投入产出分析
第七章 投入产出分析方法

y表ipo示p区域生产的第i部门产品用作各区域及大区的最终产
品的数量之和。即:
m1
yipo yipq
q 1
分别表示q区域j部门的劳动报酬,纯收入及总产值
从表12-4的水平方向来看,有如下的平衡关系:
水平方向
有平衡关系
mn
xipj q yipo xip ( p 1,2,,m;i 1,2,,n)
X x1,x2,,xn T ,Y y1,y2,,yn T
a11 a12 a1n
A
a21
a22
a2n
an1
an2
ann
则方程组可以写成矩阵形式
AX Y X (I A)X Y 若假设 I A 0 ,则有 X (I A)1Y 。
按列建立模型
反映各部门产品的价值形成过程、生产与消耗之间 的平衡关系
(二)价值型投入产出模型
该模型是根据价值型投入产出表建立的。它将整 个经济系统划分为若干子系统——生产部门,并以货 币为计量单位。不仅能够反映各部门产品的实物运动 过程,而且能够描述各部门产品的价值流动过程、实 用性与实用范围。表7.1.2为一个简化的价值型投入产 出表,可以按行或者列建立数学模型。
•计算直接消耗系数矩阵A 计算列昂捷夫矩阵I-A 假设该地区下年度第一、二、三产业的最终使用合计值分别 为17786、42177、21896(106元),试预测该地区下一年 度第一、二、三产业的总产出以及新创造价值(即劳动报酬 与纯收入合计)
二、区域间模型
如前所述,一个较大的区域地理系统可以分为 若干区域,一个区域往往又有若干部门。一个部门 的产品除了满足本区域的需要外,还满足其它区域 的需要;而这个区域的另一些产品也可能是依靠其 它区域的供应。区域间的投入产出模型就是研究区 域之间的经济联系,发挥各区域优势的一种方法。
投入产出分析投入产出表

§1.2 投入产出表投入产出分析的基础是投入产出表。
在任何一个层次上、为了任何一个目的应用投入产出分析,首先的也是最重要的工作就是编制投入产出表。
一、投入产出表的原理以表1-2-1所示的假想的某年某国封闭经济的4部门价值型投入产出表为例,介绍投入产出表的基本原理。
该表将国民经济系统分为4个部门,并且假定不存在进出口。
⒈行与列的含义表中每个部门所对应的每一行表示“产出”,即该部门产品(或者劳务)的分配与使用。
有多少作为中间使用?被哪些部门使用?有多少作为最终使用?其中作为用于消费和用于投资的高为多少?例如第一行表示部门1的总产出为1600亿元;其中659亿元作为中间使用,被部门1自己使用96亿元,被部门2使用224亿元,被部门3使用179亿元,被部门4使用160亿元;941亿元作为最终使用,894亿元用于消费,47亿元用于资本形成。
表中每个部门所对应的每一列表示“投入”,即该部门生产(或者经营)过程中所“消耗”的各种要素的数量。
有多少属于中间投入?分别由哪些部门提供?有多少属于最初投入?其中劳动投入和资本投入各为多少?例如第一列表示部门1的总投入为1600亿元;其中480亿元属于中间投入,由部门1自己提供96亿元,部门2提供16亿元,部门3提供320亿元,部门4提供48亿元;1120亿元属于最初投入,劳动投入为952亿元,资本投入为168亿元。
⒉各个象限的含义如果按照双线将表划分为四部分,每一部分称为象限。
左上为第一象限,反映部门之间的相互关联,是投入产出表最重要的一部分。
右上为第二象限,是第一象限在水平方向的延伸,反映每个部门产品(或者劳务)用于最终使用的情况。
左下为第三象限,是第一象限在垂直方向的延伸,反映每个部门所“消耗”的最初投入的情况。
右下为第四象限,主要反映转移支付,在编制投入产出表时,一般不收集这部分数据。
⒊ 几个平衡关系将表1-2-1中的数字用符号表示,并将部门数量扩充到n ,见表1-2-2。
投入产出分析原理

第二节 投入产出分析原理
2.纵向看,各产业的总产值 = 各产业消耗的中间产品价 值 + 各产业的毛附加价值。
X11 X21 Xn1 D1 V 1 M 1 X1 X12 X22 Xn2 D2 V 2 M 2 X2 X1n X2n Xnn Dn Vn Mn Xn
在(I-A)可逆时(在实践情况下一般能满足该 条件),可将矩阵形式转化为:
X=(I-A)-1 Y
其中的(I-A)-1 称为列昂惕夫逆矩阵,可以通过昂 惕夫逆矩阵进行产业感应度和影响力的分析以及波及 效果分析等。
耗量。用aij表示第j产业产品对第i产业产品的直接消耗系 数,即生产单位j产业产品所消耗的i产业产品的数量。
aij
X ij Xj
第二节 投入产出分析原理
a11 a12 a1n
实物直接消耗系数矩阵 A =
a 21
a 22
a
2
n
a
n1
an2
a
nn
a11 a12 a1n
价值直接消耗系数矩阵 A =
产值必然相等。也就是把方程组中的n个方程(i=1,2,…,
n)连加起来。
nn
nn
= ( Xij Yi
( Xji Di Vi Mi)
i1 j1
i1 j1
(i=1,2,…,n)
n
n
即:
Yi =
(Di Vi M i)
(i=1,2,…,n)
i 1
i 1
第二节 投入产出分析原理
四、直接消耗系数和完全消耗系数 (一)直接消耗系数 直接消耗是指生产单位产品对某一产业产品的直接消
X11 X12 … X1n X21 X22 … x2n
… … ……
投入产出分析

投入产出分析,在中国也被称为投入产出法,在日本被称为产业关联法,而在前苏联和东欧国家曾经被称为部门联系平衡法。
所有这些不同的名称,抽去它们在经济理论上的不同解释,就其作为一种经济数量分析方法来说,原理是一致的。
本节主要介绍投入产出的定义、关于投入产出模型的概念,以及投入产出分析理论与实践的发展。
可以用一句话给出投入产出分析的定义:投入产出分析是研究经济系统中各个部分之间在投入与产出方面相互依存的经济数量分析方法。
这里的经“济系统” ,可以是整个国民经济,也可以是地区、部门和企业,也可以是多个地区、多个部门、多个国家。
所谓部“分” ,是指所研究的经济系统的组成部分。
一般或者是指组成经济系统的各个部门,或者是指组成经济系统的各种产品和服务。
所谓投“入” ,是指各个部门或产品在其生产或者运营过程中所必须的各种中间投入和最初投入。
例如工业部门在其生产过程中必须有资本、劳动等最初投入和原材料、燃料、劳务等中间投入。
所谓“产出”,是指各个部门或产品的的产出量的分配与使用。
例如工业部门的产出量中一部分作为本部门的投入,一部分作为其它部门的投入,一部分用于消费,一部分作为资本品用于投资,一部分用于出口。
根据上述对投“入”和产“出”的定义,可以想见,一个经济系统的各个部分之间存在着错综复杂的相互依存关系,由这些关系将经济系统的各个部分连成为一个不可分割的整体。
通过对这些相互依存关系的描述和分析,就可以揭示经济系统中包含的各种数量关系,可以使人们更深入地了解与把握经济系统。
⒈世界范围内投入产出分析的发展美国经济学家列昂捷夫(Wassily Leontief )于 1931 年开始研究投入产出分析,编制美国 1919 年、 1929 年投入产出表,并用于美国的经济结构研究; 1936 年他发表了关于投入产出分析的第一篇论文“美国经济制度中的投入产出分析” (美国《经济学与统计学评论》 1936.8. );1941 年出版专著《美国经济结构: 1919—1929 》;在 1942-1944 年间,他又主持编制了 1939 年美国投入产出表; 1966 年出版专著《投入产出经济学》。
投入产出分析

U uI A 1CSY T
C cij nm , cij Cij Fj S s j m1, s j Fj Y T
式中, Cij 表示第 j 类最终需求中对第 i 部门产品的需求量,
F j 表示第 j 类最终需求(消费、投资、出口)的总量,
Y T 表示各类最终需求合计。 所以, S 代表最终需求构成系数,
1. 投入产出表的设计
投入产出表是一张行列交织的棋盘式平衡表, 其描述对象是一个相对独立经济系统在一定 时期内所发生的投入产出关系。
基本设计原则:
行的方向表示经济系统各组成部门的产出及其 使用
在列的方向表示各部门生产活动的投入及其来 源
产出
根据产品使用方向之不同,可将产品分为两 大类:
从普通I-O表到资源环境I-O表
常用的改进方法: 在第Ⅲ象限下方增加资源投入、污染排放行
或矩阵,反映在当期生产过程中各类资源的 投入量和各种污染物的排放量; 或者在第Ⅰ象限用资源部门或污染部门行来 反映资源投入、污染排放量。
2. 投入产出模型中的系数
直接消耗系数 完全消耗系数 完全需要系数
反映各类最终需求占最终需求总量的比例;
C 代表最终需求部门组成系数,
反映用于消费、投资和出口的产品中来自各个部门的比例。 利用该式,可以计算最终需求总量发生变化的影响, 最终需求构成和最终需求部门组成等结构性因素发生变化的影响。
当应用需求拉动分析研究经济发展对资源需 求量的影响时,建议使用与生产规模相关的 可变资源直接消耗系数。
第Ⅱ象限
第Ⅱ象限是第Ⅰ象限在行方向上的延伸,Yi 表示i部门产品用作最终产品的数量。
最终产品一般又可以分为消费、资本形成和 出口,其中前两项还可以进一步细分。
最终产品与中间产品的合计即为总产品。
投入产出分析方法简介以及投入产出表

投⼊产出分析⽅法简介以及投⼊产出表⼀、投⼊产出分析⽅法(⼀)投⼊产出分析⽅法的产⽣与发展P76-771、产⽣的背景20世纪30年代资本主义世界出现了严重的经济危机,许多经济现象原有的经济理论解释不了。
美国经济学家沃西⾥•列昂节夫在前⼈(主要是弗朗索⽡•魁奈)的启发和⼯作基础上,提出了投⼊产出分析⽅法。
2、产⽣及发展该⽅法产⽣于20世纪30年,是美国经济学家沃西⾥•列昂节夫提出来的。
他从1931年开始研究投⼊产出分析⽅法,并⽤此⽅法研究美国的经济结构。
1936年8⽉,第⼀篇论⽂——美国经济体系中的定量的投⼊产出关系(《经济与统计评论》发表;1941年,出版了——美国经济结构1919-1929;1953年,与他⼈合作出版——美国经济结构研究在这些著作中,利⽤美国公布的经济统计资料,编制了美国经济的1919、1929、1939年的投⼊产出表。
1968年,在英国经济学家理查德•斯通等⼈的⼯作之后,被有机结合到严密的SNA体系,并得到了世界各国的普遍推⼴和运⽤。
(⼆)投⼊产出分析⽅法的基本思路P78⾸先,把各部门的投⼊来源和产出去向纵横交叉地编制成投⼊产出表;然后,根据投⼊产出表的饿平衡关系,建⽴投⼊产出模型;最后,借助于投⼊产出表和投⼊产出模型进⾏各种经济分析。
(三)投⼊产出分析⽅法的特点P781、投⼊产出表是投⼊产出分析的基本形式;2、投⼊产出分析能够深⼊分析各部门之间(或各种产品之间)复杂的依存关系以及主要⽐例关系,揭⽰国民经济各种活动间的连锁反应,分析国民经济复杂的因果关系和相互联系;3、投⼊产出分析是在投⼊产出表的基础上,利⽤线性代数等数学⽅法建⽴数学模型,据此进⾏各种经济数量分析;4、投⼊产出分析的应⽤有很⼤的灵活性。
既可解决具体的经济问题,也可研究环境污染治理问题、国际贸易问题、⼈⼝问题、教育问题;5、投⼊产出分析的局限性。
如编表的技术性很强;同质性假定的满⾜;⽐例性假定等。
⼆、投⼊产出核算(⼀)涵义P88(钱书)1968年被有机结合到严密的SNA体系,并得到了世界各国的普遍推⼴和运⽤后,投⼊产出分析⽅法就成为了国民经济核算的重要组成部分,并把投⼊产出分析⽅法称为投⼊产出核算,是在GDP核算基础上的扩展。
04第四章-投入产出分析

b11 b12 b21 b22 1 ( I A) Y b 1n b2 n y1 x1 j X 1 y 2 x2 j X 2 y x X nj n n
2.中间消耗与增加值的分解 (1)按比例分摊:假定投入是按产值分配的
某产品对某种中间投入的消耗=该中间投入的消耗总
额×某产品产值/企业总产值 (2)按定额分摊:假定投入是按工时分配的 某产品对某种中间投入的消耗=该中间投入的消耗总 额×该产品实际生产工时/企业生产总工时
3.最终产品的分解与调整
根据样本资料推断总体
3.为了获得稳定的投入产出表,可以采用下列方法 (1)采用一定的工艺假设,尽可以“纯化”投入产出 表 (2)用生产资料价格指数调整中间消耗的价格变动
(3)对直接消耗系数给予一定的时间限制
二.完全消耗系数
1.概念 生产产品j对于i的直接或间接消耗之和
直接消耗:
aij
第一轮间接消耗:
a
k 1
n
ik
2.从横向看:中间使用+最终使用=总产出
3.每个部门的总投入=该部门的总产出
第二节 直接消耗系数和完全消耗系数
一.直接消耗系数 1.概念 反映两个部门之间直接存在的投入关系,用每一行业 某一产品的投入数值比该行业的产出数值,可以得到 反映出每生产一单位的j所需要付出的i的数量。
aij
xij
Xj
第四章 投入产出分析
第一节
投入产出核算的基本原理
投入产出法是本世纪30年代美国经济学家列昂惕夫提
出的,根据计量单位的不同,可以分为实物型和价值 型两种,根据时间的不同,分为静态和动态。 Wassily Leontief(1906-1999),美国著名经济学 家和统计学家,投入产出方法的创始人。1931年移居 美国,1936年在《经济统计评论》杂志上发表了《美 国经济系统中投入产出的数量关系》一文,首次提出 投入产出分析法。
投入产出分析的公式汇总

投入产出分析的公式汇总1.投入产出关系公式:经典的投入产出模型中,存在着两个基本的关系公式:Y=AX(1)Y=C+I+G+X-M(2)其中,Y代表总产出,A代表技术系数矩阵,X代表总投入,C代表消费支出,I代表投资支出,G代表政府支出,X代表出口,M代表进口。
公式(1)表示总产出等于技术系数矩阵与总投入的乘积。
公式(2)表示总产出等于消费支出、投资支出、政府支出、净出口的总和。
2.投入产出比例关系公式:在投入产出分析中,经常使用投入产出比例关系来计算各个产业或部门的相对重要性、波及效应、乘数效应等。
直接效应:产业A的投入产出比例(a)=产业A的产出(Y_A)/产业A的投入(X_A)。
介质效应:产业A的介质投入产出比例(a_d)=产业A的介质投入(D_A)/产业A的产出(Y_A)。
波及效应:产业A对产业B的波及系数(b_AB)=产业B的投入产出比例(b)*A产出对B投入的敏感度。
乘数效应:总产出的变化(ΔY)=产出变化的总乘数(Δm)*初始投入的变化(ΔX)。
3.投入产出改进公式:当经济的投入产出关系发生变化时,可以使用改进的投入产出公式来分析这种变化。
改进的技术系数矩阵A*=D^-1*A*B^-1(3)其中,A*表示改进后的技术系数矩阵,D表示需求变化矩阵,B表示产出变化矩阵。
公式(3)表示改进后的技术系数矩阵等于需求变化矩阵、技术系数矩阵和产出变化矩阵的乘积。
4.投入产出弹性公式:投入产出弹性用于衡量投入或产出变动对整体投入产出关系的影响程度。
产出弹性,E_Y=ΔY/Y÷ΔX/X(4)投入弹性,E_X=ΔX/X÷ΔY/Y(5)其中,ΔY表示总产出的变化,Y代表总产出,ΔX表示总投入的变化,X代表总投入。
公式(4)表示产出弹性等于总产出的变化与总投入的变化之比。
公式(5)表示投入弹性等于总投入的变化与总产出的变化之比。
总结:投入产出分析的公式包括投入产出关系公式、投入产出比例关系公式、投入产出改进公式和投入产出弹性公式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境—经济系统的投入产出分析一、概论投入产出分析技术是美国经济学家瓦西里·里昂惕夫(W. Leontief )于1936年发明的一种科学的经济分析方法。
投入产出分析技术利用现代数学方法,分析国民经济各部分之间在生产数量上的互相依存关系,用于预测及平衡再生产的综合比例,有时称为部门联系平衡分析。
环境—经济系统的投入产出分析是把自然环境资源、能源和生产排出的废弃物作为经济活动的投入物和产出物,并利用能量与物质恒定律和生态经济学的原理,分析改善环境质量带来的效益与支付的费用以及经济发展对环境的影响。
20世纪70年代以来,环境—经济系统的投入产出分析应用迅速发展,已成为目前分析和预测经济发展与环境保护协调平衡的一种有效手段。
二、基本原理1、概述(1)投入产出分析是对经济系统各部门间的数量依存关系进行研究,以确定国民经济各部门错综复杂的联系和在生产的重要比例关系的方法和技术。
其中:投入是指生产过程中消耗的原材料、燃料、动力和劳动;产出是指从事经济活动的结果及产品的分配去向,使用方式和数量。
(2)投入产出分析的基础是投入产出模型或投入产出表,其是一种特殊的线性模型,模拟了某地区或某企业各生产部门之间的相互关系,是生产部门对社会最终需要量变化的反映。
(3)在现代经济活动中,各生产部门之间存在着复杂而密切的联系,并且整个经济系统是处于平衡状态的。
其中经济系统中任一部门发生变化,都将引起其它部门的供求变化,这种连锁反应,结果是破坏原有的平衡。
投入产出分析就是依照经济按比例发展的客观规律,描述经济系统中各部门的平衡关系。
(4)里昂惕夫(美国经济学家)在上世纪30年代提出了投入产出模型,其将各种经济流归结在一个表中,为某一国家和地区的整个经济活动提供了一个简明而又系统的结构关系—投入产出表,奠定了投入产出模型的方法论基础。
2、投入产出表的结构投入产出表主要是中间产品交流表,后来发展为直接消耗系数表和完全消耗系数表。
表中各部门的相互关系:若用物理量表示,则形成实物型投入产出表;实物表若用货币价值表示,则形成价值型投入产出表。
币值表(1)中间产品交流表(简化的价值投入产出模型)或实物反映各部门产品的分配运动过程和价值形成过程。
a、主要指标其中表中纵栏的主要指标有物资消耗和新创造价值两项:①物资消耗包括产品生产过程中直接性的生产消耗(如原料、能源等)和间接性的消耗(如生产管理、劳动保护、大小设备修理的物质消耗);②新创造价值包括劳动报酬和社会纯收入,是一定时期内物质生产部门新创造的物质财富,反映了国民收入的初次分配情况。
表中横栏的主要指标有中间产品和最终产品两项;③中间产品指在产品生产过程中,所消耗的产品,它的总量与物资消耗总量相等,它和纵栏第一项指标物资消耗物构成各部门在生产过程中的中间产品相互交流表,属于产品价值的转移部分,称为投入产出表的第Ⅰ象限;它反映国民经济各部门间的生产技术经济联系,是投入产出表的基本部分。
④最终产品是指供最终使用的那部分社会产品,包括消耗积累和出口。
b、表式构成根据表1的横行方向的产品分配(物质使用)和纵列方向的价值形成两个特点,把其分为四个象限。
第一象限是表的基本部分,是中间产品的交流,即各部门在应生产过程中产品的互相交流,其中x ij代表中间产品由i总门卖出,并被j部门买进作为原料投入生产中,这部分属于产品价值的转移部分,因此,第一象限反映了国民经济各部门之间的生产技术经济联系。
第二象限是第一象限在横行方向上的延伸,是各种产品的最终需求Y i,即i部门产出的最终产品,供人们消费、出口、投资或资金积累、国家征用等,这部分最终产品的收入,接近于国民经济的总收入。
第三象限是投入劳动力所创造的新价值V j,它在生产过程中经物化后进入最终产品。
第四象限反映一部分国民收入的再分配过程以及国民经济系统中非生产领域的行政机关,事业单位和工作人员的收入分配,它所体现的经济关系十分复杂,一般不予讨论。
此外,在平衡状态下,总投入X j(表示j生产部门的总产品价值)和总产出X i (表示i生产部门的总产品)相等。
c、价值表的几个平衡关系价值型投入产出表的四个象限构成以下四个平衡关系:①第一象限中的物质消耗之和等于中间产品之和,这说明生产过程中的生产资料消耗必须以同等数量的中间产品来补偿;②第二象限的合计等于第三象限的合计,说明在不考虑进出口等素下,社会生产的国民收入与社会最终分配的国民收入相等;③每一行的总计等于每一列的总计,说明在不考虑进出口时各部门生产的产品和分配使用的产品在总量上相等;④第一象限与第二象限合计之和等于第一象限与第三象限合计之和,说明整个社会产品的生产与使用量相等。
3、投入产出表的分析应用根据投入产出表的内容与结构,可以对国民经济各部门的生产之间的技术经济联系,进行逻辑严密的定量化分析应用,包括直接消耗系数,累计消耗系数,最终产品系数的确定和价格矩阵的建立等。
它们可为地区、部门或企业经济的综合统计分析和计划的综合平衡提供必要的条件,对于科学的安排预测和分析经济活动具有重要意义。
为便于具体说明,现将表1简化为只有农业和工业两个部门的简化投入产出表(表2),其中产品均用物理量表示,新创造的价值用劳动量代表。
业用20公斤作为中间产品;最终产品55公斤提供社会使用,同时,为了产出100公斤麦子,除了消耗25公斤小麦外,还要投入工业中间产品布14平方米和生产要素80人·日的劳动力。
(1)直接消耗系数直接消耗系数(或投入系数)是指某一部门生产单位数量的产品时,需要直接消耗的有关部门中间产品和投入其它生产要素的数量。
一般用a ij表示,a ij=x ij/x j (i, j=1,2…n)其中,x j为部门j的总产出量。
完全消耗系数是指某部门生产单位产品需要消耗另一部门产品的总量,包括直接和间接消耗两部分。
例如上述生产1公斤麦子,需要直接消耗0.25公斤麦子和0.14平方米布,但要生产所需要的这些麦子和布,又要消耗一定数量的麦子和布,这是一次间接消耗量,可计算如下:再生产需用麦子(公斤)需用布(平方米)0.25公斤 0.25×0.25=0.0625 0.25×0.14=0.03500.14平方米布 0.14×0.40=0.0560 0.14×0.12=0.0168共计 0.1185 0.0518这样,把直接和一次间接的消耗量相加得到:生产一公斤小麦需消耗0.25+0.1185=0.369公斤麦子和0.14+0.0518=0.192平方米布,依此,再计算第二次间接消耗量并再累加起来,继续计算多次,直到直接间接消耗量可忽略为止,上例的最后累计消耗量如表4所示即为完全消耗系数。
(3)在经济分析评价中,往往以社会对生产部门的最终产品量为准进行计算,因此在累积消耗系数的基础上,又提出了最终产品系数的概念,如表5所示。
在制定国民经济发展要求的最终产品指标后,就利用最终产品系数估算出各生产部门相应的生产水平。
(4上述表格,用现代数学的术语称为矩阵,如果表1中的最终品的需求以矩阵符号Y 表示,中间产品的交流矩阵用F 表示,总投入和总产出相等,均用X 表示,这样,则表中水平方向所反映生产产出的分配结构关系式,可表示为:F+Y=X又以矩阵符号A 代表直接消耗系数矩阵,则有:F=AX ; AX+Y=X Y=(I-A )X 即X = (I-A)-1Y式中,I 为单位矩阵,(I-A)-1为生产部门为了满足单位数量的最终产品需求所必须直接和间接产出的产品数量矩阵即最终产品系数矩阵,亦称为列昂节夫逆矩阵。
针对上例,有(I-A)-1 =⎥⎦⎤⎢⎣⎡242.1232.0662.0457.1 (5)价格矩阵用矩阵符号P 来表示表1中垂直方向反映生产要素的投入结构,即生产中价值形成的过程,有:P=A ′P+V P=(I – A ′)-1V式中,P 为单位产品价值矩阵,即价格矩阵,它等于生产单位产品时,需要投入的各种中间产品的成本,加上社会劳动新创造的价值,或生产的总投入的币值除以总产出的物理量。
A ′为A 的转置矩阵;V 为单位产品中新创造的价值矩阵。
按上面简化的例子,设每公斤小麦的价格为P 1,每平方米布的价格为P 2,新创造的价值分别为V 1和V 2,则按直接消耗系数表3可得到:⎩⎨⎧+=+=→⎭⎬⎫++=++=2122111211242.1662.0232.0457.12212.0140.0214.025.0V V P V V P V P P P V P P P 上式也可由最终产品系数表5或列昂节夫逆矩阵求得,假设劳动力的报酬为每人·日1元,则按表3可知V 1为0.80×1=0.80元,V 2为3.60×1=3.60元,将V1和 V2的值代入上式求得:P1=1.457×0.80+0.232×3.60=2. 0P2=0.662×0.80+1.242×3.60=5. 0即每公斤小麦的价格为2元,每平方米布的价格为5元。
三.环境-经济投入产出模型传统的投入产出分析延伸到环境经济领域(即投入物不仅是中间产品等物资消耗,还可包括环境资源或自然生态系统的产品与劳务,如环境容量和自然净化能力等;产出物除了劳动成品外,也可能包括有废弃物在内),可得到各种环境-经济投入产出模型,来研究经济与环境之间物质交换的综合平衡关系,即经济发展对环境的影响,以及环境状况变化对社会经济的信息反馈。
1.引入废弃物排放的投入产出表成线性比例关系,这可以以物理量的形式引入传统的投入产出表中,列在物资消耗下面,作为纵栏的延伸,如表6所示。
其中Wgi为生产各部门在产出产品j时排放的废弃物g的数量,横栏最终产品下面为最终排入环境的废弃物总量Y g(g=m+1,m+2,…n)。
生产过程中废弃物的产生与物资消耗一起发生,也有直接排放系数和累积排放系数两种形式:(1)直接废弃物排放系数(直接污染系数)直接废弃物排放系数是指生产单位数量产品j时直接排放废弃物g的量,记为e gj,且有e gj=W gj/X j应用此式,按表工的简化投入产出表,假设工业部门生产每平方米布产生并排出0.2克固体废弃物,农业部门生产每公斤小麦排出0.5克废弃物,当总产量为100公斤小麦和50平方米布时,排放的废弃物分别为50克和10克,共计60克,如表7所示:(2)其与最终产品系数的含义有点类似,是指生产单位数量的最终产品j 时,直接和间接产生并排放的废弃物g 的数量,记作C gj ,并用矩阵符号表示后求得:()1--=→=A I E C CY W式中,W 为生产部门直接废弃物排放矩阵;C 为累计废弃物排放系数矩阵;Y 为最终排入环境的废弃物g 的总量向量;E 为直接废弃物排放系数矩阵;()1--A I 即最终产品系数矩阵。