高一数学《函数的定义域值域》练习题之欧阳数创编

合集下载

高一数学函数的定义域与值域试题

高一数学函数的定义域与值域试题

高一数学函数的定义域与值域试题1.已知函数定义域是,则的定义域是A.B.C.D.【答案】A【解析】由得,即的定义域为,令得。

【考点】复合函数定义域的求法。

2.函数的定义域为___________.【答案】【解析】且,解得,所以定义域为.【考点】函数的定义域3.函数的定义域是 ( )A.B.C.D.【答案】D【解析】要使函数式有意义,则.【考点】本题考查函数的定义域即使函数式有意义的自变量的取值范围.4.已知函数,(1)若,求方程的根;(2)若函数满足,求函数在的值域.【答案】(1);(2).【解析】(1)若,直接解二次方程的即可;(2)根据,得到函数的对称轴,然后根据二次函数的图象和性质求函数的值域即可.试题解析:(Ⅰ)若,则,由得,解得,即方程的根为.(2)由知,函数图象对称轴为,即,∴,当时,值域为.【考点】1.二次函数的图象与性质;2.函数的值域.5.函数的定义域为 .【答案】【解析】函数的定义域是使函数的自变量有意义的取值范围,对数的真数大于0,故.【考点】1、函数的定义域;2、对数的真数大于0.6.下列函数中,在其定义域内是增函数的为()A.B.C.D.【答案】D【解析】因为A选项中函数定义域为R,而幂函数是先减后增,故函数在其定义内非增函数;B选项中函数可化为,故为减数;C选项中其底数为,故为减函数;D 选项中函数可化为,故正确答案选D.【考点】1.函数的定义域;2.函数的单调性.3.复合函数单调性的判断.7.函数的定义域为.【答案】【解析】要使函数有意义,需满足【考点】函数定义域点评:函数定义域是使函数有意义的自变量的取值范围或已知条件中给定的自变量的范围8.函数的定义域是【答案】【解析】对于函数,有意义,则满足,故可知答案为【考点】正切函数的定义域点评:解决的关键是根据正切函数的定义来得到,属于基础题。

9.定义在R上的函数的值域是,又对满足前面要求的任意实数都有不等式恒成立,则实数的最大值为A. 2013B. 1C.D.【答案】A【解析】函数的值域是,,设,是增函数,最小值为恒成立,最大值2013【考点】函数求最值及不等式性质点评:本题主要应用的知识点有:二次函数求最值,均值不等式求最值,利用函数单调性求最值,综合性较强,有一定难度10.函数的定义域为( )A.(,1)B.(,+∞)C.(1,+∞)D.(,1)∪(1,+∞)【答案】A【解析】为使函数有意义,须,所以,函数的定义域为(,1),选A。

高一数学函数习题(练习题以及答案

高一数学函数习题(练习题以及答案

一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满意2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、推断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数习题(练习题以及答案

高一数学函数习题(练习题以及答案

一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数经典练习题(答案)

高一数学函数经典练习题(答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y ⑽ 4y = ⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数习题练习题以及答案

高一数学函数习题练习题以及答案

一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,务实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满意2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、推断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一数学函数经典练习题(含答案)

高一数学函数经典练习题(含答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++- 2、设函数的定义域为,则函数的定义域为_ _ _;函数的定义域为________;3、若函数(1)f x +的定义域为,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.2.已知定义在上的函数是偶函数,且时,。

(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件【答案】(1)(2)当,取值的集合为,当,取值的集合为;(3)【解析】(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解试题解析:解:(1)函数是偶函数,当时,当时(4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为(6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时,(4)【考点】1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域3.函数的定义域为 .【答案】【解析】有已知,得因为为增函数所以.【考点】1.函数定义域.2.对数不等式.4.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.5.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.6.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.7.函数定义域为,则满足不等式的实数m的集合____________【答案】【解析】因为函数定义域为又因为.所以.所以即为.即.所以.故填.本小题的关键点是字母比较多易混淆.【考点】1.函数的定义域.2.不等式的解法.3.待定的数学思想.8.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.9.函数的值域为 .【答案】【解析】函数,对称轴为,开口向上,则由图像可知函数,即值域为.【考点】二次函数的定义域、对称轴、值域.10.函数的值域是 .【答案】【解析】,令,则,且,当时是增函数,而,所以,即.所以所求函数的值域为.【考点】二次函数的值域.11.如果函数y=b与函数的图象恰好有三个交点,则b= .【答案】【解析】当x≥1时,函数图象的一个端点为,顶点坐标为,当x<1时,函数顶点坐标为,∴当或时,两图象恰有三个交点.【考点】二次函数的性质点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.12.若函数的定义域是[0,4],则函数的定义域是()A.[ 0, 2]B.(0,2)C.(0,2]D.[0,)【答案】C【解析】根据题意,因为函数的定义域是[0,4],可知x [0,4],那么对于g(x)有意义时满足2x [0,4],x ,那么可知得到为(0,2],故选C.【考点】函数的定义域点评:解决的关键是根据函数定义域的理解来得到函数的定义域,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数值域、定义域、解析式专题一、函数值域的求法 1、直接法:例1:求函数y =例2:求函数1y =的值域。

2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。

例2:求 函 数]2,1[x ,5x 2x y 2-∈+-=的 值域。

例3:求函数2256y x x =-++的值域。

3、分离常数法: 例1:求函数125xy x -=+的值域。

例2:求函数122+--=x x x x y 的值域. 例3:求函数132x y x -=-得值域.4、换元法:例1:求函数2y x =+例2: 求 函 数1x x y -+=的 值 域。

5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。

例1:求函数y x =例2:求函数()xx x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。

6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。

当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。

例1:求函数|3||5|y x x =++-的值域。

7、非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。

例1、(1)求函数216x y -=的值域。

(2)求函数1322+-=x x y 的值域。

二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.例3:求下列函数的定义域:① 21)(-=x x f ;②23)(+=x x f ;例4:求下列函数的定义域:③②2143)(2-+--=x x x x f④373132+++-=x x y ④xx x x f -+=0)1()(三、解析式的求法 1、配凑法 例1:已知 :23)1(2+-=+x x x f ,求f(x);例2 :已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式.2、换元法(注意:使用换元法要注意t 的范围限制,这是一个极易忽略的地方。

) 例1:已知:x x x f 2)1(+=+,求f(x);例2:已知:11)11(2-=+x x f ,求)(x f 。

例3 :已知x x x f 2)1(+=+,求)1(+x f .3、待定系数法例 1.已知:f(x) 是二次函数,且f(2)=-3, f(-2)=-7, f(0)=-3,求f(x)。

例2:设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 4、赋值(式)法 例1:已知函数)(x f 对于一切实数yx ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求)0(f 的值;(2)求)(x f 的解析式。

例2:已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .5、方程法 例1:已知:)0(,31)(2≠=⎪⎭⎫⎝⎛+x x x f x f ,求)(x f 。

例2:设,)1(2)()(x x f x f x f =-满足求)(x f .6、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例1:已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.高考中的试题:1.(2004.湖北理)已知)(,11)11(22x f x x x x f 则+-=+-的解析式可取为( )A .21xx+ B .212x x +-C .212xx + D .21x x +-2.(2004.湖北理)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为()A .41B .21C .2D .43.(2004. 重庆理)函数y =的定义域是:( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]4.(2004.湖南理)设函数,2)2(),0()4(.0,2,0,0,)(2-=-=-⎩⎨⎧>≤≤++=f f f x x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( ) A .1 B .2C .3D .4 5、(2004. 人教版理科)函数)1(log 221-=x y 的定义域为( ) A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6.(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(C ) (A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,77.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。

8.(2006年广东卷)函数)13lg(13)(2++-=x xx x f 的定义域是9.(2006年湖北卷)设()xx x f -+=22lg,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 ()A.()()4,00,4 -B.()()4,11,4 --C.()()2,11,2 --D.()()4,22,4 -- 10.(2006年辽宁卷)设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________11.( 2006年湖南卷)函数2log 2y x =-的定义域是( )A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞) (07高考)1、(安徽文7)图中的图象所表示的函数的解析式为 (A)|1|23-=x y (0≤x ≤2)(B) |1|2323--=x y (0≤x ≤2)(C)|1|23--=x y(0≤x ≤2) (D) |1|1--=x y (0≤x ≤2)2、(浙江理10)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞3、(陕西文2)函数21lg )(x x f -=的定义域为 (A )[0,1](B )(-1,1)(C )[-1,1] (D )(-∞,-1)∪(1,+∞) 4、(江西文3)函数1()lg4xf x x -=-的定义域为()A.(14),B.[14), C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,,5、(上海理1)函数()()lg 43x f x x -=-的定义域为_____6、(浙江文11)函数()221x y x R x =∈+的值域是______________7、(重庆文16)函数()f x =(08高考)1.(全国一1)函数y =( ) A .{}|0x x ≥ B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.(湖北卷4)函数1()f x x =的定义域为A. (,4][2,)-∞-+∞B.(4,0)(0.1)-C. [-4,0)(0,1]D. [4,0)(0,1)- 3.(陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R,),(1)2f =,则(3)f -等于( ) A .2B .3C .6D .94.(重庆卷4)已知函数y=M ,最小值为m ,则mM的值为(A)14(B)12(C)25.(安徽卷13)函数2()f x =的定义域为.6.(2009江西卷文)函数y =A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-答案:D7.(2009江西卷理)函数y =A .(4,1)--B .(4,1)-C .(1,1)-D .(1,1]- 8.(2009北京文)已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x =.。

相关文档
最新文档