是多少度? (2分) (2)试问:当PC 等于多少时,APD △的面积最大?最大面积是多少? (4分) (3)若以线段AC 为直径的圆和以线段BP 为直径的圆相外切,求线段BP 的长.(4分)60°A D CB (第24题P参考公式: 函数2y ax bx c =++(a b c 、、为常数,0a ≠)图象的顶点坐标是:2424b ac b a a ⎛⎫-- ⎪⎝⎭,25.(本题满分10分)已知:如图,直线l :13y x b =+,经过点104M ⎛⎫⎪⎝⎭,,一组抛物线的顶点112233(1)(2)(3)()n n B y B y B y B n y ,,,,,,,,(n 为正整数)依次是直线l 上的点,这组抛物线与x轴正半轴的交点依次是:11223311(0)(0)(0)(0)n n A x A x A x A x ++,,,,,,,,(n 为正整数),设101x d d =<<().(1)求b 的值;(2分) (2)求经过点112A B A 、、的抛物线的解析式(用含d 的代数式表示)(4分)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”. 探究:当01d d <<()的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值. (4分)(第25题yO M x n l 1 2 3 …1B 2B 3B n B 1A 2A 3A 4A n A 1n A +茂名市初中毕业生学业考试 与高中阶段学校招生考试 数学试题参考答案及评分标准说明:1.如果考生的解与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷.2.解答题右端所注的分数,表示考生正确做到这一步应得的累加分数.一、选择题(本大题共10小题,每小题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 答案 B C D D B A A C B D 二、填空题(本大题共5小题,每小题4分,共20分.) 11.1 12.1213.2 14.60 15.110 三、(本大题共3小题,每小题8分,共24分.)16.(1)解:原式128= ······································································ 2 分 4=. ······························································································ 4 分 (2)解:由①-②得:3y =, ······································································ 2 分 ∴把3y =代入①得:2x =-, ········································································· 3分∴方程组的解为23.x y =-⎧⎨=⎩,················································································· 4分17.解:(1)列表(或树状图)得:ab12 3 4 1 (1,1) (2,1)(3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4)(2,4)(3,4)(4,4)因此,点()A a b ,的个数共有16个; ································································· 4分 (2)若点A 在y x =上,则a b =, 由(1)得()41164a b P ===, 因此,点()A a b ,在函数y x =图象上的概率为14. ············································ 8分 18.解:如图所示:每画对一个3分,共6分.ABC △与111A B C △不一定全等. ···································································· 8分四、(本大题共2小题,每小题8分,共16分.) 19、解:(1)九年级捐书数为:1000×30%×4=1200(本) ················································· ·1分 八年级捐书数为:1000×35%×6 = 2100(本) ························································ 2 分 七年级捐书数为:1000×35%×2 =700(本) ·························································· 3 分 ∴捐书总本数为:1200+2100+700=4000(本) ··················································· 5 分 因此,该校学生捐图书的总本数为4000本. ························································ 6 分 (2)4000÷1000=4(本) ················································································· 7分 因此,该校平均每人捐图书4本.······································································ 8分20.解:∵方程有实数根,∴240b ac -≥,∴2(4)4(1)0k --+≥,即3k ≤. ····· 2分解法一:又∵24(4)4(1)23k x k ±--+==-,·········································· 3分 ∴12(23)(23)4x x k k +=-+-=, ······················································· 4分 12(23)(23)1x x k k k =+---=+ ··························································· 5分 若1212x x x x >+,即14k +>,∴3k >. ························································· 7 分 而这与3k ≤相矛盾,因此,不存在实数k ,使得1212x x x x >+成立. ···················· 8分 解法二:又∵12441b x x a -+=-=-=, ···························································· 4分 12111c k x x k a +===+, ··············································································· 5分 (以下同解法一)五、(本大题共3小题,每小题10分,共30分.) 21.解:(1)依题意得:1(2100800200)1100y x x =--=, ··········································· 3分BA CB 1A 1 C 1 C 1B 1 A 12(24001100100)20000120020000y x x =---=-, ····································· 6 分 (2)设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得: 11001200(700)20000100820000W x x x =+--=-+. ································· 7 分∵400700400x x ⎧⎨-⎩≤,≤,解得:300400x ≤≤. ······················································ 8 分∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000(元). ······· 9 分 此时,700400x -=(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.························· 10 分22.证明:(1)连接BM ,∵B C 、把OA 三等分,∴1560∠=∠=°, ································ 1 分又∵OM BM =,∴125302∠=∠=°, ·························································· 2 分 又∵OA 为M ⊙直径,∴90ABO ∠=°,∴12AB OA OM ==,360∠=°, ·········· 3 分∴13∠=∠,90DOM ABO ∠=∠=°, ···························································· 4 分在OMD △和BAO △中,13.OM AB DOM ABO ∠=∠⎧⎪=⎨⎪∠=∠⎩,, ···················································· 5 分∴OMD BAO △≌△(ASA ) ········································································· 6 分 (2)若直线l 把M ⊙的面积分为二等份,则直线l 必过圆心M , ···································· 7 分∵(03)D ,,160∠=°,∴3tan 603OD OM ===° ∴3M ,, ··············································· 8 分 把 3M ,代入y kx b =+得: 30k b +=. ·············································· 10 分23.解:(1)设年底至底手机用户的数量年平均增长率为x ,依题意得: ····························· 1 分250(1)72x +=, ··························································································· 3 分∴1 1.2x +=±,∴10.2x =,2 2.2x =-(不合题意,舍去), ······························ 4 分yxCBA MO42 13()03D ,5∴年底至底手机用户的数量年平均增长率为 20%. ················································ 5 分 (2)设每年新增手机用户的数量为y 万部,依题意得: ········································· 6分 [72(1 5%)](15%)103.98y y -+-+≥, ·························································· 8分 即(68.4)0.95103.9868.40.950.95103.98y y y y ++⨯++≥,≥,64.98 1.95103.98y +≥,1.9539y ≥,∴20y ≥(万部). ······························ 9分 ∴每年新增手机用户数量至少要 20万部. ························································· 10 分 六、(本大题共 2 小题,每小题 10 分,共 20 分.)24、解:(1)当△ABC 与△DAP 相似时,∠APD 的度数是60°或30°. ···················· 2 分 (2)设PC x =,∵PD BA ∥,90BAC ∠=°,∴90PDC ∠=°, ······················· 3 分 又∵60C ∠=°,∴24cos6012AC ==°,1cos602CD x x ==°, ∴1122AD x =-,而3sin 60PD x ==°, ··················································· 4 分 ∴1131122222APD S PD AD x x ⎛⎫==-⎪⎝⎭△ ························································ 5 分 223324)(12)18388x x x =--=--+ ∴PC 等于12时,APD △的面积最大,最大面积是3··································· 6 分 (3)设以BP 和AC 为直径的圆心分别为1O 、2O ,过 2O 作 2O E BC ⊥于点E , 设1O ⊙的半径为x ,则2BP x =.显然,12AC =,∴26O C =,∴6cos603CE ==°, ∴2226333O E =-=,124321O E x x =--=-, ························· 7 分又∵1O ⊙和2O ⊙外切,∴126O O x =+. ······································· 8分在12Rt O O E △中,有2221221O O O E O E =+, ∴222(6)(21)(33)x x +=-+, ·················· 9 分解得:8x =, ∴216BP x ==. ··································································· 10 分60°ADC BPO 2 O 1E25.解:(1)∵104M ⎛⎫ ⎪⎝⎭,在13y x b =+上,∴11043b =⨯+,∴14b =. ················ 2分 (2)由(1)得:1134y x =+, ∵11(1)B y ,在l 上, ∴当1x =时,111713412y =⨯+=,∴17112B ⎛⎫⎪⎝⎭,. ········································· 3 分 解法一:∴设抛物线表达式为:27(1)(0)12y a x a =-+≠, ··································· 4分 又∵1x d =, ∴1(0)A d ,,∴270(1)12a d =-+,∴2712(1)a d =--, ················· 5 分∴经过点112A B A 、、的抛物线的解析式为:2277(1)12(1)12y x d =--+-. ············· 6 分 解法二:∵1x d =,∴1(0)A d ,,2(20)A d -,, ∴设()(2)(0)y a x d x d a =--+≠, ································································ 4 分把17112B ⎛⎫⎪⎝⎭,代入:7(1)(12)12a d d =--+,得2712(1)a d =--, ························ 5 分 ∴抛物线的解析式为27()(2)12(1)y x d x d d =---+-. ····································· 6 分(3)存在美丽抛物线. ··················································································· 7 分 由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵01d <<,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于 1.∵当1x =时,1117113412y =⨯+=<, 当2x =时,21111213412y =⨯+=<,当3x =时,3111311344y =⨯+=>,yO M xnl12 3…1B2B3Bn B1A2A 3A4A n A1n A +∴美丽抛物线的顶点只有12B B 、. ···································································· 8分 ①若1B 为顶点,由17112B ⎛⎫⎪⎝⎭,,则7511212d =-=; ·············································· 9分 ②若2B 为顶点,由211212B ⎛⎫ ⎪⎝⎭,,则11111211212d ⎡⎤⎛⎫=---= ⎪⎢⎥⎝⎭⎣⎦, 综上所述,d 的值为512或1112时,存在美丽抛物线. ··········································· 10分。

2024年广东数学中考卷子

2024年广东数学中考卷子(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. (2分)下列选项中,既是有理数又是无理数的是:A. 0B. πC. √2D. 1.52. (2分)下列函数中,奇函数是:A. y = x²B. y = |x|C. y = x³D. y = x² + 13. (2分)在平面直角坐标系中,点A(2, 3)关于原点对称的点是:A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)4. (2分)下列等式中,正确的是:A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a b)² = a² 2ab + b²D. a² b² = (a + b)(a b)5. (2分)已知三角形ABC中,AB=AC,∠BAC=40°,则∠ABC的度数是:A. 40°B. 70°C. 80°D. 100°二、判断题(每题1分,共20分)6. (1分)两个无理数相加一定是无理数。

()7. (1分)平行线的性质是同位角相等。

()8. (1分)一元二次方程的解一定是实数。

()9. (1分)三角形的中位线等于第三边的一半。

()10. (1分)函数y = 2x + 3的图象是一条直线。

()三、填空题(每空1分,共10分)11. (1分)若a² = 16,则a = _______。

12. (1分)在直角三角形中,若一个锐角为30°,则另一个锐角的度数是_______°。

13. (1分)若|3x 5| = 2,则x的值为_______或_______。

14. (1分)函数y = 2x的图象经过_______象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广东中考数学试题
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.四个实数0、1
3
、 3.14-、2中,最小的数是 A .0 B .13
C . 3.14-
D .2
2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为
A .71.44210⨯
B .70.144210⨯
C .81.44210⨯
D .80.144210⨯
3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .
4.数据1、5、7、4、8的中位数是
A .4
B .5
C .6
D .7
5.下列所述图形中,是轴对称图形但不是..
中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形
6.不等式313x x -≥+的解集是
A .4x ≤
B .4x ≥
C .2x ≤
D .2x ≥
7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为
A .12
B .13
C .14
D .16
8.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是
A .30°
B .40°
C .50°
D .60°
9.关于x 的一元二次方程2
30x x m -+=有两个不相等的实数根,则实数m 的取值范围为
A .94
m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为
11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .
12. 分解因式:=+-122x x .
13. 一个正数的平方根分别是51-+x x 和,则x=.
14. 已知01=-+-b b a ,则=+1a .
15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为.(结果保留π)
16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x x
y 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为
三、解答题(一)
17.计算:1
-0212018-2-⎪⎭⎫ ⎝⎛+
18.先化简,再求值:.2
341642222=--⋅+a a a a a a ,其中 19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,
(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF ,求DBF ∠的度数.
20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。

(1)求该公司购买的A 、B 型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?
21.某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图21-1图和题21-2图所示的不完整统计图.
(1)被调查员工人数为人:
(2)把条形统计图补充完整;
(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?
22.如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .
(1)求证:△ADF ≌△CED ;
(2)求证:△DEF 是等腰三角形.
23.如图,已知顶点为()0,3C -的抛物线()2
0y ax b a =+≠与x 轴交于,A B 两点,直线y x m =+过顶点C 和点B .
(1)求m 的值;
(2)求函数()2
0y ax b a =+≠的解析式 (3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.
24.如图,四边形ABCD 中,AB AD CD ==,以AB 为直径的
O 经过点C ,连接,AC OD 交于点E .
(1)证明://OD BC ;
(2)若tan 2ABC ∠=,证明:DA 与
O 相切; (3)在(2)条件下,连接BD 交于O 于点F ,连接EF ,若1BC =,求EF 的长.
25.已知OAB Rt ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将OAB Rt ∆绕点O 顺时针旋转60︒,如题251-图,连接BC .
(1)填空:OBC ∠=°;
(2)如题251-图,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;
(3)如题252-图,点,M N 同时从点O 出发,在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为
1.5/单位秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?
………………………………………………最新资料推荐………………………………………
11 / 11。

相关文档
最新文档