高考数学复习题库 (19)

合集下载

专题19 解决立体几何中的计算问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

专题19 解决立体几何中的计算问题-2021年高考数学二轮复习核心考点微专题(苏教版)(原卷版)

1.如图,直三棱柱ABCA1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段B1B上的一动点,则当AM +MC1最小时,△AMC1的面积为________.2.如图,在直三棱柱ABCA1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点.当AD+DC1最小时,三棱锥D-ABC1的体积为________.(1) 若D为线段AC的中点,求证:AC⊥平面PDO;(2) 求三棱锥P-ABC体积的最大值;(3) 若BC=2,点E在线段PB上,求CE+OE的最小值.4.如图,在棱长为4的正方体ABCDA 1B 1C 1D 1中,E ,F 分别为棱AA 1,D 1 C 1上的动点,点G 为正方形B 1BCC 1的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.【考向分析】有关立体几何体的计算,是历年高考中命题的重点和难点,几乎每年都考,考查题目巧妙、灵活、新颖.近几年高考立体几何体计算除了通常的题型外,还有几何体的组合问题、翻折问题、以生活实际为背景的问题、融入数学文化的问题等渐成为亮点,集中考查距离、表面积、体积等计算问题.这类问题题目新颖,能够考查空间想象能力与思维能力(一)立体几何中关于面积计算的问题变式1 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.变式2 正三棱锥S -ABC 中,BC =2,SB =3,D ,E 分别是棱SA ,SB 上的点,Q 为边AB 的中点,SQ ⊥平面CDE ,则△CDE 的面积为________.(二)立体几何中关于体积计算的问题例2. 已知棱长为3的正方体ABCD -A 1B 1C 1 D 1中,P ,M 分别为线段BD 1,B 1C 1上的点,若BP PD 1=12,则三棱锥M-PBC的体积为________.变式1如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上,点E与点C,D 不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1) 求证:BD⊥平面POA;(2) 当PB取得最小值时,求四棱锥P-BDEF的体积.变式2如图,在圆柱O1,O2内有一个球O,该球与圆柱的上、下面及母线均相切,记圆柱O1,O2的体积为V1,球O的体积为V2,则V1V2的值是________.(三)以实际生活为背景的立体几何问题例3.将一个半径为5 cm的水晶球放在如图所示的工艺支架上,支架是由三根细金属杆P A,PB,PC组成,它们两两成60°角,则水晶球的球心到支架顶点P的距离是________cm.变式1如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥,当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.变式2《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.(保留两位有效数字)3.在三棱锥S-ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2, 则该三棱锥的体积为________.4.如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD 沿BD折起,使平面ABD⊥平面BDC,E,F分别为棱AC,AD的中点.(1) 求证:DC⊥平面ABC;(2) 设CD=a,求三棱锥A-BFE的体积.1.已知正四棱锥的底面边长是6,高为7,则这个正四棱锥的侧面积是________.2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥A -B 1D 1D 的体积为______ cm 3.3.已知一个圆锥的底面积为2π,侧面积为4π,则该圆锥的体积为________.4.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,一质点自点A 出发,沿着三棱柱的侧面绕行两周到点A 1点的最短路线的长为________cm.5. 若正四面体的棱长为a ,则其外接球的表面积为多少?6. 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 7. 如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点,现将△ADE 沿DE 折起,得四棱锥ABCDE .(1) 求证:EF //平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.8. 如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB, AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.9. 一个长方体的三条棱长分别为3,8,9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.10.一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个如图所示的正四棱锥形容器,当x=6 cm时,该容器的容积为________cm3.11.(1) 给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等.请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明.(2) 试比较你剪拼的正三棱锥与正三棱柱的体积的大小.(3) 如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.12.如图,已知正方体ABCD -A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围________.。

高考数学第一轮复习立体几何专题题库19.doc

高考数学第一轮复习立体几何专题题库19.doc

241. 已知点P 是正方形ABCD 所在的平面外一点,PD ⊥面AC ,PD=AD=l ,设点C 到面PAB 的距离为d 1,点B 到平面PAC 的距离为d 2,则( ) (A )l <d 1 <d 2(B )d 1< d 2<l (C )d 1<l < d 2(D )d 2<d 1<l解析:l d 221=,l d 332=,故d 2<d 1<l ,选D 。

242.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<<a (1)求MN 的长;(2)当a 为何值时,MN 的长最小; (3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。

∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a(2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。

又46==BG AG ,所以由余弦定理有 ADE31464621)46()46(cos 22-=∙∙-+=α。

故所求二面角)31arccos(-=α。

243. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)20(πθθ<<。

导数19 大题(切线)1-2022年全国一卷新高考数学题型细分汇编

 导数19 大题(切线)1-2022年全国一卷新高考数学题型细分汇编

导数——大题——切线:1.(2022年江苏徐州J53)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(①)(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.(切线,易;第二问,未;)2.(2022年江苏常州J59)已知函数()()ln xxe f x a x x =+-,a R ∈.(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(②)(2)讨论函数()f x 的零点个数.(切线,易;第二问,未;)3.(2022年福建福州联考J01)已知函数()ln(1)ln x f x ae x b =-+-(1)若()f x 在0x =处的切线方程为1y =,(i )求a ,b 的值;(ii )讨论()f x 的单调性.(③)(2)若b a =,证明:()f x 有唯一的极小值点.(切线,中下;单调性,中下;第二问,未;)4.(2022年福建福州J05)设函数()1ex f x x a -=+,曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭;(1)求a ;(④)(2)若当[)2,x ∈-+∞时,()()1f x b x ≥-,记符合条件的b 的最大整数值、最小整数值分别为M ,m ,求M m +.注:e 2.71828=⋅⋅⋅为自然对数的底数.(切线,中下;第二问,未;)1.(2022年福建三明一中J39)已知函数()()ln()x f x e x a x a x =-+++,a R ∈.(1)当1a =时,求函数()f x 的图象在0x =处的切线方程;(⑤)(2)若函数()f x 在定义域上为单调增函数.①求a 最大整数值;②证明:23341ln 2(ln (ln )(ln231n n en e +++++<-L .(切线,易;第二问,未;)2.(2022年湖南长沙一中J02)已知函数()()()e xf x x b a =+-.(0b >)在()()1,1f --处的切线l方程为()e 1e e l 0x y -++-=.(1)求a ,b ,并证明函数()y f x =的图象总在切线l 的上方(除切点外);(⑥)(2)若方程()f x m =有两个实数根1x ,2x .且12x x <.证明:()2112e 11em x x --≤+-.(切线,中下;第二问,未;)1.(2022年高考乙卷J04)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(⑦)(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(切线,易;第二问,未;)1.(2022年湖北华师附中J61)已知函数()e ln ()x f x x a x a R =-∈在1x =处的切线方程为2e 1)+y x b =-(.(1)求实数,a b 的值;(⑧)(2)(i )证明:函数()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈;(ii )证明:03141()1515f x <<.(切线,中下;第二问,未;)参考数据:ln 20.693≈e 1.648≈,0.55e 1.734≈,11303e 0.69-≈.2.(2022年河北演练一J39)已知函数()ln f x x bx a =++,其中,a b ∈R .(⑨)(1)若1a =,曲线()y f x =在2x =处的切线与直线210x y ++=平行,求()f x 的极值;(2)当1,1b a =≤-时,证明:2()ex f x x-≥.(切线,中下,单调性,极值,中下;第二问,未;)3.(2022年河北联考J42)设函数2()e mx f x x mx t =+-+在(0,(0))f 处的切线经过点(1,1).(1)求t 的值,并且讨论函数()f x 的单调区间;(⑩)(2)当1m =时,,()0x ∈+∞时,不等式(2)(2)4[()()]f x f x b f x f x -->--恒成立,求b 的取值范围.(切线,中下,单调性,中下;第二问,未;)1.(2022年湖北襄阳五中J24)已知函数()e 2xf x ax b =-+在0x =处的切线经过点()1,2.(1)若函数()f x 至多有一个零点,求实数a 的取值范围;(⑪)(2)若函数()f x 有两个不同的零点()1212,x x x x <,且25x >,求证:12211x x a ax >-.(23e 2.7,e 7.4,e 20.1≈≈≈)(切线,中下;零点分析,中档,未;第二问,未;)1.(2022年湖南三湘名校J45)已知函数()x f x e =(其中e 是自然对数的底数).过点(,1)(0)P m m >作曲线()y f x =的两条切线,切点坐标分别为()()()121212,e ,,e x x x x x x <.(1)若21x =,求m 的值;(⑫)(2)证明:12x x +随着m 的增大而增大.(切线,易;第二问,未;)2.(2022年湖北武汉J01)定义在π,2⎛⎫-+∞ ⎪⎝⎭上的函数()()sin f x x k x =-.(⑬)(1)当π6k =时,求曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线与两坐标轴所围成的三角形的面积;(2)将()f x 的所有极值点按照从小到大的顺序排列构成数列{}n x ,若()()120f x f x +=,求k 的值.(切线,中下;第二问,未;)3.(2022年湖北四校联考J17)已知函数()()e ln (0),ln x f x a x b x g x x x x=+->=+.(⑭)(1)若曲线()y f x =在1x =处的切线方程为2e 3y x =+-,求,a b ;(2)在(1)的条件下,若()()f m g n =,比较m 与n 的大小并证明.(切线,中下;第二问,未;)①【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞【解析】【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)x a x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值.【详解】(I )()(1)x f x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)x a x e =+,令()(1)x g x x e =+,则()(2)x g x x e '=+,当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增,当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,m a m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-,令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-,所以实数b 的取值范围[),e -+∞.【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.②【答案】(1)11y e=-;(2)答案不唯一,见解析.【解析】【分析】(1)求出导函数()'f x ,得切线斜率(1)f ',从而可得切线方程;(2)定义域是(0,)+∞,在0a ≤时直接由函数()f x 的解析式确定无零点(需用导数证明ln 0x x -<),在1a >时,由导函数()'f x ,得单调性,确定函数的最大值为(1)f ,根据(1)f 的正负分类讨论.在(1)0f >时,通过证明()0f a <和1(0f a<,得零点个数.【详解】(1)当1a =时,()ln x x e f x x x =+-,()111f e=-,()111xe xf x x -'=+-,()10f '=,所以曲线()y f x =在1x =处的切线方程为11y e=-.(2)函数()f x 的定义域为()0,∞+,()()1111111e e e x x x x x x a f x a a x x x x ---⎛⎫⎛⎫'=+-=+⋅=-+ ⎪ ⎪⎝⎭⎝⎭.①当0a =时,()0e xxf x =>,()f x 无零点.②当0a >时,10e x ax+>,令()0f x '>,得01x <<,令()0f x '<,得1x >,所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有最大值()11ef a =-.当10ea -<,即1e >a 时,()f x 无零点.当10e a -=,即1a e=时,()f x 只有一个零点.当10a e ->,即10a e<<时,()10f >,()()ln a a e f a a a a =+-,令()ln 1g x x x =-+,则()111xg x x x-'=-=,则()g x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 10g x g ==,所以()ln 10g x x x =-+≤,因此当10a e <<时,ln 1a a -<-,()()1ln 1a a a a a f a a a a a a e e e ⎛⎫=+-<-=- ⎪⎝⎭.因为0a >,所以1ae >,于是()110af a a e ⎛⎫<-< ⎪⎝⎭.又()f x 在()0,1上单调递增,()10f >,且1a <,所以()f x 在()0,1上有唯一零点.1111111ln ln 1a aa a f a a a a a e a e ⎛⎫⎛⎫=+-=-- ⎪ ⎪⎝⎭⎝⎭,当10a e<<时,1e a >,令()2e x h x x =-,其中x e >,则()2xh x e x '=-,令()2xx e x ϕ=-,x e >,则()20xx e ϕ'=->,所以()h x '在(),e +∞上单调递增,()20eh x e e '>->,所以()h x 在(),e +∞上单调递增,()20eh x e e >->,故当x e >时,2x e x >.因为1e a >,所以211ae a ⎛⎫> ⎪⎝⎭,即11aa e a <,所以111ln 1ln 1aa f a a a a a a e ⎛⎫=--<-- ⎪⎝⎭.由ln 10x x -+≤,得11ln10a a -+<,即1ln 10a a--+<,得ln 10a a a --<,于是10f a ⎛⎫< ⎪⎝⎭.又()10f >,11a>,()f x 在()1,+∞上单调递减,所以()f x 在()1,+∞上有唯一零点.故10ea <<时,()f x 有两个零点.③当0a <时,由ln 10x x -+≤,得ln 10x x -≤-<,则()ln 0a x x ->,又当0x >时,0e xx>,所以()0f x >,()f x 无零点.综上可知,0a ≤或1a e >时,()f x 无零点;1a e =时,()f x 只有一个零点;10a e<<时,()f x 有两个零点.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点个数.解题关键是求出函数的导数()'f x ,由()'f x 确定单调性和最值,本题在最大值(1)f 0>的情况下,通过证明()f a 0<和10f a ⎛⎫< ⎪⎝⎭,结合零点存在定理得出零点个数.难度较大,对学生的要求较高,属于困难题.③【答案】(1)(i )11a b =⎧⎨=⎩,(ii )答案见解析(2)证明见解析【分析】(1)(i )求出导数,由题可得(0)0(0)1f f =⎧⎨='⎩即可求出;(ii )根据导数的正负即可求出.(2)求出导数,构造函数()(1)1x g x ae x =+-,利用零点存在定理可判断函数的变化情况,得出单调性即可判断.(1)(i )()11xf x ae x =-+',由已知得,(0)0(0)1f f =⎧⎨='⎩,故10ln 1a a b -=⎧⎨-=⎩,解得11a b =⎧⎨=⎩;(ii )1()(1)1xf x e x x '=->-+,显然()'f x 在(1,)-+∞上单调递增,又(0)0f '=,所以10x -<<时,()0f x '<;0x >时,()0f x '>,因此()f x 在(1,0)-上单调递减,在(0,)+∞上单调递增.(2)()ln(1)ln xf x ae x a =-+-,则1(1)1()11x xae x f x ae x x '+-=-=++,令()(1)1x g x ae x =+-,0a >,1x ≥-,显然()g x 在[1,)-+∞上单调递增,又(1)0g -<,10g a ⎛⎫> ⎪⎝⎭,所以存在11,t a ⎛⎫∈- ⎪⎝⎭,使得()0g t =,当1x t -<<时,()0<g x ;x t >时,()0>g x ,所以1x t -<<时,()0f x '<;x t >时,()0f x '>,即()f x 在(1,)t -上单调递减;在(,)t ∞+上单调递增,因此f (x )有唯一极小值点t .④【答案】(1)e(2)8【解析】【分析】(1)求出函数的导数,根据导数的几何意义求出()f x 在1x =-处的切线方程,根据切线与y 轴交于点210,e e ⎛⎫-⎪⎝⎭,即可求得a ;(2)法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,构造函数()()1e1e x g x x b x -=--+,利用导数并讨论导数的正负,从而求得存在()02,x ∈-+∞,()()()01000min e 1e 0x g x g x x b x -==--+≥,分离参数,表示出()0101e x b x -=+,构造新函数,结合导数求得32e e3e 3b --≤≤,进而求得答案;法二:讨论x 的取值范围,从而分离出参数b ,在1x >,21x -£<的情况下,分别构造函数,利用导数判断单调性求的最值,最后确定32e e3e 3b --≤≤,由此可得答案;法三:令2x =-,由()()1f x b x ≥-可解得32e e13b --≥>-,从而取0m =,证明证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,令2x =,由()()1f x b x ≥-,解得3e b ≤,故取8M =,再证当8b =时,不等式()1e 81e 0x x x ---+≥在2x ≥-时恒成立,由此求得答案.【小问1详解】依题意得:()()11e x f x x -'=+,所以()10f '-=.又因为()211e f a -=-+,所以()f x 在1x =-处的切线方程为21ey a =-+,因为曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭,所以2211e e e a -+=-,解得e a =.【小问2详解】解法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,设()()1e1e x g x x b x -=--+,则()()11e x g x x b -='+-,设()()x g x ϕ'=,则()()12e x x x ϕ-=+',因为[)2,x ∈-+∞,所以()0x ϕ'≥,所以()x ϕ在[)2,-+∞单调递增,即()g x '在[)2,-+∞单调递增,所以()()3min 2e g x g b -=-=-'-',①若3e b -≤-,则()()20g x g '-'≥≥,所以()g x 在[)2,-+∞单调递增,所以()()3min 22e3e 0g x g b -=-=-++≥,解得32e e 3b --≥,所以332e e e 3b ---≤≤-;②若3e b ->-,则()()min 20g x g =-'<',因为()g x '在[)2,-+∞单调递增,当3e 0b --<≤时,()100eg b ='->,则存在()2,0x ∈-使得()0g x '=,当0b >时,取{}max 0,ln 1n b =+,则()0g n >,所以存在()12,x n ∈-,使得()10g x '=,综上,当3e b ->-时,存在()02,x ∈-+∞,使得()00g x '=,即()0101e 0x x b -+-=,故当02x x -<<时,()0g x '<,则()g x 在()02,x -单调递减,当0x x >时,()0g x '>,则()g x 在()0,x +∞单调递增,所以()()()01000min e1e 0x g x g x x b x -==--+≥,(*)由()0101e 0x x b -+-=,得()0101e x b x -=+,代入(*)得()()()000111200000e 1e 1e 1e e 0x x x x x x x x ----+-+=-+++≥,设()()211e e x F x x x -=---+,则()()()()2112e 21e x x F x x x x x --=-+---'=+,因为2x ≥-,所以由()0F x '=得1x =,当21x -<<时,()0F x '>,所以()F x 在()2,1-上单调递增,当1x >时,()0F x '<,所以()F x 在()1,+∞单调递减,又因为()32e e 0F -=-+<,()11e 0F =+>,()20F =,所以当2x >时,()0F x <,所以满足()012001ee 0x x x --+++≥的0x 的取值范围是022x -<≤,又因为()0101ex b x -=+,设()()11e x H x x -=+,则()()12e 0x H x x -+'=≥,所以()H x 在()2,-+∞单调递增,所以3e 3e b --<≤,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法二:由(1)知:()1e e x f x x -=+,则()1e 1e 0x x b x ---+≥,①当1x =时,左边等于1e 0+≥恒成立,此时b ∈R ;②当1x >时,原不等式可化为1e e 1x x b x -+≤-对任意()1,x ∈+∞恒成立.设()1e e 1x x h x x -+=-,则()()()2121e e1x x x h x x --'--=设()()211e e x k x x x -=---,则()()()()2112e 21e x x k x x x x x --=+-'=+-.因为1x >,所以()0k x '>,所以()k x 在()1,+∞上单调递增.又因为()()220h k '==,所以2x =是()h x '在()1,+∞上的唯一零点,所以当12x <<时,()0h x '<,()h x 在()1,2上单调递减,当2x >时,()0h x '>,()h x 在()2,+∞上单调递增,所以()()min 23e h x h ==,所以3e b ≤.③当21x -£<时,原不等式可化为1e e 1x x b x -+≥-,此时对于②中函数()k x 的导函数,()()()()2112e 21e x x k x x x x x --=+-'=+-,可知当21x -£<时,()0k x '<,所以()k x 在21x -£<单调递减,且()325ee 0k --=-<,所以当21x -£<时,()()20k x k <-<,所以当21x -£<时,()0h x '<,所以()h x 在[)2,1-上单调递减,所以()3max 2e e (2)3h x h --=-=,所以32e e 3b --≥,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法三:令2x =-,由()()1f x b x ≥-得()32e 3e b --≥--,解得32e e 13b --≥>-,取0m =,下证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,设()1e e x g x x -=+,则()()11e x g x x -=+',由()0g x '=可得1x =-,当21x -<<-时,()0g x '<,所以()g x 单调递减,当1x >-时,()0g x '>,所以()g x 单调递增,所以()()2min 11e 0e g x g =-=-+≥,所以0m =符合题意;令2x =,由()()1f x b x ≥-得2e 20b -+≥,解得3e b ≤,取8M =,下证当8b =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,设()1e e x h x x -=+,则()()11e x h x x -=+',令()0h x '=,则1x =-,所以当21x -<<-时,()0h x '<,则()h x 在()2,1-上单调递减,当1x >-时,()0h x '>,则()h x 在()1,+∞上单调递增,所以()()211e 0e h x h ≥-=->,所以当21x -≤≤时,()1e81e 0x x x ---+≥恒成立.当1x >时,10x ->,所以()()813e 1x x -<-,所以()()11e 81e e 3e 1e x x x x x x ----+>--+,设()()1e 3e 1e x k x x x -=--+,则()()11e 3e x k x x -'=+-,设()()x k x ϕ'=,则()()12e 0x x x ϕ-+'=≥,所以()k x '在()1,+∞单调递增,且()20k '=,所以当12x <<时,()0k x '<,则()k x 在()1,2单调递减,当2x >时,()0k x '>,则()k x 在()2,+∞单调递增,所以()()min 20k x k ==,所以()0k x ≥,所以()1e 81e 0x x x ---+≥,综上当8M =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,所以8M m +=.【点睛】本小题主要考查函数的单调性、导数、导数的几何意义及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查分类与整合思想、数形结合思想、一般与特殊思想,涉及的核心素养有直观想象、数学抽象、数学运算、逻辑推理等,体现综合性与创新性.⑤【答案】(1)10x y -+=(2)①2②见解析【解析】【详解】试题分析:(1)将1a =代入到函数()f x ,再对()f x 求导,分别求出()0f 和()'0f ,即可求出切线方程;(2)①若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立,则先证明1x e x ≥+,构造新函数,求出单调性,再同理可证ln 1x x ≤-,即可求出a 的最大整数值;②由①得()ln 2x e x ≥+,令1t x t -+=,可得11ln tt t e t -++⎛⎫≥ ⎪⎝⎭,累加后利用等比数列求和公式及放缩法即可得证.试题解析:(1)当1a =时,()()()1ln 1xf x e x x x =-+++∴()01f =,又()()'ln 1xf x e x =-+,∴()'01f =,则所求切线方程为1y x -=,即10x y -+=.(2)由题意知,()()'ln xf x e x a =-+,若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立.①先证明1x e x ≥+.设()1x g x e x =--,则()'1xg x e =-,则函数()g x 在(),0-∞上单调递减,在()0,+∞上单调递增,∴()()00g x g ≥=,即1x e x ≥+.同理可证ln 1x x ≤-∴()ln 21x x +≤+,∴()1ln 2xe x x ≥+≥+.当2a ≤时,()'0f x >恒成立.当3a ≥时,()'01ln 0f a =-<,即()()'ln 0xf x e x a =-+≥不恒成立.综上所述,a 的最大整数值为2.②由①知,()ln 2x e x ≥+,令1t x t-+=,∴111ln 2ln t t t t e t t -+-++⎛⎫⎛⎫≥+= ⎪ ⎪⎝⎭⎝⎭∴11ln t t t e t -++⎛⎫≥ ⎪⎝⎭.由此可知,当1t =时,0ln2e >.当2t =时,213ln 2e -⎛⎫> ⎪⎝⎭,当3t =时,324ln 3e -⎛⎫> ⎪⎝⎭, ,当t n =时,11ln nn n e n -++⎛⎫≥ ⎪⎝⎭.累加得0121n e e e e ---+++++> 23341ln2ln ln ln 23n n n +⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .又0121n e e e e ---+++++= 11111111n e e e e e⎛⎫- ⎪⎝⎭<=---,∴2334ln2ln ln 23⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭1ln 1nn e n e +⎛⎫++< ⎪-⎝⎭ .点睛:(1)导数综合题中对于含有字母参数的问题,一般用到分类讨论的方法,解题时要注意分类要不重不漏;(2)对于恒成立的问题,直接转化为求函数的最值即可;(3)对于导数中,数列不等式的证明,解题时常常用到前面的结论,需要根据题目的特点构造合适的不等式,然后转化成数列的问题解决,解题时往往用到数列的求和及放缩法.⑥【答案】(1)1,1a b ==;证明见解析(2)证明见解析【解析】【分析】(1)求出函数的导函数,依题意可得()10f -=,()111ef -=-+',即可解得a 、b ,从而得到()()()1e 1x f x x =+-,设()f x 在()1,0-处的切线l 方程为()y h x =,令()()()F x f x h x =-,利用导数说明函数的单调性,即可得证;(2)由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,即可得到11x x '≤,在设()y f x =在()0,0处的切线方程为()y t x =,令()()()T x f x t x =-,利用导数说明函数的单调性,即可得到()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,再说明22x x '≥,即可得证;【小问1详解】解:将1x =-代入切线方程()e 1e e l 0x y -++-=,有0y =,所以()10f -=,所以()()1110e f b a ⎛⎫-=-+-= ⎪⎝⎭,又()()1e x f x x b a +'=+-,所以()111e e b f a -=-=-+',若1ea =,则2e 0b =-<,与0b >予盾,故1a =,1b =.∴()()()1e 1x f x x =+-,()00f =,()10f -=,设()f x 在()1,0-处的切线l 方程为()()111e y h x x ⎛⎫==-+⎪⎝⎭,令()()()F x f x h x =-,即()()()()11e 111e x F x x x ⎛⎫=+---+ ⎪⎝⎭,所以()()12e e x F x x =+-',当2x -≤时,()()112e 0e ex F x x =+-≤-<',当2x >-时,设()()()12e ex G x F x x =+-'=,()()3e 0x G x x =+>',故函数()F x '在()2,-+∞上单调递增,又()10F '-=,所以当()2,1x ∈--时,()0F x '<,当()1,x ∈-+∞时,()0F x '>,综合得函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增,故()()10F x F ≥-=,即函数()y f x =的图象总在切线l 的上方(除切点外).【小问2详解】解:由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,又函数()h x 单调递减,故()()()111f x h h x x =≥',故11x x '≤,设()y f x =在()0,0处的切线方程为()y t x =,因为()00f =,()()2e 1xf x x '=+-,所以()01f '=,所以()t x x =.令()()()()()1e 1x T x f x t x x x =-=+--,()()2e 2xT x x =+-',当2x -≤时,()()2e 220xT x x =+-≤-<',当2x >-时,设()()()2e 2x H x T x x ==+-',则()()3e 0xH x x =+>',故函数()T x '在()2,-+∞上单调递增,又()00T '=,所以当()2,0x ∈-时,()0T x '<,当()0,x ∈+∞时,()0T x '>,综合得函数()T x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增,所以()()00T x T ≥=,即()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故()()()222f x t t x x =≥',故22x x '≥,又11x x '≤,所以()221112e e 111e 1em m x x x x m -⎛⎫''-≤-=--+=+ ⎪--⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑦【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex x f x x f =++=,所以切点为(0,0)11(),(0)21ex x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a - ,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+ ,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.⑧【答案】(1)2,2ea b ==-(2)(i )证明见解析;(ii )证明见解析【解析】【分析】(1)直接利用导数的意义列方程组()()()'1211f e f e ⎧=-⎪⎨=⎪⎩,即可解得;(2)(i )求出导函数2()(1)e x f x x x '=+-.利用导数和零点存在对立即可证明;(ii )求出0000001()e 2ln 2(ln )1x f x x x x x =-=-+,令11()2(ln )(1)12x x x x ϕ=-<<+,利用导数判断出()y x ϕ=在(,1)2上单调递减,即可证明122741()(2(ln 2)2(2331015x ϕϕ<=+<+=;要证031()15f x >,即证0320312ln 15x x x x+>.令()x F x x =1(1)2x <<,利用导数证明出1()( 2.332F x F >≈;令32312ln 115()(1)2x G x x x+=<<,利用导数证明出1130max()(e ) 2.312G x G -=≈,得到()()G x F x <,即可证明.【小问1详解】定义域为(0,)+∞,'((e )1)xa f x x x=+-由题意知()()()()'1221121f e a e f e b e ⎧=-=-⎪⎨=-+=⎪⎩,解得2,2e a b ==-.【小问2详解】(i )由(1)知()e 2ln x f x x x =-,2()(1)e xf x x x'=+-令()()h x f x '=,则22()(2)e 0xh x x x'=++>,从而()y h x =即()y f x '=单调递增又13e 8(1)2e 20,()022f f -''=->=<,故存在唯一的01(,1)2x ∈使得0()0f x '=x 0(0,)x 0x 0(,)x +∞()'f x -0+()f x极小值从而()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈(ii )00002()(1)e 0x f x x x '=+-=,()y f x =的极小值000000()e 2ln 2(ln )1x f x x x x x =-=-+令11()2(ln )(1)12x x x x ϕ=-<<+,则222'()0(1)x x x ϕ=--<+,从而()y x ϕ=在1(,1)2上单调递减,122741()(2(ln 2)2(2331015x ϕϕ<=+<+=,故041()15f x <下证031()15f x >0320312ln e15x x x x+>一方面令e ()xF x x =1(1)2x <<,则32e (21)()02x x F x x -'=>,则()F x 在1(,1)2上单调递增,从而1()()2e 2.332F x F >=≈另一方面,令32312ln 115()(1)2x G x x x +=<<,52113ln 10'()x G x x --=令()0'=G x 有1130e x -=x 11301(,e )2-1130e-1130(e,1)-()G x '+0-()G x极大值从而110.5530max 44()(e)e 1.734 2.31233G x G -==≈⨯≈从而()()G x F x <32312ln e15xx xx+>成立,故031()15f x >.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围;(4)利用导数证明不等式.⑨【答案】(1)极大值为(1)0f =,无极小值.(2)证明见解析.【解析】【分析】(1)根据导数的几何意义得1b =-,进而得'11()10xf x x x-=-==,再列表求解即可;(2)根据题意,只需证明2e ln e e xx x x a ≥+,由于函数e ,0x y x x >=在()0,∞+上单调递增,e 0x y x =>,故转化为证明2ln e t t a ≥+,再令()2ln ,0et t g t a t -->=,再求函数最值即可证明.【小问1详解】解:1a =,()ln 1f x x bx =++,'1()f x b x=+,因为曲线()y f x =在2x =处的切线与直线210x y ++=平行,所以,'11(2)22f b =+=-,解得1b =-,所以,()ln 1f x x x =-+,'11()10xf x x x-=-==,解得1x =,所以,x ,'()f x ,()f x 的变化情况如下表,x ()0,11()1,+∞'()f x ++()f x 单调递增极大值单调递减所以,当1x =时,()f x 有极大值(1)0f =,无极小值.【小问2详解】解:当1,1b a =≤-,()ln f x x x a =++,因为222()e ee ln ln e ex x x x f x x x x x a x a x --≥⇔≥++⇔≥+,所以只需证明2e ln e exx x x a ≥+成立即可.令e ,0x y x x >=,则()'1e 0,0xy x x =+>>,所以,函数e ,0x y x x >=在()0,∞+上单调递增,即e 0x y x =>.令e ,0xx t t =>,则22e ln e ln e ex x x tx a t a ≥+⇔≥+,令()2ln ,0e t t g t a t -->=,则()2'2211e e e t t t t g --==,所以,当()20,et ∈时,()'0g t <,()g t 单调递减,当()2e ,t ∈+∞时,()'0g t >,()g t 单调递增,所以,()()22e1ln e1a a g g t ≥=--=--,因为1a ≤-,所以10a --≥,即()0g t ≥,所以2ln ett a ≥+成立,所以2()ex f x x-≥成立,证毕.⑩【答案】(1)0=t ;()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.(2)b 的取值范围为(,2]-∞.【分析】(1)、先求出切线方程,根据切线经过点(1,1)即可求出t 的值;求出()f x ',分0m ≥,0m <两种情况讨论函数的单调区间即可;(2)、将原不等式转化为函数值在,()0x ∈+∞时恒大于零问题,分类讨论即可得到b 的取值范围.(1)2()e mx f x x mx t =+-+ ,()e 2mxf x m x m '∴=+-,(0)0f '∴=,又()01f t =+ ,∴切线方程为1y t =+,又 切线经过点(1,1),11t ∴+=,0t ∴=,故2()e mx f x x mx =+-,()()1e 2e 2mx mx f x m x m m x '=-=+-+.①、若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,()0f x '<;当,()0x ∈+∞时,e 10mx -≥,()0f x '>.所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.②、若0m <,则当(,0)x ∈-∞时,e 10mx ->,()0f x '<;当,()0x ∈+∞时,e 10mx -<,()0f x '>.所以()f x 在(,0)-∞上单调区间递减,在(0,)+∞上单调区间递增.综上所述:()f x 的单调递减为(,0)-∞,单调递增(0,)+∞.(2)当1m =时,2()e x f x x x =+-,22(2)(2)e 4e x x x f x f x -∴----=,()()e e 2x x x f x f x -----=,(2)(2)4[()()]f x f x b f x f x -->-- ,()22e e 4e e 42x x x x x b x --∴----≥,()22e e 4e e (84)0x x x x b b x --∴---+-≥在,()0x ∈+∞上恒成立.设()22()e e 4e e (84)x x x xg x b b x --=---+-,,()0x ∈+∞()()()()22()2e e 2e e 422e e 2e e 22x x x xx x x x g x b b b ----⎡⎤'∴=+-++-=+-+-+⎣⎦,且e e2xx-+>.①、当2b ≤时,e e 20,e e 220x x x x b --+->+-+>,()0g x '∴≥,当且仅当0x =时等号成立,所以()g x 在,()0x ∈+∞上单调递增,而()00g =,所以对0x >时,()0>g x .符合题意②、当2b >时,若x 满足2e e 22x x b -<+<-,即(20ln 12x b b b <<--时,()0g x '<,而(0)0g =,因此(20ln 12x b b b <<-+-时,()0<g x ,不符合题意.综上:b 的取值范围为(,2]-∞.⑪【答案】(1)2e 2a ≤(2)证明见解析【解析】【分析】(1)根据切线过点()1,2可得2b a =,参变分离后研究()e 1xg x x =-的单调性,得到极值,数形结合得到答案;(2)在第一问基础上,得到22e a >,对不等式变形,结合放缩,转化为只需证22212e 20(4)t t t +->>,二次求导后得到证明.【小问1详解】()e 2x f x a =-',∴()012f a '=-,∴0x =处的切线方程为()121y a x b =-++,切线过点()1,2,所以2b a =,∴()e 22x f x ax a =-+.∵()()1e 0,f f x =≠∴的零点不为1,∴e 21xa x =-在()(),11,-∞+∞ 上至多一个解.设1t x =-,则1e 2()t a g t t+==在()(),00,∞-+∞U 上至多一个解.1122111()()e e t t t g t t t t++-'=-=,令()0g t '>得:1t >,令()0g t '<得:01t <<或0t <,∴()g t 在(),0∞-和(]0,1上单调递减,[)1,+∞上单调递增,当0t <时,()0g t <恒成立,当0t >时,()g t 在1t =处取得极小值,且2(1)e g =,画出函数图象如图所示:所以22(1)e a g ≤=时,()f x 至多有一个零点,∴2e 2a ≤【小问2详解】由(1)知,要想有两个不同零点,则22e a >且12(0,1),(1,)t t ∈+∈∞,即()()121,2,2,x x ∈∈+∞,故要证12211x x a ax >-,只需证121ax x >-,由(1)知()()11110,1,1,2t x x =-∈∴∈,故只需证221x t a -=<,∵21222e (14)2t t x t a +==->.只需证:21222e (4)2t t t t +><,即22212e 20(4)t t t +->>,令()()()121e 24,e 4t t h t t t h t t ++=->'=-,15()e 4e 40t h t +''=->->,∴()h t '在()4,+∞上递增,∴()5416)e 0(h t h '>'=->,∴()h t 在()4,+∞上递增,∴()()54e 320h t h >=->,∴2122e 2t t +>,∴12211x x a ax >-【点睛】导函数研究函数零点问题,参变分离是一种重要方法,把零点问题转化为函数交点问题,通过构造函数,研究构造函数的单调性,极值和最值,数形结合得到答案.⑫【答案】(1)1em =(2)证明见解析【分析】(1)由导数的几何意义求切线方程,由点P 在切线上列方程求m 的值;(2)由导数的几何意义可得1x ,2x 是方程11e x m x =+-的两根,设21(0)x x t t -=>由此可得()1222e 1e e tx x tt +-=,证明t 随着m 的增大而增大,12e x x +随着t 的增大而增大,由此证明12x x +随着m 的增大而增大.(1)因为21x =,所以切点为(1,)e ,又()e x f x '=,则(1)e f '=,所以切线方程为e(1)e e y x x =-+=,因为切线过点(,1)P m ,所以1e m =,解得1em =;(2)设切点为()00,e x x ,因为()()000 e x f x f x '==,则切线方程为()000e e x x y x x =-+,因为切线过点(,1)P m ,所以()0001e e xxm x =-+,整理得0011(0)e x m x m =+->,所以1x ,2x 是方程11e xm x =+-的两根,设1()1e xg x x =+-,则1()1e x g x '=-,令()0g x '=,解得0x =,当0x <时,()0g x '<,()g x 在(,0)-∞上单调递减,当0x >时,()0g x '>,()g x 在(0,)+∞上单调递增,所以120x x <<,设1()g x m =的两根为()1212,0x x x x ''''<<,其中10m m >>,则由()g x 单调性可知,11220x x x x ''<<<<,所以2121x x x x ''->-,设21(0)x x t t -=>,即t 随着m 的增大而增大,因为12121111e e x x m x x =+-=+-,所以111111e e x x t x x t ++=++,整理得1e 1e e t x tt -=,所以21e 1e et x x tt +-==,所以()1222e 1e (0)e t x x t t t +-=>,设()22e 1()(0)et t h t t t -=>,则()()()()()2222322e e 1e 2e e 1e 1(2)e 2()e e t t t t t tttt t t t t t h t t t '⎡⎤-⋅-+⋅---++⎣⎦==,设()(2)e 2t t t t ϕ=-++,则()(1)e 1t t t ϕ'=-+,()(1)e 1t m t t =-+,则'()e 0t m t t =>所以()t ϕ'单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ单调递增,所以()(0)0t ϕϕ>=,即()0,()h t h t '>单调递增,所以12e x x +随着t 的增大而增大,又t 随着m 的增大而增大,所以12x x +随着m 的增大而增大.【点睛】本题解决的关键在于根据函数方程的思想确定1x ,2x 是方程11e xm x =+-的两根和构造函数证明12e x x +随着21x x -的增大而增大.⑬【答案】(1)2π144(2)π2【解析】【分析】(1)根据导数的几何意义及点斜式,再结合三角形的面积公式即可求解;(2)根据已知条件及正切函数的性质,利用导数法求函数的极值及函数存在性定理,再根据零点范围及三角函数相等的角的关系即可求解.【小问1详解】当π6k =时,()()ππsin ,sin cos 66f x x x f x x x x ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎝⎭'⎭,故ππ1sin 662f ⎛⎫== ⎪'⎝⎭.曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线的斜率为π162k f ⎛⎫== ⎪⎝⎭',曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线方程为1π26y x ⎛⎫=- ⎪⎝⎭,令π0,12x y ==-.所以切线与y 轴的交点π0,12⎛⎫- ⎪⎝⎭.此时所求三角形的面积为21πππ2126144⨯-⨯=.【小问2详解】()()sin cos f x x x k x=+-'当ππ22x -<<时,()()cos tan f x x x x k =⋅+-'.由函数tan y x x =+在区间ππ,22⎛⎫- ⎪⎝⎭上递增,且值域为R ,故存在唯一0ππ,22x ⎛⎫∈- ⎪⎝⎭,使得00tan x x k +=.此时当0π2x x -<<时,()()0,f x f x '<单调递减;当0π2x x <<时,()()0,f x f x '>单调递增,因此10x x =.同理,存在唯一'0π3π,22x ⎛⎫∈ ⎪⎝⎭,使得''00tan x x k +=.此时当'0π2x x <<时,()()0,f x f x '>单调递增;当'03π2x x <<时,()()0,f x f x '<单调递减,因此'20x x =.由()()211111111sin 10,tan ,cos cos cos x f x x k x f x x x x =-=-=-=-'.同理:()222222sin 1cos cos cos x f x x x x =-=-.由()()120f x f x +=,整理得:()12121cos cos 10cos cos x x x x ⎛⎫+-=⎪⎝⎭.又12ππ3π222x x -<<<<,故12cos cos 1x x ≠,则有()122cos cos cos πx x x =-=-由2πππ22x -<-<,故12πx x =-或()12πx x =--.又1122tan tan k x x x x =+=+,当12πx x =-时,不满足,舍去.所以()12πx x =--,即12πx x +=,则1122tan tan π22x x x x k +++==.综上所述,π2k =.【点睛】解决此题的关键,第一问根据导数的几何意义及三角形的面积公式即可;第二问利用导数法求函数的极值的步骤,但此时无法解决导数函数的零点,只能通过函数零点存在性定理得出,再结合已知条件及零点范围及三角函数相等角的关系即可.⑭【答案】(1)2,1a b ==(2)m n ≤,证明见解析【解析】【分析】(1)求导得()'f x ,再求(1)f '的值即得切线的斜率,求出切点,利用点斜式求出切线方程,对比系数即可得答案;(2)先证明e 1x x ≥+,再令()()()h x f x g x =-,利用前面的结论说明()0h x ≥,最后根据()g x 的单调性证明即可.【小问1详解】解:()()()()2e 1(0),1e ,1x x af x x f b f a x x-=+>'=-=',所以()y f x =在1x =处的切线方程为e y ax b a =+--,比较系数可得2,1a b ==.【小问2详解】m n ≤.证明:设()=e 1xx x ϕ--,则()=e -1xx ϕ',令()>0x ϕ',则0x >;令()0ϕ'<x ,则0x <则0x =是()ϕx 的极小值点同时也是最小值点,故()()00x ϕϕ≥=即e 1x x ≥+(当且仅当0x =时等号成立).令()()()h x f x g x =-,则()()ln e ln 1e ln 10xx x h x x x x x x-=+--=---≥,当且仅当ln 0=x x -=“”取“”,所以()(),f x g x ≥则有()(),f m g m ≥而()(),()()f m g n g m g n =∴≤,又()11,()g x g x x'=+∴ 单调递增,所以m n ≤.。

高考数学一轮复习 课时作业19 任意角和弧度制及任意角的三角函数 理(含解析)新人教版-新人教版高三

高考数学一轮复习 课时作业19 任意角和弧度制及任意角的三角函数 理(含解析)新人教版-新人教版高三

课时作业19 任意角和弧度制及任意角的三角函数一、选择题1.将-300°化为弧度为( B ) A .-43π B.-53πC .-76π D.-74π解析:-300×π180=-53π.2.tan 8π3的值为( D )A.33 B .-33C. 3 D .- 3解析:tan 8π3=tan(2π+2π3)=tan 2π3=- 3.3.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( C ) A .2 B .sin2 C.2sin1D .2sin1 解析:r =1sin1,l =θ·r =2·1sin1=2sin1,故选C.4.已知点P ⎝ ⎛⎭⎪⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为(C)A.5π6B.2π3 C.11π6 D.5π3解析:因为点P ⎝ ⎛⎭⎪⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1232=-33,又θ∈[0,2π),可得θ=11π6.5.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为( D )A.45 B .-45 C.35 D .-35解析:因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.6.(2019·某某一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( D )A.43B.34 C .-34D .-43解析:因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =x x 2+16,解得x =-3,所以tan α=4x =-43.7.点P (cos α,tan α)在第二象限是角α的终边在第三象限的( C ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:若点P (cos α,tan α)在第二象限,则⎩⎪⎨⎪⎧cos α<0,tan α>0,可得α的终边在第三象限;反之,若角α的终边在第三象限,有⎩⎪⎨⎪⎧cos α<0,tan α>0,即点P (cos α,tan α)在第二象限,故选项C 正确.8.已知A (x A ,y A )是单位圆(圆心在坐标原点O )上任意一点,将射线OA 绕O 点逆时针旋转30°,交单位圆于点B (x B ,y B ),则x A -y B 的取值X 围是( C )A .[-2,2]B .[-2,2]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-12,12解析:设x 轴正方向逆时针到射线OA 的角为α,根据三角函数的定义得x A =cos α,y B =sin(α+30°),所以x A -y B =cos α-sin(α+30°)=-32sin α+12cos α=sin(α+150°)∈[-1,1].二、填空题9.-2 017°角是第二象限角,与-2 017°角终边相同的最小正角是143°,最大负角是-217°.解析:因为-2 017°=-6×360°+143°,所以-2 017°角的终边与143°角的终边相同.所以-2 017°角是第二象限角,与-2 017°角终边相同的最小正角是143°.又143°-360°=-217°,故与-2 017°角终边相同的最大负角是-217°.10.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第四象限角.解析:由角α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),则k π+π2<α2<k π+3π4(k ∈Z ),故α2是第二或第四象限角.由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.11.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为518.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则扇形与圆面积之比为12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,∴α=5π6.∴扇形的弧长与圆周长之比为l c =5π6·23r 2πr =518.12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=13.解析:解法1:当角α的终边在第一象限时,取角α终边上一点P 1(22,1),其关于y 轴的对称点(-22,1)在角β的终边上,此时sin β=13;当角α的终边在第二象限时,取角α终边上一点P 2(-22,1),其关于y 轴的对称点(22,1)在角β的终边上,此时sin β=13.综合可得sin β=13.解法2:令角α与角β均在区间(0,π)内,故角α与角β互补,得sin β=sin α=13. 解法3:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).13.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( D )A.5π6 B.2π3 C.5π3 D.11π6解析:由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.14.(2019·某某模拟)已知角α的顶点在原点,始边在x 轴正半轴,终边与圆心在原点的单位圆交于点A (m ,3m ),则sin2α=32. 解析:由题意得|OA |2=m 2+3m 2=1, 故m 2=14.由任意角三角函数定义知cos α=m ,sin α=3m ,由此sin2α=2sin αcos α=23m 2=32. 尖子生小题库——供重点班学生使用,普通班学生慎用 15.已知sin α>sin β,那么下列命题成立的是( D ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 解析:由三角函数线可知选D.16.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=23,则|a -b |=( B )A.15B.55C.255D .1 解析:解法1:由正切定义tan α=y x,则tan α=a 1=b2,即a =tan α,b =2tan α.又cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=23,得tan 2α=15,tan α=±55. ∴|b -a |=|2tan α-tan α|=|tan α|=55. 解法2:由两点斜率公式,得:tan α=b -a2-1=b -a .又cos2α=cos 2α-sin 2α =cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=23, 解得tan 2α=15,∴|b -a |=|tan α|=55.。

横看成岭侧成峰 远近高低各不同——2020年高考数学浙江卷第19题线面角问题的多角度分析

横看成岭侧成峰 远近高低各不同——2020年高考数学浙江卷第19题线面角问题的多角度分析

数理化解题研究2021年第01期总第494期横看成岭侧成峰远近高低各不同2020年高考数学浙江卷第19题线面角问题的多角度分析章显联(浙江省绍兴鲁迅高级中学312000)摘 要:本文对2020年高考数学浙江卷第19题线面角问题进行多角度分析:非坐标形式的向量法(基底法)、三余弦定理法、等体积法、纯几何法、空间直角坐标系法.给出了复习的两个建议:关注最小,秒杀线面;重视非坐标形式的向量法.关键词:非坐标形式的向量法;线面角;两个原理中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)01 -0036 -04一、典型考题所成角为0 ,由已知,得0C 与平面DBC 所成角也为0.由公式,得例1(2020年浙江第19题)如图1,在三棱台ABC-DEF 中,平面 ACFD 丄平面 ABC , /ACB - /ACD -45°,DC -2B C.(1) 证明:EF 丄DB ;(2) 求直线DF 与平面DBC 所成角的正弦值.本题主要考查空间直线互 相垂直的判定和性质,以及直 线与平面所成角的几何计算问题,考查了空间想象能力和思 维能力,平面与空间互相转化 能力,几何计算能力,以及逻辑推理能力,本题属综合性较强 的中档题.笔者认为此题无论图1是试题难度、试题背景、命题立意,还是对数学核心素养 的考查,都很到位,可谓简约不简单.它也是一道解题训 练的优质题,横看成岭侧成峰,很有研究价值.解法1非坐标形式的向量法(基底法)过点D 作D0丄AC 于点0,以{ C B ,C B ,CD }为基底. 不妨设 DC - 2B C -2,贝V DB - 3 , C0 - 2 , / 0CB -:,/0CD - n , /DCB - n ,设平面DBC 的法向量为n - %-CD -0,(• C B -0 得{2% + y + 4z - 0,% + y + z - 0.C O + y C B + zC B ,贝V 由所以n - -3 C0 +2 B + CD.设直线DF 与平面DBC解法2三余弦定理法过点D 作D0丄AC 于点0,由已知,得0在平面DBC 的射影H 在/DCB 的角平分线上,设直线DF 与平面DBC 所成角为0,由已知,得0C 与平面DBC 所成角也为0.由三余弦定理,得 cos n - cos n • cos 0,cos 0 - f •463所以sin 0 -耳.解法3等体积法.过点D 作D0丄AC 于点0,设直线DF 与平面DBC 所 成角为0,由已知,得0C 与平面DBC 所成角也为0.由 % - DBC 二 % - 0BC ,解得 h 二专,sin 0 二豊二专.解法4坐标形式的向量法以0为原点,0D 为Z 轴,0C 为Y 轴,在平面ABC 内, 过点0作0C 垂线为Z 轴,易求D ,C ,B 坐标,从而求得平面DBC 的法向量,利用线面角公式sin 0 - 3 •解法5纯几何法分析(1)题根据已知条件,作DH 丄AC ,根据面面垂直,可得DH 丄BC ,进一步根据直角三角形的知识可判断收稿日期:2020 -10 -05作者简介:章显联(1972. 12 -),男,浙江省龙港人,本科,中学高级教师,从事高中数学教学研究.—36—2021年第01期总第494期数理化解题研究出厶BHC是直角三角形,且Z HBC_90°,则HB丄BC,从而可证出BC丄面DHB,最后根据棱台的定义有EF〃BC,根据平行线的性质可得EF丄DB.(2)题可先设BC_1,根据解直角三角形可得BH_1,HC_2,DH_2,DC_2,DB_3,然后找到CH与面DBC的夹角即为Z HCG,根据棱台的特点可知DF与面DBC所成角与CH与面DBC的夹角相图2等,通过计算乙HCG的正弦值,即可得到DF与面DBC所成角的正弦值.二、考题赏析本题建系有些困难,不存在明显的过同一点的两两垂直的直线.这种情况下,非坐标形式的向量法(基底法)显得更实用.本题解法以{CO,C B,CD}为基底,因为它们不共面长度可求,且它们的夹角也可求.应用此法,可使求解过程更自由.若CO,C B,CD是单位向量且两两垂直,就是通常的坐标形式的向量法了.坐标形式的向量法可以看作是非坐标形式的向量法的一种特殊情形.解法2中0在平面DBC的射影H在Z DCB的角平分线上,利用三余弦定理可求出0C与平面DBC所成角.B图4三正弦定理(最大角定理)设二面角M-AB-N的度数为Y,在平面M上有一条射线AC,它和棱AB所成的角为0,和平面N所成的角为//a,贝V sin a_si叩•sin y.(为了力便于记忆,我们约定:0为线棱角,a为线面角,Y为二面角)证明如图4,C0丄平面N,0B丄AB,BC丄AB,0C△0BC,△0AC,△ABC均为直角三角形,sin y_,si叩_BCBCAC,sin a_器,易得sin a_sin S•sin y.说明由sin a_sin S•sin y且sin S W1,知sin a W sin y,a W y,所以二面角的半平面M内的任意一条直线与另一个半平面N所成的线面角不大于二面角,即二面角是线面角中最大的角.若平面斜线上异于斜足的点在平面上的射影不易确定,则可转换为其他点如是操作或利用等体积法求出垂线段的长,利用公式sin O_h求得.如本题解法3.其实不管是纯几何法还是坐标形式的向量法,都能解决线面角问题,高考试题的参考答案一贯都是纯几何法与坐标形式的向量法,每种方法的学习都可促进学生能力的提高,只是各有侧重.如解法4与解法5.三余弦定理(最小角定理或爪子定理)设点A为平面a上一点,过点A的斜线在平面a上的射影为B0,BC为平面a上的任意直线,那E么Z ABC,乙0BC,乙0BA三、复习建议三角的余弦关系为cosZ ABC图3_cos Z0BC•cos Z0BA.即斜线与平面内一条直线夹角0的余弦值等于斜线与平面所成角a的余弦值乘以射影与平面内直线夹角O的余弦值,cos0_cos a-cos O.(为了便于记忆,我们约定:0为斜线角,a为线面角,O为射影角)证明如图3,^0AB,△0BC,△ABC均为直角三角形,cosQ BCAB,cosaB0AB,cosO B0,易知cosQ_cos a•cos O,得证.说明这三个角中,角0是最大的,其余弦值最小,等于另外两个角的余弦值之积.斜线与平面所成角a是斜线与平面内所有直线所成角中最小的角.1.紧扣最小,秒杀线面在研究空间角的最值与求值问题时,我们应关注最大角与最小角定理,三余弦公式与三正弦公式.这样的考查在近几年的学考、高考试题中已多次出现:例2(2019年浙江高考第8题)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为a,直线PB与平面ABC所成的角为S,二面角P-AC-B的平面角为Y,则().A.S<Y,a<yB.S<a,0<yC.S<a,y<aD.a<0,y<0解法1由最小角原理,得S<a,记二面角V-AB-C的平面角为y'(显然y_y'),由最大角原理,得S<y,故选B.解法2(特殊位置)取V-ABC为正四面体,P是棱VA上的中点,算出a,0,y的正弦值,可得选项B.例3(2018年浙江高考第8题)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段—37—数理化解题研究2021年第01期总第494期AB上的点(不含端点),设SE与BC所成的角为O],SE 与平面ABCD所成的角为O2,二面角S-AB-C的平面角为O3,则()•A.O1W O2W O3B.O3W O2W O1C.O1W O3W O2D.O2W O3W O1解法1作出三个角,通过定量计算得出答案为D.解法2由最小角与最大角原理知:O1M O2,O3M O2,故选D.例4(2014年浙江高考第17题)如图5,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面的射击线CM-移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角O的大小•若AB=15m,图5AC=25m,Z BCM=30°,贝卩tan O的最大值解析由线面角W面面角,求tan O的最大值转化为求二面角M-AC-Q的平面角•易求最大值为5j•例5(2018年11月浙江学考)四边形ABCD为矩形,沿AC将A ADC翻折成A AD'C.设二面角D'-AB-C 的平面角为O,直线AD'与BC所成的角为O1,直线AD'与平面ABC所成的角为O2,当O为锐角时,有()•A.O2W O1W OB.O2W O W O1C.O1W O2W OD.O W O2W O1解析由最小角原理,得O1M O2,由最大角原理,得O M O2,下面比较O]与O的大小即可•故选B.例6(2018年全国高考n卷理科第20题)如图6,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=4,0为AC的中点•(1)证明:PO丄平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面图6PAM所成角的正弦值.解析(1)略.(2)由题意,知线棱角Z CPA=60°,二面角M-PA-C为30°,由三正弦定理,得sin a=sin60°sin30°=例7(2009年浙江高考理科第17题)如图7,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点•现将△AFD沿AF折起,使平面—38—ABD丄平面ABC.在平面ABD内过点D作DK丄AB,K为垂足•设AK=£,则t的取值范围是•」___E.$____C d/一A B A K B图7解析由三余弦定理及已知,得cos Z DAF= cosZ DAK・cosZ BAF,又Z DAF+Z BAF二;,则cos Z DAK=tan Z BAF.在Rt△DAK中t=cos Z DAB,因此t=tanZ BAF,又由折叠前的图形,知0<Z CAB<Z BAFn<Z EAB=;.4所以tan Z CAB<tan Z BAF<tan Z EAB.所以1<t<1.考查这类空间角的大小是命题者难以割舍的情结,其本质是考查线面角与面面角定义的合理性,是考查学生数学核心素养的有效途径•2.非坐标形式的向量法非坐标形式的向量法比坐标形式的向量法应用更自由,更广泛•相比较纯几何法可避免令人深感畏惧的辅助线的添加技巧等.当然,解题方法中的选择也是当用则用,不分彼此,有时多种方法可揉合于同一道题中,特别是向量与几何的紧密联系与转化•应用非坐标形式的向量法解题的基本步骤:(1)会选基底.只需要不共面的三条线段长度可求,且它们的夹角也可求即可.(2)会表示•会用基底表示其他向量,一般只涉及向量的三角形式及其推广(闭合回路),数乘与平行,数量积与垂直两个定理•特别是要掌握好平面法向量的求法,方法可参考高考真题解法1•(3)会用公式•运算过程中无论是平面向量还是空间向量操作完全一致,运用的公式与坐标形式的向量法一致.笔者尝试用非坐标形式的向量法研究高考数学卷,发现非坐标向量法作为解答立体几何的方法有着诸多的可取之处.例8(2018年浙江高考第19题)如图8,已知多面体ABCA1B1C1中,A1A,B1B,C1C均垂直于平面ABC, Z ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB】丄平面A]B]C];(2)求直线AC】与平面ABB]所成的角的正弦值.解析以{BA,B C,B—}为基底,可证明(1),也可求2021年第01期总第494期数理化解题研究得直线AC]与平面ABB1所成的角的正弦值为晋•例9(2019年浙江高考第19题)如图9,已知三棱柱ABC-A1B1C1,平面A1ACC1丄平面ABC,/ABC-90°,/BAC-30°,A1A二A1C-AC,E,F分别是AC,A]B]的中点(1)证明:EF丄BC;(2)求直线EF与平面A1BC所成角的余弦值.解析以{E b]c B,C B}为基底,可证明(1),也可求得直线EF与平面A]BC所成角的余弦值是3•我们研究的向量是自由向图9量,运用非坐标形式的向量法无需考虑建立空间直角坐标系所需要的特殊要求,使解题过程更自由•例10(2009年浙江高考理科第17题)如图10,在长方形ABCD中,AB-2,BC-1,E为DC的中点,F为线段EC(端点除外)上一动点•现将△AFD沿AF折起,使平面ABD丄平面ABC.在平面ABD内过点D作DK丄AB,K为垂足•设AK-t,则t的取值范围是•图10解析以{K4,KD,KF}为基底,设DF-m,抓住折叠过程中的不变量AD-1,AB-2,由于平面ABD丄平面ABC,DK丄AB,从而DK丄平面ABC.由DF二D A+AF二d K+k A+AF,得m2二(d K+K4+AF)2.化简,得mt-1,即t——.由1<m<2,得<t<1.m2利用非坐标形式的向量法进行的上述解答,化动为静,简捷别致,令人耳目一新.例11(2000年全国高考理科第18题)如图11,已知平行六面体ABCD-A1B1C1D1的底面AB­CD是菱形,且/C1CB-/C1CD-/BCD-60°.(1)证明:C]C丄BD;3(2)假定CD-2,CC]-3,记Bi Ai图11面C]BD为a,面CBD为0,求二面角a-BD-0的平面角的余弦值;(3)当CD的值为多少时,能使A]C丄平面C]BD?请给出证明.解析以{Cc1,CD,C B}为基底,则CA]-C c]+CD+CB.(1)由BD-CD-CB,得C2C・BD-0,所以C2C丄BD.(2)易知平面a的法向量为C B;--8CC]+CD+C B,所以平面S的法向量为n--4CC]+CD+C B,从而求得a-D-S的平面角的余弦值为3•(3)当CD-1时,能使A]C丄平面C]BD.设CD-2,可证A]C丄BD,再由A]C丄BC2求得CC2-2.例12(2015年浙江省高考理科第13题)如图12,三棱锥A-BCD中,AB二AC二BD二CD-3,AD-BC-2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是•解析以{BA,BC,BD}为基底,在△ABD,由余弦定理得cos图12/ABD-7,同理得cos/CBD-[,cos/ABC-[,BA・933B C-2,BA・B D-7,B C・BD-2.用基底表示A N,C M,AN--BA+2BC,C M-2(BD+BA-2BC),异面直线AN,CM所成的角的余弦值是简]CM-T•平面向量仅是空间向量的一种特殊情形•“平面向量”可向“空间向量”自然转化.用向量方法求解空间角度与距离问题,为某些位置关系的判断问题创立了一种新的方法•在向量的运算中,要注意数形结合,灵活运用图形的几何意义、向量的几何意义去解题.《新课程标准(2017年版)》对空间向量的应用提出了更多、更高的要求,可见非坐标形式的向量法用于解决立体几何问题,完全符合新课程标准对学生的要求•如何使非坐标形式的向量法成为学生解决立体几何问题的又一个通用的好方法,还需要我们建一步地探索与总结•参考文献:[1]章显联.高考复习要注意回归教材[J].数理化解题研究,2020(13):15-18.[责任编辑:李璟]—39—。

专题19 椭圆(解答题压轴题)(学生版)-备战2022年高考数学高分必刷必过题(全国通用版)

专题19 椭圆(解答题压轴题)(学生版)-备战2022年高考数学高分必刷必过题(全国通用版)

专题19椭圆(解答题压轴题)1.(2021·江苏鼓楼·南京市第二十九中学高三月考)已知C :22221x y a b+=的上顶点到右,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M 、N 两点,直线m 的方程为:2x a =-,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标.②点O 为坐标原点,求OEN ∆面积的最大值.2.(2021·江西景德镇一中高三月考(理))已知椭圆()2222:10y x C a b a b+=>>的短轴长为2,过下焦点且与x 轴平行的弦长为3.(1)求椭圆C 的标准方程;(2)若A 、B 分别为椭圆C 的右顶点与上顶点,直线()0y kx k =>与椭圆C 相交于M 、N 两点,求四边形AMBN 的面积的最大值及此时k 的值.3.(2021·云南昆明一中高三月考(理))已知椭圆C :22221(0)x y a b a b+=>>的右焦点为F,且F 与椭圆C 上点的距离的取值范围为22⎡⎣(1)求,a b ;(2)若点P 在圆M ∶225x y +=上,PA ,PB 是C 的两条切线,,A B 是切点,求ABC ∆面积的最小值.4.(2021·山东高三模拟预测)已知椭圆()2222:10x y C a b a b+=>>上一点到两焦点的距离之和为,且其离心率为2.(1)求椭圆C 的标准方程;(2)如图,已知A 、B 是椭圆C 上的两点,且满足223OA OB =+,求AOB ∆面积的最大值.5.(2021·江苏鼓楼·南京市第二十九中学高三开学考试)已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A 、B4,动点S 在C 上且位于x 轴上方,直线AS ,BS 与直线l :4x =分别交于M ,N 两点.(1)求MN 的最小值;(2)当MN 最小时,在椭圆C 上可以找出点T 使TSB △,试确定点T的个数.6.(2021·上海高三模拟预测)已知椭圆1C :()22211x y a a+=>与抛物线2C :()220y px p =>在第一象限交于点(),Q Q Q x y ,A ,B 分别为1C 的左、右顶点.(1)若1Q x =,且12QA QB ⋅=-uur uuu r ,求2C 的焦点坐标;(2)设点()1,0F 是1C 和2C 的一个共同焦点,过点F 的一条直线l 与1C 相交于C ,D 两点,与2C 相交于E ,F 两点,EF CD λ=uuu r uuu r,若直线l 的斜率为1,求λ的值;(3)设直线QA ,直线QB 分别与直线1x a =+交于M ,N 两点,QMN 与QAB 的面积分别为1S ,2S ,若12S S 的最小值为79,求点Q 的坐标.7.(2021·上海黄浦·格致中学高三月考)已知点(),M x y 是平面直角坐标系上的一个动点,点M 到直线4x =的距离等于点M 到点()1,0D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)斜率为12的直线l 与曲线C 交于A B 、两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为,PA PB k k ,求PA PB k k +的数值;(3)设点E 为曲线C 的上顶点,点,P Q 是椭圆C 上异于点E 的任意两点,若直线EP 与EQ 的斜率的乘积为常数()0λλ<,试判断直线PQ 是否经过定点,若经过定点,请求出定点坐标;若不经过定点,请说明理由.8.(2021·沙坪坝·重庆八中高三月考)与椭圆2222:1x y C a b+=(0a b >>,0c >且222a b c =+)相关的两条直线2a x c=±称为椭圆C 的准线,拥有丰富的几何性质.已知直线l 是位于椭圆C 右侧的一条准线,椭圆上的点到l 的距离的最大值为6,最小值为2.(1)求椭圆C 的标准方程及直线l 的方程;(2)设椭圆C 的左右两个顶点分别为1A ,2A ,T 为直线l 上的动点,且T 不在x 轴上,1TA 与C 的另一个交点为M ,2TA 与C 的另一个交点为N ,F 为椭圆C 的左焦点,求证:FMN 的周长为定值.9.(2021·江苏海安·高三开学考试)在平面直角坐标系xOy 中,已知点1(2,0)F -,2(2,0)F ,点M 满足12||||MF MF +=,记M 的轨迹为C .(1)求C 的方程;(2)设l 为圆224x y +=上动点T (横坐标不为0)处的切线,P 是l 与直线y =点,Q 是l 与轨迹C 的一个交点,且点T 在线段PQ 上,求证:以PQ 为直径的圆过定点.10.(2021·浙江高三模拟预测)定义:平面内两个分别以原点和两坐标轴为对称中心和对称轴的椭圆12,E E ,它们的长、短半轴长分别为11,a b 和22,a b ,若满足2121,(,2)k k a a b b k k ==∈≥Z ,则称2E 为1E 的 k 级相似椭圆.已知椭圆221221:1,4x y E E b +=为1E 的2级相似椭圆,且焦点共轴,1E 与2E 的离心率之比为2.(1)求2E 的方程.(2)已知P 为2E 上任意一点,过点P 作1E 的两条切线,切点分别为()()1122,,,A x y B x y .①证明:1E 在()11,A x y 处的切线方程为112114x x y y b +=.②是否存在一定点到直线AB 的距离为定值?若存在,求出该定点和定值;若不存在,说明理由.11.(2021·广东荔湾·西关外国语学校高三月考)已知椭圆C :()222210x y a b a b+=>>,O是坐标原点,1F ,2F 分别为椭圆的左、右焦点,点12M ⎫⎪⎭在椭圆C 上,过2F 作12F MF ∠的外角的平分线的垂线,垂足为A ,且2OA b =.(1)求椭圆C 的方程:(2)设直线l :()0,0y kx m k m =+>>与椭圆C 交于P ,Q 两点,且直线OP ,PQ ,OQ 的斜率之和为0(其中O 为坐标原点).①求证:直线l 经过定点,并求出定点坐标:②求OPQ ∆面积的最大值.12.(2021·全国高三专题练习)在平面直角坐标系xOy 中,设点()00,M x y 是椭圆22:1205x y C +=上一点,以M 为圆心的一个半径2r =的圆,过原点作此圆的两条切线分别与椭圆C 交于点,P Q(1)若点M 在第一象限且直线,OP OQ 互相垂直,求圆M 的方程;(2)若直线,OP OQ 的斜率都存在,且分别记为12,k k .求证:12k k 为定值;(3)探究22OP OQ +是否为定值,若是,则求出OP OQ ⋅的最大值;若不是,请说明理由.13.(2021·全国高三专题练习)已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点为1F 、2F ,离心率32e =2221:C x y b +=上一点Q (Q 在y 轴左侧)作该圆的切线,分别交椭圆E 于,A B 两点,交圆2222:C x y a +=于,C D 两点(如图所示).当切线AB 与x 轴垂直时,2CDF ∆的面积为33(1)求椭圆E 的标准方程;(2)(ⅰ)求ABO ∆的面积的最大值;(ⅱ)求证:2AC AF +为定值,并求出这个定值.14.(2021·唐山市第十一中学高三月考)已知椭圆1C :()222210x y a b a b +=>>的离心率为22,且椭圆1C 与椭圆2C :2238x y +=在第一、二、三、四象限分别交于A ,B ,C ,D 四点,顺次连接A ,B ,C ,D 四点得到一个正方形.(1)求椭圆1C 的方程;(2)已知直线1l :20x y +=与直线2l :30x y -+=交于点E ,过点()1,0的直线与椭圆1C 交于M ,N 两点,求EM EN ⋅ 的取值范围.15.(2021·上海黄浦·格致中学高三三模)在平面直角坐标系xOy 中,过方程221(,,,0)mx ny m n m n +=∈≠R 所确定的曲线C 上点()00,M x y 的直线与曲线C 相切,则此切线的方程001mx x ny y +=.(1)若41m n ==,直线l 过2)点被曲线C 截得的弦长为2,求直线l 的方程;(2)若1m =,13n =-,点A 是曲线C 上的任意一点,曲线过点A 的切线交直线10l y -=于M ,交直线20l y +=于N ,证明:0MA NA += ;(3)若14m =,12n =,过坐标原点斜率0k >的直线3l 交C 于,P Q 两点,且点P 位于第一象限,点P 在x 轴上的投影为E ,延长QE 交C 于点R ,求PQ PR ⋅ 的值.16.(2021·四川眉山·高三三模(理))已知O 为坐标原点,A ,B 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和上顶点,AOB 的面积为1.设M ,N 是椭圆C 上的两个动点,且OM ON ⊥,当=OM ON 时,5MN =.(1)求a ,b 的值;(2)过O 作线段MN 的垂线,垂足为H ,求HA HB ⋅ 的取值范围.17.(2021·上海黄浦·高三二模)椭圆()2222:10x y C a b a b+=>>的右顶点为(),0A a ,焦距为()20c c >,左、右焦点分别为1F 、2F ,()00,P x y 为椭圆C 上的任一点.(1)试写出向量1PF 、2PF 的坐标(用含0x 、0y 、c 的字母表示;(2)若12PF PF ⋅ 的最大值为3,最小值为2,求实数a 、b 的值;(3)在满足(2)的条件下,若直线:l y kx m =+与椭圆C 交于M 、N 两点(M 、N 与椭圆的左右顶点不重合),且以线段MN 为直径的圆经过点A ,求证:直线l 必经过定点,并求出定点的坐标.18.(2021·天津高三二模)已知点()2,0F 为椭圆()222210x y a b a b +=>>的焦点,且点P ⎛ ⎝⎭在椭圆上.(1)求椭圆的方程;(2)已知直线l 与椭圆交于M 、N 两点,且坐标原点O 到直线l 的距离为6,MON ∠的大小是否为定值?若是,求出该定值,若不是,请说明理由.19.(2021·全国高三专题练习)已知椭圆()2222:10x y C a b a b+=>>的一焦点与短轴的两个端点组成的三角形是等边三角形,直线1y =与椭圆C 的两交点间的距离为8.(1)求椭圆C 的方程;(2)如图,设()00,R x y 是椭圆C 上的一动点,由原点O 向圆()()22004x x y y -+-=引两条切线,分别交椭圆C 于点P ,Q ,若直线OP ,OQ 的斜率均存在,并分别记为1k ,2k ,求证:12k k ⋅为定值;(3)在(2)的条件下,试问22OP OQ +是否为定值?若是,求出该值;若不是,请说明理由.20.(2021·全国高三专题练习)如图,分别过椭圆()2222:10x y E a b a b+=>>左、右焦点1F 、2F 的动直线1l 、2l 相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率1k 、2k 、3k 、4k 满足1243k k k k +=+.已知当1l 与x 轴重合时,AB =,3CD =.(1)求椭圆E 的方程;(2)是否存在定点M 、N ,使得PM PN +为定值?若存在,求出M 、N 点坐标并求出此定值;若不存在,说明理由.。

2019年高考数学仿真押题试卷(十九)(含答案解析)

2019年高考数学仿真押题试卷(十九)(含答案解析)

专题19 高考数学仿真押题试卷(十九)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合[1A =-,1],,则(AB = )A .(0,1)B .(0,1]C .(1,1)-D .[1-,1]【解析】解:(0,1)B =;.【答案】A .2.已知z 的共轭复数是z ,且为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】解:设,,∴,∴,解得:322x y ⎧=⎪⎨⎪=-⎩,复数z 在复平面内对应的点为3(,2)2-,此点位于第四象限.【答案】D .3.已知向量(1,3)a =,||3b =,且a 与b 的夹角为3π,则|2|(a b += )A .5B C .7D .37【解析】解:由题可得:向量(1,3)a =,||2a =,所以,所以,.【答案】B .4.已知函数,若,则实数a 的取值范围是( )A .[2-,1]B .[1-,2]C .(-∞,2][1-,)+∞D .(-∞,1][2-,)+∞【解析】解:函数,在各段内都是减函数,并且01e -=,,所以()f x 在R 上递减,又,所以,解得:21a -剟, 【答案】A .5.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的(n )A .50B .53C .59D .62【解析】解:【方法一】正整数n 被3除余2,得32n k =+,k N ∈; 被8除余5,得85n l =+,l N ∈; 被7除余4,得74n m =+,m N ∈; 求得n 的最小值是53.【方法二】按此歌诀得算法如图, 则输出n 的结果为按程序框图知n 的初值为1229,代入循环结构得,即输出n 值为53. 【答案】B .6.已知函数,将函数()f x 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 【解析】解:,将函数()f x 的图象向左平移m 个单位长度后,得到函数的图象,又所得到的图象关于y 轴对称,所以,即6m k ππ=+,k Z ∈,又0m >,所以当0k =时,m 最小为6π. 【答案】A .7.已知命题p :函数21()21x x f x -=+是定义在实数集上的奇函数;命题q :直线0x =是13()g x x =的切线,则下列命题是真命题的是( ) A .p q ∧B .q ⌝C .()p q ⌝∧D .p ⌝【解析】解:,即()f x 是奇函数,故命题p 是真命题,函数的导数,当0x =时,()g x '不存在,此时切线为y 轴,即0x =,故命题q 是真命题,则p q ∧是真命题,其余为假命题, 【答案】A .8.已知双曲线的渐近线与相切,则双曲线的离心率为(= )A .2B C D 【解析】解:取双曲线的渐近线by x a=,即0bx ay -=. 双曲线22221(x y a b-= 0a >,0)b >的渐近线与相切,∴圆心(2,0)到渐近线的距离d r =, ∴1=,化为2b c =,两边平方得,化为2234c a =.∴c e a =【答案】D .9.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d【解析】解:从第二个单音起,每一个单音的频率与它的左边一个单音的频率的比1122.故从g 起,每一个单音的频率与它右边的一个单音的比为1122q -=由,解得7n =,频率为的音名是(#d ), 【答案】D . 10.函数的大致图象是( )A .B .C .D .【解析】解:当0x <时,,0x e >,所以()0f x >,故可排除B ,C ;当2x =时,f (2)230e =-<,故可排除D . 【答案】A .11.利用Excel 产生两组[0,1]之间的均匀随机数:(a rand = ),(b rand = ):若产生了2019个样本点(,)a b ,则落在曲线1y =、y =和0x =所围成的封闭图形内的样本点个数估计为( ) A .673B .505C .1346D .1515【解析】解:由曲线1y =、y =和0x =所围成的封闭图形的面积为,所以,则落在曲线1y =、y 0x =所围成的封闭图形内的样本点个数估计为,【答案】A .12.已知点P 为直线:2l x =-上任意一点,过点P 作抛物线的两条切线,切点分别为1(A x ,1)y 、2(B x ,2)y ,则12(x x = )A .2B .24pC .2pD .4【解析】解:不妨设(2,0)P -,过P 的切线方程设为(2)y k x =+, 代入抛物线方程得,又0k ≠,故124x x =.【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若整数x 、y 满足不等式组,则y z x =的最小值为 12. 【解析】解:整数x 、y 满足不等式组的可行域如图:三角形区域内的点(2,1)A 、(2,2)B 、(2,3)C 、(1,2)D ,AO 连线的斜率是最小值.则y z x =的最小值为:12. 故答案为:12.14.已知椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C 内切于点P ,则12PF F S= .【解析】解:椭圆的焦点为1F 、2F ,以原点为圆心、椭圆的焦距为直径的O 与椭圆C内切于点P , 可得1b c ==, 所以.故答案为:1.15.定义在R 上的函数()f x 满足,若,且(2)2gl n =-,则1()2g ln = . 【解析】解:根据题意,,则,变形可得,,又由122ln ln =-,且,则,则;故答案为:4.16.已知O 是锐角ABC ∆的外接圆圆心,A 是最大角,若,则m 的取值范围为.【解析】解:由O 是锐角ABC ∆的外接圆圆心, 则点O 为三角形三边中垂线的交点, 由向量投影的几何意义有:,则, 所以则,由正弦定理得:,所以,所以2sin m A =, 又[3A π∈,)2π,所以m ∈2),故答案为:,2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若AC ABC ∆的面积;(2)若,4AD =,求CD 的长.【解析】解:(1)在ABC ∆中,,,解得BC ,∴.(2),∴,∴在ABC∆中,,∴,,∴CD=18.在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的5%,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.参考公式:参考数据:【解析】解:(1)由于总体有明显差异的两部分构成,所以采用分层抽样法,由题意知,从示范性高中抽取(人),从非示范性高中抽取(人);(2)由频率分布直方图估算样本平均数为:,据此估计本次检测全市学生数学成绩的平均分为92.4;(3)由题意知,语文特别优秀学生有5人,数学特别优秀的学生有(人),且语文、数学两科都特别优秀的共有3人,填写列联表如下;计算,所以有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.已知点(0,2)P,点A,B分别为椭圆的左右顶点,直线BP交C于点Q,ABP∆是等腰直角三角形,且35PQ PB=.(1)求C的方程;(2)设过点P 的动直线l 与C 相交于M ,N 两点,O 为坐标原点.当MON ∠为直角时,求直线l 的斜率. 【解析】解:(1)由题意ABP ∆是等腰直角三角形,则2a =,(2,0)B , 设点0(Q x ,0)y ,由35PQ PB =,则065x =,045y =,代入椭圆方程解得21b =,∴椭圆方程为2214x y +=.(2)由题意可知,直线l 的斜率存在,令l 的方程为2y kx =+, 则1(M x ,1)y ,2(N x ,2)y , 则22214y kx x y =+⎧⎪⎨+=⎪⎩,整理可得, ∴△,解得234k >, ,,当MON ∠为直角时,1OM ON k k =-,,则,解得24k =,即2k =±,故存在直线l 的斜率为2±,使得MON ∠为直角. 20.如图,在直三棱柱中,ABC ∆是等腰直角三角形,1AC BC ==,12AA =,点D 是侧棱1AA 的上一点.(1)证明:当点D 是1AA 的中点时,1DC ⊥平面BCD ; (2)若二面角1D BC C --,求AD 的长.【解析】解:(1)证明:由题意:BC AC ⊥且1BC CC ⊥,,BC ∴⊥平面11ACC A ,则1BC DC ⊥. 又D 是1AA 的中点,AC AD =,且90CDA ∠=︒,,同理.,则1DC DC ⊥,1DC ∴⊥平面BCD ;(2)以C 为坐标原点,分别以CA ,CB ,1CC 为x 轴,y 轴,z 轴建立空间直角坐标系. 设AD h =,则(1D ,0,)h ,(0B ,1,0),1(0C ,0,2).由条件易知CA ⊥平面1BC C ,故取(1m =,0,0)为平面1BC C 的法向量. 设平面1DBC 的法向量为(n x =,y ,)z , 则n BD ⊥且1n BC ⊥,,,∴,取1z =,得.由,解得12h =,即12AD =.21.已知函数在0x x =处取得极小值1-.(1)求实数a 的值; (2)设,讨论函数()g x 的零点个数.【解析】解:(1)函数()f x 的定义域为(0,)+∞,,函数在0}x x =处取得极小值1-,∴,得01,1a x =-⎧⎨=⎩当1a =-时,()f x lnx '=,则(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '> ()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,1x ∴=时,函数()f x 取得极小值1-, 1a ∴=-(2)由(1)知,函数,定义域为(0,)+∞,,令()0g x '<,得0x <令()0g x '>,得x >()g x在上单调递减,在)+∞上单调递增,当x ()g x 取得最小值2eb -, 当02e b ->,即2eb >时,函数()g x 没有零点; 当02e b -=,即2eb =时,函数()g x 有一个零点;当02eb -<,即02e b <<时,g (e )0b =>,g g ∴(e )0<存在1x ∈)e ,使1()0g x =,()g x ∴在)e 上有一个零点1x设,则,当(0,1)x ∈时,()0h x '<,则()h x 在(0,1)上单调递减,()h x h ∴>(1)0=,即当(0,1)x ∈时,11lnx x>-, 当(0,1)x ∈时,,取{m x min b =,1},则()0m g x >,,∴存在2(m x x ∈,,使得2()0g x =,()g x ∴在(m x 上有一个零点2x ,()g x ∴在(0,)+∞上有两个零点1x ,2x ,综上可得,当2eb >时,函数()g x 没有零点; 当2eb =时,函数()g x 有一个零点; 当02eb <<时时,函数()g x 有两个零点. 请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上,且满足,点B 的轨迹为2C .(1)求1C ,2C 的极坐标方程;(2)设点C 的极坐标为(2,)2π,求ABC ∆面积的最小值.【解析】解:(1)曲线1C 的参数方程为为参数),∴曲线1C 的普通方程为,∴曲线1C 的极坐标方程为2cos ρθ=.设B 的极坐标为(,)ρθ,点A 的极坐标为0(ρ,0)θ, 则||OB ρ=,0||OA ρ=,002cos ρθ=,0θθ=,,08ρρ∴=,∴82cos θρ=,cos 4ρθ=,2C ∴的极坐标方程为cos 4ρθ=(2)由题意知||2OC =,,当0θ=时,S ABC 取得最小值为2. [选修4-5:不等式选讲]. 23.已知函数的最小值为t .(1)求实数t 的值; (2)若,设0m >,0n >且满足,求证:.【解析】解:(1),显然,()f x 在(-∞,1]上单调递减,在(1,)+∞上单调递增,(1)2=-,2t ∴=-, 证明(2),,由于0m >,0n >,且1122m n+=,,当且仅当22n mm n=,即当12n =,1m =时取“=”, 故。

考向19等差数列及其前n项和(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版)

考向19等差数列及其前n项和(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版)

考向19 等差数列及其前n 项和1.(2022年乙卷文科第13题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = .【答案】2【解析】因为32236S S =+,所以212233()6a a a ⨯=++,即213()36a a d -==,所以2d =. 2.(2022年北京卷第6题) 设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【解析】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.3.(2022新课标1卷第17题) 记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式; (2)证明:121112+++<na a a . 【解析】(1)111==S a ,所以111=S a , 所以{}n n S a 是首项为1,公差为13的等差数列, 所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a , 所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n ); 累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式, 所以{}n a 得通项公式为(1)2+=n n n a . (2)121111112[]1223(1)+++=+++⨯⨯+n a a a n n111112(1)2231=-+-++-+n n 12(1)21=-<+n . 4.(2022新课标2卷第17题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-(1)证明:11a b =;(2)求集合1{|,1500}k m k b a a m =+中元素的个数. 【答案】(1)见解析;(2)9. 【解析】(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知()1111283a d b b a d +-=-+,故()111243a d b d a d +-=-+;故1112a d b d a +-=-,整理得11a b =,得证. (2)由(1)知1122d b a ==,由1k m b a a =+知:()111121k b a m d a -=+⋅-⋅+ 即()11111212k b b m b b -=⋅⋅+-+,即122k m -=, 因为1500m ,故1221000k -,解得210k故集合1{|,1500}k m k b a a m =+中元素的个数为9个.5.(2022年甲卷理科第17题,文科第18题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值. 【答案】(1)略;(2)78- 【解析】(1)由于221nn S n a n+=+,变形为222n n S na n n =+-,记为①式, 又21122(1)1(1)n n S n a n n --=-+---,记为②式, ①-②可得*1(22)(22)22,2,n n n a n a n n n ----=-∈N 即*11,2,n n a a n n --=∈N ,所以{}n a 是等差数列;(2)由题意可知2749a a a =,即2111(6)(3)(8)a a a +=++,解得112a =-,所以12(1)113n a n n =-+-⨯=-,其中1212...0a a a <<<<,130a =则n S 的最小值为121378S S ==-.6.(2021年甲卷理科第18题)已知数列}{n a 的各项为正数,记n S 为}{n a 的前n 项和,从下面①②③中选出两个条件,证明另一个条件成立.①数列}{n a 为等差数列;②数列}{n S 为等差数列;③123a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】见解析. 【解析】一、选择条件①③已知}{n a 为等差数列,122a a =,设公差为d ,则d a a a +==1123,即12a d = 因为1212)1(a n d n n na S n =-+=,则n a S n ⋅=1)0(1>a 所以数列}{n S 为等差数列 二、选择条件①②已知}{n a 为等差数列,数列}{n S 为等差数列,设公差为d 则dn a a n )1(1-+=,n da d n d n n na S n )2(212)1(121-+=-+= 若数列}{n S 为等差数列,则21da =,所以1123a d a a =+=三、选择条件②③已知数列}{n S 为等差数列,123a a =设公差为d 则d S S =-12,即d a a =-114 则21da =nd d n S S n =-+=)1(1则d n S n 2=,d dn S S a n n n -=-=-21所以}{n a 为等差数列7.(2021年全国一卷第19题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积.已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)见解析;(2)31212(1)n n a n n n ⎧=⎪⎪∴=⎨⎪-⎪+⎩≥.【解析】(1)当1n =时,11b S =,易得132b =. 当2n ≥时,1n n n b S b -=,代入212n n S b +=消去n S 得,1212n n n b b b -+=,化简得112n n b b --=, {}n b ∴是以32为首项,12为公差的等差数列. (2)易得11132a S b ===.由(1)可得22n n b +=,由212n n S b +=可得21n n S n +=+. 当2n ≥时,12111(1)n n n n n a S S n n n n -++=-=-=-++,显然1a 不满足该式; 31212(1)n n a n n n ⎧=⎪⎪∴=⎨⎪-⎪+⎩≥.8.(2021年新高考2卷第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【答案】(1)=26n a n -;(2)min 7n =.【解析】(1)由题意知:35244,a S a a S =⎧⎨=⎩()()1111154+252,43342a d a d a d a d a d ⨯⎧=+⎪⎪∴⎨⨯⎪+⋅+=+⎪⎩即:121+20,46a d d a d =⎧⎪⎨-=+⎪⎩ 故14,2a d =-⎧⎨=⎩所以数列{}n a 的通项公式为26n a n =-. (2)由(1)知()21(4)25,2n n n S n n n +=⋅-+⋅=-又,26n n n S a a n >=-2526n n n ∴->-即2760n n -+>16n n ∴<>或+n N ∈min 7n ∴=1.等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法. 2.等差数列的判定与证明方法(1)定义法:如果一个数列{a n }从第2项起,每一项与它的前一项的差等于同一个常数,那么可以判断数列{a n }为等差数列;(2)等差中项法:如果一个数列{a n }对任意的正整数n 都满足2a n+1=a n +a n+2,那么可以判断{a n }为等差数列;(3)通项公式法:如果一个数列{a n }的通项公式满足a n =p n +q (p ,q 为常数)的形式,那么可以得出{a n }是首项为p+q ,公差为p 的等差数列;(4)前n 项和公式法:如果一个数列{a n }的前n 项和公式满足S n =An 2+Bn (A ,B 为常数)的形式,那么可以得出数列{a n }是首项为A+B ,公差为2A 的等差数列.1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a n a n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n .1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数. 2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.1.已知S n 为等差数列{a n }的前n 项和,a 2=2,S 4=14,则S 6等于( )A .32B .39C .42D .45 【答案】B【解析】设公差为d ,由题意得⎩⎪⎨⎪⎧a 1+d =2,4a 1+4×32d =14, 解得⎩⎪⎨⎪⎧a 1=-1,d =3,所以S 6=6a 1+5×62d =39.n n 13n A .6 B .7 C .8 D .9 【答案】C【解析】因为d =a 3-a 12=2,S n =na 1+n (n -1)2d =n +n (n -1)=64,解得n =8(负值舍去).3.设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( )A .18B .16C .14D .12n n 267A .13 B .49 C .35 D .63n n n -1n +126n n A .S 4<S 3 B .S 4=S 3 C .S 4>S 1 D .S 4=S 1 【答案】B【解析】数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,设等差数列{a n }的公差为d . 因为a 2=-6,a 6=6, 所以4d =a 6-a 2=12,即d =3. 所以a n =-6+3(n -2)=3n -12,所以S 1=a 1=-9,S 3=a 1+a 2+a 3=-9-6-3=-18, S 4=a 1+a 2+a 3+a 4=-9-6-3+0=-18, 所以S 4<S 1,S 3=S 4.6.在等差数列{a n }中,a 2,a 14是方程x 2+6x +2=0的两个实数根,则a 8a 2a 14=( )A .-32 B .-3 C .-6 D .2n A .100 B .120 C .390 D .540 【答案】A【解析】设S n 为等差数列{a n }的前n 项和,则S 10,S 20-S 10,S 30-S 20成等差数列,所以2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, 所以2(S 20-30)=30+(210-S 20),解得S 20=100.8.已知等差数列{a n }的公差为4,其项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为( )A .10B .20C .30D .40n n 56678是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值 【答案】ABD【解析】S 6=S 5+a 6>S 5,则a 6>0,S 7=S 6+a 7=S 6,则a 7=0,则d =a 7-a 6<0,S 8=S 7+a 8<S 7,a 8<0.则a 7+a 8<0,所以S 9=S 5+a 6+a 7+a 8+a 9=S 5+2(a 7+a 8)<S 5,由a 7=0,a 6>0知S 6,S 7是S n 中的最大值.从而ABD 均正确.10.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0n +n 25898值是________. 【答案】16【解析】设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )·(a 1+4d )+a 1+7d =a 21+4d 2+5a 1d+a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.12.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N +),且a 1=2,则a 20=________.n n +1n n +2324(1)求a 1+a 3a 2的值; (2)求证:数列{a n }为等差数列.14. 已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S n2S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.当n =1时,a 1=14,不适合上式.所以a n=⎩⎨⎧14,n =1,-12n (n +1),n ≥2.一、单选题 1.(2022·北京·人大附中模拟预测)如图是标准对数远视力表的一部分.最左边一列“五分记录”为标准对数视力记录,这组数据从上至下为等差数列,公差为0.1;最右边一列“小数记录”为国际标准视力记录的近似值,这组数据从上至下为等比数列,公比为1010.已知标准对数视力5.0对应的国际标准视力准确值为1.0,则标准对数视力4.8对应的国际标准视力精确到小数点后两位约为( ) (参考数据:51010 1.58,10 1.26≈≈)A .0.57B .0.59C .0.61D .0.63【答案】D【解析】依题意,以标准对数视力5.0为左边数据组的等差数列的首项,其公差为-0.1,标准对数视力4.8为该数列第3项,标准对数视力5.0对应的国际标准视力值1.0为右边数据组的等比数列的首项,其公比为10110, 因此,标准对数视力4.8对应的国际标准视力值为该等比数列的第3项,其大小为2105111()0.631010⨯=≈. 故选:D数之余一,五五数之余二,….若已知该筐最多装200个鸡蛋,则筐内鸡蛋总数最多有( )A .184B .186C .187D .188.(上海杨浦二模)数列n 为等差数列,1且公差,若1,3,6也是等差数列,则其公差为( ) A .1g d B .1g2d C .lg 23D .1g 324.(2022·贵州·模拟预测(理))十七世纪法国数学家费马猜想形如“221n F =+(n ∈N )”是素数,我们称n F 为“费马数”.设()2log 1n n a F =-,22log n n b a =,n *∈N ,数列{}n a 与{}n b 的前n 项和分别为n S 与n T ,则下列不等关系一定成立的是( ) A .n n a b < B .n n a b > C .n n S T ≤ D .n n S T ≥【答案】D【解析】因为221nn F =+(n ∈N ),所以()222log 1log (211)2nn n n a F =-=+-=,n *∈N所以222log 2log 22nn n b a n ===,n *∈N ,当2n =时,22224,224a b ===⨯=,两本著作——《红高粱》《檀香刑》.假设他读完这两本书共需50个小时,第1天他读了15分钟,从第2天起,他每天阅读的时间比前一天增加10分钟,则他恰好读完这两本书的时间为( ) A .第23天 B .第24天 C .第25天 D .第26天6.(2022·安徽省舒城中学模拟预测(理))若数列n a 为等差数列,数列n b 为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤7.(2022·浙江·模拟预测)已知函数(),()f x ax b g x ax b =+=-,下列条件,能使得(m ,n )的轨迹存在实轴和虚轴相等的双曲线的是( ) A .(0)1,()f f f m n -+成等差数列B .(),()g m g g n 成等比数列C .(),2()2,()f m n f m b f m n --+成等差数列D .(),(),()g m n g m g m n -+成等比数列()()()2222amb a m n b a m n b ⎡⎤⎡⎤-=--⋅+-⎣⎦⎣⎦,整理可得()222220an an am b --=,当20an ≠,且0b ≠时,由22220an am b --≠得2212n m b b a a-=,此时是实轴和虚轴不相等的双曲线,故D 错误. 故选:C.8.(2022·广西广西·一模(文))北京天坛圜丘坛的地面由石板铺成,最中间的是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依次为1239,,,,a a a a ⋅⋅⋅,设数列{}n a 为等差数列,它的前n 项和为n S ,且218a =,4690a a +=,则8S =( )A .189B .252C .324D .405【答案】C【解析】设等差数列{}n a 的公差为d ,由218a =,4690a a +=,得11182890a d a d +=⎧⎨+=⎩,解得:199a d =⎧⎨=⎩,所以8879893242S ⨯⨯=⨯+=. 故选:C.二、多选题9.(2022·江苏·盐城中学模拟预测)设n *∈N ,正项数列{}n x 满足11(0,1),ln 1n n n n x x x x x +∈-=,下列说法正确的有( ) A . 1x 为{}n x 中的最小项B .2x 为{}n x 中的最大项C .存在1(0,1)x ∈,使得123,,x x x 成等差数列D .存在1(0,1),x n *∈∈N ,使得12,,n n n x x x ++成等差数列 1,()x f x '>1,()x f x '<(1)1ln1f =+)1x131,(0,1),1,1,n x x f x f +∈∴>==所以A 正确 令()(ln ,1g x f x x x x =- 21()0,x g x x +-='-<()g x ∴)0,x ∴320x x -<x x 是最大的项,所以B 是最大的项,则不可能使得()n g x <,则,所以不存在,x x 10.(2022·山东·烟台二中模拟预测)已知无穷数列n a 满足:当为奇数时,21n a n =+;当n 为偶数时,2n a n =,则下列结论正确的为( )A .2021和2023均为数列{}()21n a n *-∈N 中的项B .数列{}()21n a n *-∈N 为等差数列C .仅有有限个整数k 使得23k k a a >成立D .记数列{}2na 的前n 项和为n S ,则1413n n S +<-恒成立选项,2n 为偶数,则}2n 是以4为首项,以)14414n -=-三、填空题11.(2022·新疆乌鲁木齐·模拟预测(理))已知n S 为单调递减的等差数列{}n a 的前n 项和,若数列11n n a a +⎧⎫⎨⎬⎩⎭前n 项和3612n nT n =-,则下列结论中正确的有___________.(填写序号) ①30a =;②27n S n n =-;③()2n n S n a n =+-;④4nS S ≤【答案】②④11n d a ⎛++⎝3612n n-,12.(2021·上海杨浦·一模)等差数列{}n a 满足:①10a <,22a >;②在区间(11,20)中的项恰好比区间[41,50]中的项少2项,则数列{}n a 的通项公式为n a =___________.行、每一列及两个主对角线上的整数之和都相等.早在13世纪中国古代数学家杨辉就作出了⨯幻方的每一行上整数之和为______.⨯的幻方,那么5555【答案】65【解析】因为()125251232513253252+⨯++++==⨯=,因为55⨯幻方的每一行上整数之和相等,共5行,所以每行的整数之和为325655=. 故答案为:65.九个数填入如图所示3x3的正方形网格中,每个数填一次,每个小方格中填一个数.考虑每行从左到右,每列从上到下,两条对角线从上到下这8个数列,给出下列四个结论:①这8个数列有可能均为等差数列; ②这8个数列中最多有3个等比数列;③若中间一行、中间一列、两条对角线均为等差数列,则中心数必为5; ④若第一行、第一列均为等比数列,则其余6个数列中至多有1个等差数列. 其中所有正确结论的序号是________. 【答案】①②③【解析】①. 如图将1,2,3,4,5,6,7,8,9这九个数依次填入网格中,则这8个数列均为等差数列,故①正确.②. 1,2,3,4,5,6,7,8,9这九个数中,等比数列有:1,2,4; 1,3,9;2,4,8;4,6,9. 由于1,2,4和2,4,8这两个等比数列不可能在网格中不可能在同一列,同一行或对角线上. 所以这8个数列中最多有3个等比数列,例如如图满足有3个等比数列.故②正确③. 若三个数,,a b c 成等差数列,则2b a c =+.根据题意要有4组数成等差数列,且中间的数b 相同. 则只能是5b = 由2519283746⨯=+=+=+=+则中间一行、中间一列、两条对角线四列的数分别为1,5,92,5,83,5,74,5,6;;;时满足条件;中心数为其他数时,不满足条件.故③正确.④. 若第一行为1,2,4;第一列为1,3,9,满足第一行、第一列均为等比数列.第二行为3,5,7,第二列为258,,,则第二行,第二列为等差数列,此时有两个等差数列.故④不正确故答案为:①②③四、解答题15.(2022·上海崇明·二模)已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列. (1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列; (3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k =是公差为(0)d d >等差数列,求d 所有可能的值【解析】(1)由题意可得满足5m =且11a =的P 数列为:1,3,5,2,4;1,4,2,5,3..(2)假设{}n a 是等差数列,公差为d ,当0d >时,由题意,2d =或3, 此时1121i a a a ≥+>+(2,3,4,,)i m =,所以11a +不是等差数列{}n a 中的项,与题意不符,所以{}n a 不可能是等差数列 当0d <时,由题意,2d =-或3-,此时1121i a a a ≤-<-(2,3,4,,)i m =所以11a -不是等差数列{}n a 中的项,与题意不符,所以{}n a 不可能是等差数列 综上所述,{}n a 不可能是等差数列 (3)由题意,N*d ∈,当6d ≥时,因为51a ≥,所以100519115a a d =+≥,与题意不符; 当3d ≤时,记{}545352515,,,,(1,2,3,,20)k k k k k k M a a a a a k ----==,当{}100(1,2,3,,20)i M i ∈∈时,51004388i a ≥-⨯=,所以55()31k i a a i k d =--≥,所以k M 中的最小项314319≥-⨯=,所以1(1,2,3,20)k M k ∉=,与题意不符,当4d =时,1054a a =+,又由题意,10512342323a a x x x x =++--(*),其中N(1,2,3,4)i x i ∈=, 且12345x x x x +++=,所以13242()3()4x x x x -+-=,所以13242x x x x -=⎧⎨=⎩ , 所以322225x x ++=,与N(1,2,3,4)i x i ∈=不符;当5d =时,取,541,532,522,511,5n n n k n n k a n n k n n k n n k =-⎧⎪+=-⎪⎪=+=-⎨⎪-=-⎪-=⎪⎩ ,此时的数列{}n a 满足题意,综上所述,5d =.16.(2022·上海长宁·二模)甲、乙两人同时分别入职,A B 两家公司,两家公司的基础工资标准分别为:A 公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B 公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n 年的月基础工资分别为n a 、n b 元,记n n n c a b =-,讨论数列{}n c 的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.础工资收入总量()1024000 1.0511********.051S ⨯-=⨯=-元(2)()37003001n a n =+-,14000 1.05n n b -=⨯134003004000 1.05n n c n -=+-⨯,()1340030014000 1.05n n c n +=++-⨯,设11300200 1.050n n n c c -+-=-⨯>,即11.05 1.5n -<,解得18n ≤≤所以当18n ≤≤时,{}n c 递增,当9n ≥时,n c 递减又当0n c <,即134003004000 1.05n n -+<⨯,解得514n ≤≤,所以从第5年到第14年甲的月基础工资高于乙的月基础工资. .1.(2020全国Ⅱ理4)北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块 【答案】C【思路导引】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S .【解析】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块,所以322729n n n n S S S S -=-+,即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+,即29729n =,解得9n =,所以32727(9927)34022n S S +⨯===,故选C .2.(2020浙江7)已知等差数列{}n a 的前n 项和n S ,公差110,a d d≤≠.记12122,,n n n b S b S S n ++*=-=∈N ,下列等式不可能成立的是( )A .4262a a a =+B .4262b b b =+C .2428a a a =D .2428b b b =【答案】B【解析】A .由等差数列的性质可知4262a a a =+,成立;B .4566b S S a =-=-,2323b S S a =-=,()6710891093b S S a a a a =-=-++=-, 若4262b b b =+,则()6399639232a a a a a a a -=-⇔-=-, 即660d d d =-⇔=,这与已知矛盾,故B 不成立;C .()()()2242811137a a a a d a d a d =⇔+=++ ,整理为:1a d =,故C 成立;D .()89141011121314125b S S a a a a a a =-=-++++=-,当2428b b b =时,即()263125a a a =⋅-,整理为()()()211155211a d a d a d +=-++,即2211225450a a d d ++=,0∆>,方程有解,故D 成立.综上可知,等式不可能成立的是B ,故选B .3.(2019•新课标Ⅰ,理9)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则()A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-【答案】A【解析】设等差数列{}n a 的公差为d ,由40S =,55a =,得1146045a d a d +=⎧⎨+=⎩,∴132a d =-⎧⎨=⎩,25n a n ∴=-,24n S n n =-,故选A .4.(2018•新课标Ⅰ,理4)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则5(a = )A .12-B .10-C .10D .12【答案】B 【解析】n S 为等差数列{}n a 的前n 项和,3243S S S =+,12a =,∴111132433(3)422a d a a d a d ⨯⨯⨯+=++++,把12a =,代入得3d =-,524(3)10a ∴=+⨯-=-,故选B .5.(2017•新课标Ⅰ,理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A .1 B .2 C .4 D .8【答案】C【解析】由题知,∴1113424656482a d a d a d +++=⎧⎪⎨⨯+=⎪⎩,解得12a =-,4d =,故选C . 6.(2017•新课标Ⅲ,理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( ) A .24- B .3- C .3 D .8【答案】A【解析】等差数列{}n a 的首项为1,公差不为0.2a ,3a ,6a 成等比数列,∴2326a a a =, 2111(2)()(5)a d a d a d ∴+=++,且11a =,0d ≠,解得2d =-,{}n a ∴前6项的和为616565661(2)2422S a d ⨯⨯=+=⨯+⨯-=-,故选A . 7.(2016•新课标Ⅰ,理3)已知等差数列{}n a 前9项的和为27,108a =,则100(a = ) A .100 B .99 C .98 D .97【答案】C【解析】由题知,195959()92922a a a S a +⨯====27,∴53a =,又108a ==d d a 5355+=+,1d ∴=,10059598a a d ∴=+=,故选C8.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】C【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .9.(2020北京8)在等差数列{n a }中,19a =-,51a =-,记12(1,2,)n n T a a a n =⋯=⋯,则数列{n T } ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项 【答案】A【解析】设公差为d ,a 5-a 1=4d ,即d=2,a n =2n-11,1≤n ≤5使,a n <0,n ≥6时,a n >0,所以n=4时,T n >0,并且取最大值;n=5时,T n <0;n ≥6时,T n <0,并且当n 越来越大时,T n 越来越小,所以T n 无最小项.故选A .10.(2020上海7)已知等差数列{}n a 的首项10a ≠,且满足1109a a a +=,则12910a a a a ++⋯+= .【答案】278【解析】由条件可知111298a d a d a d+=+⇒=-,()112951010194 (92727)988a d a a a a d a a a d d ++++====+. 故答案为:278. 11.(2019•新课标Ⅲ,理14)记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 【答案】4【解析】设等差数列{}n a 的公差为d ,则由10a ≠,213a a =可得,12d a =,∴1011051510()5()S a a S a a +=+ 112(29)24a d a d +=+11112(218)428a a a a +==+.12.(2019江苏8)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .【答案】16【解析】设等差数列{}n a 的首项为1a ,公差为d ,则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩,所以818786(5)152162dS a ⨯=+=⨯-+⨯=.13.(2019北京理10)设等差数列{}n a 的前n 项和为n S ,若25310a S =-=-,,则5a = ________ . n S 的最小值为_______. 【答案】0,-10【解析】由题意得,2151351010a a d S a d =+=-⎧⎨=⋅+=-⎩,解得141a d =-⎧⎨=⎩,所以5140a a d =+=.因为{}n a 是一个递增数列,且50a =,所以n S 的最小值为4S 或5S ,()4543441102S S ⨯==-⨯+⨯=-. 14.(2018北京)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为___. 【答案】14【解析】解法一 设{}n a 的公差为d ,首项为1a ,则111205614a d a d a d +=⎧⎨+++=⎩,解得142a d =-⎧⎨=⎩,所以7767(4)2142S ⨯=⨯-+⨯=.解法二 32714a d +=,所以2d =.故432a a d =+=,故7477214S a ==⨯=.15.(2018上海)记等差数列{}n a 的前几项和为n S ,若30a =,6714a a +=,则7S = .【答案】63n a n =-【解析】设等差数列的公差为d ,251146536a a a d a d d +=+++=+=,∴6d =,∴3(1)663n a n n =+-⋅=-.16.(2019•新课标Ⅰ,文18)记n S 为等差数列{}n a 的前n 项和,已知95S a =-. (1)若34a =,求{}n a 的通项公式; (2)若10a >,求使得nn a S ≥的n 的取值范围.【解析】(1)根据题意,等差数列{}n a 中,设其公差为d , 若95S a =-,则19955()992a a S a a +⨯===-,变形可得50a =,即140a d +=, 若34a =,则5322a a d -==-, 则3(3)210n a a n d n =+-=-+,(2)若nn a S ≥,则d n a d n n na )1(2)1(11-+≥-+,当1n =时,不等式成立,当2≥n 时,有12a d nd-≥,变形可得12)2(a d n -≥-,又由95S a =-,即19955()992a a S a a +⨯===-,则有50a =,即140a d +=,则有112)4)(2(a a n -≥--,又由10a >,则有10≤n , 则有102≤≤n ,综合可得:102≤≤n ,n N ∈.17.(2018•新课标Ⅱ,理(文)17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【解析】(1)等差数列{}n a 中,17a =-,315S =-, 17a ∴=-,13315a d +=-,解得17a =-,2d =,72(1)29n a n n ∴=-+-=-;(2)17a =-,2d =,29n a n =-,22211()(216)8(4)1622n n n S a a n n n n n ∴=+=-=-=--,∴当4n =时,前n 项的和n S 取得最小值为16-.18.(2016•新课标Ⅱ,文17)等差数列{}n a 中,344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,344a a +=,576a a +=.∴112542106a d a d +=⎧⎨+=⎩,解得:1125a d =⎧⎪⎨=⎪⎩,2355n a n ∴=+;(Ⅱ)[]n n b a =,1231b b b ∴===,452b b ==,6783b b b ===,9104b b ==. 故数列{}n b 的前10项和103122332424S =⨯+⨯+⨯+⨯=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综 合 训 练
· 求 cos(α+β)的值.
规 律 总 结
· 能 力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 点 梳
【解析】 (1)∵f(x)=2sin13x-π6 ,
创 新 设

· 基 础
∴f5π 4 =2sin51π2 -π6 =2sin π4 = 2.

· 素 能
落 实
·
新 设 计 ·
基 础
A.2
B.3
C.4
D.6
素 能




解析 scions22αα=2sincαosc2αos α
=2tan α=2×3=6.

点 突
答案 D

综 合 训 练
· 规 律 总 结
· 能 力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形


点 梳 理
3.若 cos 2θ=13,则 sin4θ+cos4θ的值为
θ-
设 计 · 素
础 落 实
sin
θ= 55>0,所以
cos
θ>sin
θ,则
θ∈0,π4 ,所以
能 培 优
2θ∈0,π2 ,故得 cos 2θ=35,所以 sin2θ-π3 =12sin 2θ
考 点
- 23cos 2θ=4-130
3 .


· 规 律
答案
4-3 3 10


综 合 训 练
· 能 力 提 升


cos2α=
2
.
综 合 训 练
· 能 力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形



[辨析]




· 基 础
公式
tan(α+β)=1t-antaαn +αttaann
β β可以变形为
tan
α

· 素 能


实 +tan β=tan(α+β)(1-tan αtan β),且对任意角 α, 优

π
考 点 突 破
· 规 律 总 结
-tan(A+B)=1,又因为
C∈(0,π),所以
C= 4 ,所以
综 合
cos C= 22.
训 练 ·

【答案】
2 2
力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 点
[规律方法] 给角求值问题的三个变换技巧
创 新



(1)变 角 :分 析 角 之间 的 差 异 , 巧 用 诱导 公 式 或拆 计
【答案】 C
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形








· 基
[规律方法] 角的变换技巧


2.能利用两角差的余弦公式导出两角差的正弦、正
切公式.
考 点 突 破
3.能利用两角差的余弦公式导出两角和的正弦、余
综 合
弦、正切
公式,导出二倍角的正弦
、余弦、正切公式,
训 练
· 规
了解它们的内在联系.



· 能 力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 点
知识扫描
考 点 突 破
· 规 律 总 结
cos
α=cosα-π6 +π6 =cosα-π6 cos
π 6-
综 合
sinα-π6 sin
π6 =232× 23-13×12=2
6-1 6.
训 练
· 能
答案
2 6-1 6
力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形




梳 理 ·
5.已知 tan(α-β)=12,tan β=13,且α∈(0,π),

1 32sin
α+
23cos
α=
3sinα+π3 =453,
综 合

所以 sinα+π3 =45.
练 · 能
答案
4 5
力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 考点三 角的变换

创 新
梳 理
· 基 础 落 实
例3 (1)(2014·青浦模拟)已知 cos51π2 +α=13,且
·
·
基 础
分.
素 能



(2)变名:尽可能使得函数统一名称.

(3)变式:观察结构,利用公式,整体化简.
[易错提醒] “变式”时常用的方法有“常值代
考 点 突 破
· 规 律 总 结

换 ”“ 逆 用 变 用 公 式 ”“ 通 分 与 约 分 ”“ 分 解 与 组
合 训

合”“配方与平方”等.
·



二、二倍角公式



梳 理
sin 2α= 2sin αcos α ;
设 计
· 基 础
cos 2α= cos2α-sin2α = 2cos2α-1= 1-2sin2α;
· 素 能



2tan α

tan 2α= 1-tan2α .
其公式变形为:
考 点
1-cos 2α
突 破
sin2α=
2

·
规 律
1+cos 2α
(2)∵α,β∈0,π2 ,f3α+π2 =1103,f(3β+2π)
培 优
=65,∴2sin α=1103,2sinβ+π2 =65.
考 点 突 破
· 规 律 总 结
即 sin α=153,cos β=35.∴cos α=1123,sin β= 45.∴cos(α+β)=cos αcos β-sin αsin β=1123×35-
创 新




· 基
一、两角和与差的三角函数公式
· 素
础 落
sin(α±β)=
sin αcos β±cos αsin β;
能 培

cos(α±β)=
cos αcos β∓sin αsin β ;

tan α±tan β
tan(α±β)=
1∓tan αtan β .
考 其公式变形为:
点 突 破
· 规 律 总 结
· 能 力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 考点突破·规律总结







· 基
考点一 三角函数公式的基本应用
· 素


落 实
例1 已知函数 f(x)=2sin13x-π6 ,x∈R.
培 优
(1)求 f5π 4 的值;
考 点 突 破
(2)设 α,β∈0,π2 ,f3α+π2 =1103,f(3β+2π)=65,
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
考点二 三角函数公式的逆用和变形应用




梳 理
· 基
例2
(1) 已 知
cos4
α

sin4
α

2 3

α∈
0,π2


设 计 · 素
础 落 实
cos2α+2π 3 =________.
能 培 优
【解析】 cos4α-sin4α=23,α∈0,π2 ⇒(cos2α-sin2
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 点
4.若 α 是锐角,且 sinα-π6 =13,则 cos α的
创 新


理 值是________.
计··源自基 础 落 实解析
∵α 是锐角,∴0<α<π2 ,-π6 <α-π6 <π3 ,
素 能 培 优
所以 cosα-π6 = 1-sin2α-π6 =232,
·
新 设 计 ·
基 础 落
5 A.9

11 B.18
13 C.18
D.1
素 能 培 优
解析 sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θ
考 cos2θ=1-12sin22θ=1-12(1-cos22θ)=1-12×1-19

突 破
·
=59.


答案 A


综 合 训 练
· 能 力 提 升
考 点 突 破
综 合 训 练
· 规 律 总 结
· 能 力 提 升
菜单
高考总复习·数学(理科)
第三章 三角 函数、解三角形
要 点
◎变式训练

创 新 设
理 · 基
1 . (2015·哈 尔 滨 模 拟 ) 已 知
cos θ+π4 =
10 10

础 落 实
θ∈0,π2 ,则 sin2θ-π3 =________.
1 D.6 π
能 培 优
【解析】 因为 α+ 4 +β- 4 =α+β,所以 α+ 4 =(α
相关文档
最新文档