物流自动分拣系统设计

合集下载

基于机器视觉的自动化物流分拣系统设计

基于机器视觉的自动化物流分拣系统设计

基于机器视觉的自动化物流分拣系统设计随着物流行业的不断发展和进步,自动化物流分拣系统成为提高效率、降低成本的重要手段之一。

在其中,基于机器视觉的自动化物流分拣系统设计扮演着重要的角色。

本文将介绍该系统的设计原理、关键技术和应用前景。

设计原理:基于机器视觉的自动化物流分拣系统的主要原理是通过摄像头等视觉传感器对物品进行图像识别和处理,进而准确判断物品的特征和状态,从而实现自动化的分拣功能。

该系统一般包括图像采集、图像处理、目标识别和分拣四个主要阶段。

关键技术:1. 图像采集:系统采用高分辨率的摄像头用于实时拍摄物品图像。

采集到的图像需要满足一定的光线条件,以保证物品特征的清晰可见。

同时,考虑到高速运输下的实际应用,摄像头的帧率也需要具备一定的快速响应能力。

2. 图像处理:该系统需要对采集到的图像进行预处理和优化。

例如,对图像进行灰度化、滤波、边缘检测和二值化等操作,以优化图像质量并提取出物品的特征信息。

3. 目标识别:基于图像处理结果,利用深度学习或机器学习等相关算法,对物品进行目标识别。

这需要事先训练模型,使系统能够准确识别不同物品的特征,如尺寸、形状、颜色等。

4. 分拣:一旦物品被成功识别,系统会根据预设的规则和逻辑,自动将物品分拣到相应的储存或运输设备中。

这通常通过机械臂、传送带或滑槽等装置来完成。

应用前景:基于机器视觉的自动化物流分拣系统具有广泛的应用前景。

首先,它能提高物流行业的效率和准确性,减少人工分拣过程中可能出现的错误和偏差。

其次,该系统具备较强的适应性,能够处理不同形状、尺寸、质地的物品。

再者,自动化分拣系统还可以满足大规模、高速分拣的需求,大幅提升物流分拣的速度。

此外,基于机器视觉的自动化物流分拣系统还具备智能化潜力。

在未来的发展中,可以采用更加先进的人工智能技术,为系统赋予更好的学习和识别能力,提升系统智能化水平。

然而,在设计和应用过程中也面临一些挑战。

首先,物品的多样性和尺寸差异给图像处理和目标识别带来了一定的难度。

智慧物流中的自动化分拣系统设计

智慧物流中的自动化分拣系统设计

智慧物流中的自动化分拣系统设计随着电商行业的蓬勃发展,物流行业也面临着越来越大的挑战。

为了提高物流效率和降低成本,智慧物流中的自动化分拣系统成为了解决方案之一、本文将从系统架构、功能模块和关键技术等方面对智慧物流中的自动化分拣系统进行详细设计。

一、系统架构1.输入模块:该模块主要用于接受分拣指令和传感器数据的输入。

分拣指令来自于物流管理系统,传感器数据则用于感知货物信息,如尺寸、重量和形状等。

2.控制模块:该模块用于分拣任务的调度和控制。

它通过与输入模块和执行模块的数据交互,实现分拣过程的自动化。

3.执行模块:该模块是整个自动化分拣系统的核心部分,它主要包括机械臂、传送带和仓库货架等设备。

机械臂用于将货物从传送带上取下,并根据分拣指令将其放入相应货架上。

4.输出模块:该模块用于输出已完成的分拣任务的信息,如分拣完成的货物数量、分拣准确率等。

二、功能模块1.分拣任务调度:根据物流管理系统的指令,将需要分拣的货物进行合理的调度,使得分拣过程高效、准确。

2.识别和分类:通过传感器和视觉系统,对货物进行识别和分类。

可以利用机器视觉技术进行图像处理,提取货物的特征,如尺寸、重量和形状等。

3.分拣执行:根据分拣指令和货物的特征,控制机械臂将货物从传送带上取下,并将其放入相应的货架上。

4.异常处理:处理分拣过程中可能发生的异常情况,如货物丢失、堵塞等问题,及时进行处理和修复。

5.数据统计和分析:对分拣过程中的数据进行统计和分析,如分拣准确率、效率等,为物流管理系统提供数据支持。

三、关键技术1.机器视觉技术:通过摄像头和图像处理算法,对货物的特征进行识别和提取,实现自动化分拣。

2.传感器技术:利用激光传感器、红外线传感器等设备,对货物的位置、尺寸、重量等信息进行感知。

3.控制算法:使用合适的控制算法,对机械臂进行精确的控制,使其能够准确地进行分拣操作。

4.通信技术:通过与物流管理系统的通信,实现分拣指令和数据的传输,确保系统的高效运行。

基于机器视觉的自动化物流分拣系统设计与实现

基于机器视觉的自动化物流分拣系统设计与实现

基于机器视觉的自动化物流分拣系统设计与实现随着物流业的不断发展,物流分拣系统也在不断更新和升级。

随着科技的不断发展,基于机器视觉的自动化物流分拣系统越来越被广泛应用。

本文将介绍基于机器视觉的自动化物流分拣系统的设计与实现。

一、机器视觉技术的应用机器视觉技术是一种通过计算机模拟人眼视觉、感知、识别、判断等功能的技术。

它可以将各种物体的图像信号转化成数字信号,实现对物体的自动识别、跟踪、分类、计量等操作。

机器视觉技术在物流行业应用广泛。

它可以通过视觉识别技术快速捕捉物品的图片和视频信息,实现对物品的实时监控和跟踪。

同时,机器视觉技术还可以根据物品的大小、形状、颜色等特征进行分类和计量,从而提高分拣效率和准确性。

二、自动化物流分拣系统的设计基于机器视觉的自动化物流分拣系统主要由以下四个部分组成:1. 图像采集设备图像采集设备主要包括高清摄像头、扫描器等。

通过这些设备可以捕捉到物品的图片和视频信息。

2. 图像处理模块图像处理模块是整个自动化物流分拣系统的核心部分。

其主要功能是将图像信息处理成数字信号,并进行图像分类和计量操作。

常用的图像处理方法有模板匹配、神经网络、支持向量机等。

3. 分拣机械手臂分拣机械手臂可以根据图像处理模块进行指令分类和计量操作,对不同的物品进行分类和拣选。

通过摆臂、伸臂、旋转等多个轴的控制,可以完成物品的定位、抓取和放置等操作。

4. 控制系统控制系统是整个自动化物流分拣系统的核心控制部分。

其主要功能是对机械手臂进行控制和指令调整,实现对物品的分类和计量操作。

三、自动化物流分拣系统的实现在自动化物流分拣系统的实现中,需要考虑到以下几个方面:1. 系统稳定性系统稳定性是自动化物流分拣系统的基本要求。

因此,在设计和实现时,需要考虑机械手臂的稳定性、控制系统的稳定性等。

2. 分拣精度分拣精度是自动化物流分拣系统的核心要求。

因此,在图像处理模块设计时,需要考虑到不同物品的特征和形状等,从而实现准确的分类和计量。

快递物流业智能分拣系统实施方案

快递物流业智能分拣系统实施方案

快递物流业智能分拣系统实施方案第1章项目背景与需求分析 (3)1.1 快递物流行业现状分析 (4)1.2 智能分拣系统需求调研 (4)1.3 技术发展趋势与行业应用前景 (4)第2章智能分拣系统设计原则与目标 (5)2.1 设计原则 (5)2.2 设计目标 (5)2.3 系统架构 (6)第3章智能分拣设备选型与布局 (6)3.1 分拣设备类型及特点 (6)3.2 设备选型依据 (6)3.3 分拣设备布局设计 (7)第4章信息系统设计与集成 (7)4.1 信息系统的功能需求 (7)4.1.1 快递信息采集 (7)4.1.2 快递信息处理 (7)4.1.3 快递跟踪与查询 (8)4.1.4 系统管理 (8)4.2 系统架构设计 (8)4.2.1 总体架构 (8)4.2.2 基础设施层 (8)4.2.3 数据层 (8)4.2.4 服务层 (8)4.2.5 应用层 (8)4.2.6 展示层 (9)4.3 数据采集与处理 (9)4.3.1 数据采集 (9)4.3.2 数据处理 (9)4.4 系统集成与互联互通 (9)4.4.1 系统集成 (9)4.4.2 互联互通 (9)第五章智能识别与跟踪技术 (9)5.1 快递包裹识别技术 (9)5.1.1 条码识别技术 (10)5.1.2 二维码识别技术 (10)5.1.3 视觉识别技术 (10)5.2 自动跟踪技术 (10)5.2.1 射频识别技术(RFID) (10)5.2.2 蓝牙定位技术 (10)5.2.3 视觉跟踪技术 (10)5.3 识别与跟踪技术在分拣中的应用 (11)5.3.2 实时监控与调度 (11)5.3.3 数据分析与优化 (11)第6章分拣策略与算法优化 (11)6.1 分拣策略概述 (11)6.1.1 分类分拣策略 (11)6.1.2 混合分拣策略 (11)6.2 算法优化方法 (12)6.2.1 机器学习算法优化 (12)6.2.2 深度学习算法优化 (12)6.2.3 强化学习算法优化 (12)6.3 分拣效率与准确率提升措施 (12)6.3.1 优化分拣路径 (12)6.3.2 提高设备功能 (12)6.3.3 人员培训与管理 (12)6.3.4 数据分析与优化 (12)第7章仿真模拟与测试 (12)7.1 仿真模拟系统构建 (13)7.1.1 仿真系统设计 (13)7.1.2 仿真参数设置 (13)7.2 分拣设备功能测试 (13)7.2.1 分拣速度测试 (13)7.2.2 分拣准确率测试 (13)7.2.3 设备稳定性测试 (13)7.3 系统稳定性与可靠性测试 (14)7.3.1 系统连续运行测试 (14)7.3.2 异常情况处理测试 (14)7.3.3 系统恢复能力测试 (14)第8章智能分拣系统实施与验收 (14)8.1 项目实施步骤 (14)8.1.1 设备安装与调试 (14)8.1.2 软件系统部署 (14)8.1.3 系统集成与联动调试 (14)8.2 系统调试与优化 (14)8.2.1 系统调试 (14)8.2.2 系统优化 (15)8.3 项目验收标准与方法 (15)8.3.1 验收标准 (15)8.3.2 验收方法 (15)第9章运营管理与服务保障 (15)9.1 运营管理体系构建 (15)9.1.1 组织架构 (15)9.1.2 管理制度 (15)9.1.3 操作流程 (16)9.2 设备维护与保养 (16)9.2.1 设备维护 (16)9.2.2 保养措施 (16)9.2.3 备品备件管理 (16)9.3 客户服务与投诉处理 (16)9.3.1 客户服务 (16)9.3.2 投诉处理 (16)9.3.3 服务质量改进 (16)第10章项目风险与应对措施 (16)10.1 项目风险识别 (17)10.1.1 技术风险:智能分拣系统技术更新迅速,可能导致项目实施过程中技术落后或与现有设备不兼容。

自动分拣系统毕业设计

自动分拣系统毕业设计

自动分拣系统毕业设计自动分拣系统毕业设计在现代物流行业中,自动分拣系统扮演着重要的角色。

随着电子商务的兴起和物流需求的增加,传统的人工分拣已经无法满足快速、高效的需求。

因此,开发一套高效、智能的自动分拣系统成为了许多物流企业和研究机构的关注焦点。

自动分拣系统的设计需要考虑多个因素,如分拣速度、准确率、适应性等。

首先,分拣速度是系统设计中的重要指标之一。

在高峰期,物流企业需要处理大量的包裹,因此,系统需要能够快速地将包裹分拣到正确的目的地。

其次,准确率也是自动分拣系统设计的关键因素。

任何一个错误的分拣都可能导致包裹丢失或交付错误,给物流企业和消费者带来不便和损失。

因此,系统需要具备高度准确的识别和分拣能力。

最后,适应性也是自动分拣系统设计中不可忽视的因素。

物流企业的需求会随着市场的变化而变化,系统需要能够灵活地适应不同规格、形状和重量的包裹。

为了实现高效、智能的自动分拣系统,我们可以借鉴机器学习和计算机视觉的技术。

首先,通过机器学习算法,系统可以学习和识别不同包裹的特征和属性。

例如,通过训练算法,系统可以识别不同包裹的大小、形状和颜色等特征,并根据这些特征进行分类和分拣。

其次,计算机视觉技术可以用于实时监测和识别包裹。

通过摄像头和图像处理算法,系统可以获取包裹的图像信息,并进行分析和处理。

这样,系统可以实时跟踪包裹的位置和状态,并将其准确地分拣到目的地。

除了机器学习和计算机视觉技术,自动分拣系统的设计还需要考虑到物流企业的实际需求。

例如,系统需要能够适应不同尺寸和重量的包裹,以及不同的分拣场景。

同时,系统还需要具备良好的扩展性和可维护性,以便在需要时进行升级和维护。

此外,系统的安全性也是设计中需要重视的方面。

物流企业处理的包裹可能包含贵重物品或敏感信息,因此,系统需要具备一定的安全措施,以保护包裹的安全和隐私。

总之,自动分拣系统的毕业设计是一个复杂而有挑战性的任务。

在设计过程中,我们需要考虑到分拣速度、准确率、适应性等多个因素,并结合机器学习和计算机视觉技术进行实现。

物流快递业智能分拣系统开发方案

物流快递业智能分拣系统开发方案

物流快递业智能分拣系统开发方案第1章项目概述 (3)1.1 项目背景 (3)1.2 项目目标 (3)1.3 项目意义 (3)第2章市场调研与分析 (4)2.1 市场现状分析 (4)2.2 市场需求分析 (4)2.3 竞争对手分析 (4)第3章技术可行性分析 (5)3.1 技术现状 (5)3.2 技术发展趋势 (5)3.3 技术选型与评估 (6)第4章系统需求分析 (6)4.1 功能需求 (6)4.1.1 快递信息采集功能 (6)4.1.2 自动分拣功能 (6)4.1.3 数据管理功能 (6)4.1.4 系统管理功能 (7)4.1.5 故障检测与报警功能 (7)4.2 功能需求 (7)4.2.1 处理速度 (7)4.2.2 系统容量 (7)4.2.3 响应时间 (7)4.2.4 扩展性 (7)4.3 可靠性需求 (7)4.3.1 系统稳定性 (7)4.3.2 数据可靠性 (7)4.3.3 故障恢复 (7)4.4 安全性需求 (8)4.4.1 数据安全 (8)4.4.2 系统安全 (8)4.4.3 设备安全 (8)4.4.4 用户安全 (8)第5章系统设计 (8)5.1 总体设计 (8)5.2 系统架构设计 (8)5.3 模块划分与接口设计 (8)第6章关键技术与实现 (9)6.1 识别与抓取技术 (9)6.1.1 物体识别技术 (9)6.1.2 抓取技术 (9)6.2.1 分拣算法 (9)6.2.2 自适应学习 (9)6.3 通信与数据传输 (10)6.3.1 网络通信技术 (10)6.3.2 数据加密与安全 (10)6.4 软件系统开发 (10)6.4.1 系统架构 (10)6.4.2 开发环境与工具 (10)6.4.3 系统集成与测试 (10)6.4.4 用户界面设计 (10)第7章智能分拣系统硬件设计 (10)7.1 分拣设备设计 (10)7.1.1 设备概述 (10)7.1.2 输送带设计 (10)7.1.3 分拣机械手设计 (11)7.1.4 旋转盘设计 (11)7.2 传感器与执行器选型 (11)7.2.1 传感器选型 (11)7.2.2 执行器选型 (11)7.3 控制系统设计 (11)7.3.1 控制系统架构 (11)7.3.2 控制策略 (11)7.3.3 控制算法 (11)7.3.4 通信模块 (12)第8章软件系统开发与实现 (12)8.1 系统软件框架 (12)8.2 数据处理与分析 (12)8.3 用户界面设计 (12)8.4 系统集成与测试 (13)第9章系统测试与优化 (13)9.1 测试策略与方案 (13)9.1.1 测试策略 (13)9.1.2 测试方案 (13)9.2 功能测试 (14)9.2.1 单元测试 (14)9.2.2 集成测试 (14)9.2.3 界面测试 (14)9.2.4 业务流程测试 (14)9.3 功能测试 (14)9.3.1 压力测试 (14)9.3.2 并发测试 (14)9.3.3 稳定性测试 (14)9.3.4 网络功能测试 (14)9.4.1 代码优化 (15)9.4.2 数据库优化 (15)9.4.3 系统架构优化 (15)9.4.4 界面优化 (15)9.4.5 系统安全优化 (15)第10章项目实施与推广 (15)10.1 项目实施计划 (15)10.2 项目风险评估 (15)10.3 项目推广策略 (16)10.4 售后服务与运维支持 (16)第1章项目概述1.1 项目背景电子商务的快速发展和人们对物流速度要求的不断提高,物流快递业面临着巨大的挑战。

物流快递行业自动化分拣系统方案

物流快递行业自动化分拣系统方案

物流快递行业自动化分拣系统方案第一章:引言 (2)1.1 项目背景 (2)1.2 项目目的 (2)1.3 项目意义 (3)第二章:自动化分拣系统概述 (3)2.1 自动化分拣系统定义 (3)2.2 自动化分拣系统分类 (3)2.3 自动化分拣系统发展趋势 (4)第三章:系统需求分析 (4)3.1 功能需求 (4)3.1.1 分拣效率需求 (4)3.1.2 分拣准确性需求 (4)3.1.3 信息采集与处理需求 (4)3.1.4 无人化操作需求 (5)3.1.5 异常处理需求 (5)3.2 功能需求 (5)3.2.1 系统稳定性需求 (5)3.2.2 系统可靠性需求 (5)3.2.3 系统扩展性需求 (5)3.2.4 系统兼容性需求 (5)3.2.5 系统安全性需求 (5)3.3 可行性分析 (5)3.3.1 技术可行性 (5)3.3.2 经济可行性 (5)3.3.3 社会可行性 (5)3.3.4 法律法规可行性 (5)3.3.5 市场可行性 (6)第四章:系统设计 (6)4.1 系统架构设计 (6)4.2 硬件设备选型 (6)4.3 软件系统设计 (7)第五章:关键技术 (7)5.1 识别技术 (7)5.2 分拣技术 (8)5.3 控制技术 (8)第六章:系统实施与调试 (8)6.1 系统安装 (8)6.1.1 安装准备 (8)6.1.2 设备安装 (8)6.1.3 电气安装 (9)6.1.4 软件安装与配置 (9)6.2 系统调试 (9)6.2.1 设备调试 (9)6.2.2 电气调试 (9)6.2.3 软件调试 (9)6.2.4 系统集成调试 (9)6.3 系统验收 (9)6.3.1 验收标准 (9)6.3.2 验收流程 (10)6.3.3 验收结果处理 (10)第七章:系统运行与维护 (10)7.1 系统运行管理 (10)7.2 系统维护保养 (10)7.3 系统故障处理 (11)第八章:经济效益分析 (11)8.1 投资成本分析 (11)8.2 运行成本分析 (11)8.3 收益分析 (12)第九章:案例分析 (12)9.1 国内外成功案例介绍 (12)9.1.1 国外成功案例 (12)9.1.2 国内成功案例 (12)9.2 案例对比分析 (13)9.3 启示与借鉴 (13)第十章:总结与展望 (14)10.1 项目总结 (14)10.2 项目不足与改进 (14)10.3 行业发展展望 (15)第一章:引言1.1 项目背景我国电子商务的迅猛发展,物流快递行业迎来了前所未有的增长。

物流分拣系统的设计与实现

物流分拣系统的设计与实现

物流分拣系统的设计与实现随着物流业的发展暴增,大量货物需要进行分拣并快速送达客户手中。

为了提高物流效率,现代物流企业采用自动化分拣系统。

相比人工分拣,自动分拣系统具有操作简单、准确率高、效率快等优点。

本文将探讨物流分拣系统的设计与实现。

一、分拣系统的构成物流分拣系统是由硬件和软件两个部分构成的。

硬件部分包括运输线、传送带、分拣机、输送机等设备。

软件部分是整个系统的控制中心,主要功能是控制硬件设备的运行并完成分拣任务。

需要注意的是,硬件和软件两个部分不能分割,需要紧密配合才能完成物流分拣任务。

二、数据采集与处理在物流分拣系统中,数据采集与处理是最为重要的环节。

物流企业通常会采用条码、RFID等技术来采集货物信息。

比如,在仓库中,货物到达时,工作人员会贴上标签,标签上会有货物的名称、数量、重量、收货人信息等。

当货物经过扫描器时,扫描器会读取标签上的信息,并将其上传到系统中进行处理。

此后,系统会根据货物的数量、重量、收货地址等信息,自动安排货物的分拣顺序,并将其发送到对应的分拣机上进行分拣。

三、分拣机的设计与实现分拣机是物流分拣系统中的核心设备。

分拣机通常由运输线、传送带、机械手臂等部件组成。

当货物到达分拣机时,机械手臂会根据货物的信息来抓取货物,并将其分拣到对应的分类箱中。

在选择分拣机时,需要考虑多个方面,如分拣速度、分拣精度、承载能力、占地面积等。

四、系统控制与监测在物流分拣系统中,系统控制与监测是至关重要的一环。

系统控制部分主要功能是控制分拣机的运转,并根据实际情况来调整分拣机的速度、分拣顺序等。

同时,系统还需要实时监测整个分拣过程中的数据,以便随时掌握货物的实时情况。

如果发现异常情况,系统需要及时进行排查与解决。

五、总结物流分拣系统的设计与实现需要考虑多个方面,包括数据采集与处理、分拣机的设计与实现、系统控制与监测等。

如果一个物流分拣系统能够在这些方面都得到完善的设计与实现,那么将能够大大提高物流效率,为企业创造更多的价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物流自动分拣系统设计
摘要:物流自动分拣系统是先进配送中心所必需的设施条件之一,自动分拣装置是提高物流配送效率的一项关健因素。

只有在自动分拣系统中合理地选用分拣装置才能保证整个系统的安全高效运行。

本文首先对自动分拣系统做了简单地介绍,然后提出了系统设计的一般方法,最后通过实例对自动分拣系统进行了分析和探讨。

关键字:自动分拣系统;分拣装置;设计方法;自动分拣系统设计
1.自动分拣系统概述
自动分拣系统是二次大战后在美国、日本等发达国家的物流中心、配送中心或流通中心所必需的设施条件之一。

该系统的作业过程可以简单描述如下:物流中心每天接收成百上千家供应商或货主通过各种运输工具送来的成千上万种商品,在最短的时间内将这些商品卸下并按商品品种、货主、储位或发送地点等参数进行快速准确的分类,并将这些商品运送到指定地点(如指定的货架、加工区域、出货站台等);同时,当供应商或货主通知物流中心按配送指示发货时,自动分拣系统在最短的时间内从宠大的高层货架存储系统或其他指定地点中准确找到要出库的不同数量的商品按配送地点的不同运送到不同的理货区域或配送站台集中,以便装车配送。

2.自动分拣系统组成及特点
2.1自动分拣系统结构组成
如图1所示,自动分拣系统一般由上件装置、输送装置、分拣格口、控制系统组成。

1-输送装置2-上件装置3-控制系统4-分拣道口5-分类装置
图1 自动分拣系统结构组成
上件装置的作用是识别、接收和处理分拣信号,根据分拣信号的要求去指示分类装置按商品品种、商品送达地点或货主的类别等方式对商品进行自动分类。

这些分拣需求可以通过不同方式,如可以通过人工输入、条形码扫描、色码扫描、键盘输入、重量检测、语音识别、高度检测及形状识别等方式,输入到分拣控制系统中去,根据这些分拣信号判断,来决定某一种商品该进入哪一个分拣格口。

分类装置的作用是根据上件装置发出的分拣指令,当具有相同分拣信号的商品经过装置时,该装车动作,使改变在输送装置上的运行方向进入其它输送机或进入分拣格口或其他接口设备。

分类装置的种类很多,一般有推出式、浮出式、倾斜式、输送式和分支式几种,不同的装置对分拣货物的包装材料、包装重量、包装物底面的平滑程度等有不完全相同的要求。

在分类装置的两侧,一般要连接若干个分拣格口,使分好类的商品滑下主输送机(或主传送带)以便进行后续作业。

输送装置的主要组成部分是传送带或输送机,其主要作用是使待分拣的商品鱼贯通过上件装置到达分类装置上。

输送装置是与分类装置柔性连接在一起的,输送装置上的物品要能准确无误、无损坏的送至指定的位置。

分拣道口是已分拣商品脱离分类装置即主输送机(或主传送带)进行集货区域的通道,一般由钢带、皮带、滚筒、容器等组成滑槽,使商品从分类装置(主输送装置)滑向集货站台或其他接口设备,在那里由工作人员将该格口的所有商品集中进行处理;或是入库储存,或是组配装车并进行配送作业。

控制系统对物品的信息实行全程跟踪和处理,对分拣全过程进行在线监控,以保证系统在运行中信息和设备的安全性、可靠性。

以上五部分装置通过计算机网络联结在一起,配合人工控制及相应的人工处理环节构成一个完整的自动分拣系统。

2.2自动分拣系统特点
自动分拣系统的主要特点如下:
⑴能连续、大批量地分拣货物
由于采用大生产中使用的流水线自动作业方式,自动分拣系统不受气候、时间、人的体力等限制,可以连续运行,同时自动分拣系统单位时间分拣件数多,因此自动分拣系统的分拣能力比人工分拣系统具有无可比拟的优势。

⑵分拣误差率极低
自动分拣系统的分拣误差率大小主要取决于所输入分拣信息的准确性,这又取决于分拣信息的输入机制。

如果采用人工键盘或语音识别方式输入,则误差率在1%以上:如采
用条形码扫描输入,除非条形码的印刷本身有差错,否则不会出错。

因此,目前自动分拣系统主要采用条形码技术来识别货物。

⑶分拣作业基本实现无人化
国外建立自动分拣系统的目的之一就是为了减少人员的使用,减轻员工的劳动强度,提高人员的工作效率,因此自动分拣系统能最大限度地减少人员的使用,基本做到无人化。

3.分拣装置类型及应用
各种自动分拣系统的差别仅在于所用的分拣装置,它们的种类很多,一般分为倾倒式、分支式、浮出式和推出式。

⑴横向货物分拣装置
横向货物分拣装置是由多条短平带输送机并联组成的分拣系统。

整套装置的价格取决于该分拣装置的分拣效率要求。

该装置对一般货物的分拣具有良好的适应性,但如果货物的重心较高,底面不平整,对装置的正常运行会有相当大的影响。

⑵活动货盘分拣装置
活动货盘分拣装置由圆管或金属板条组成,每块板条或管子上有一个活动的货物托盘作横向运动,当货物到达分类装置出口时,将货物分到指定的岔道实现分类。

这种分拣装置的分拣效率高,但只适用于较轻、较小货物的分拣。

⑶翻盘式分拣装置
翻盘式分拣装置由牵引链牵引,翻盘到达指定的分岔道口时,向左或向右倾斜,被拣货物靠重力滑入分岔道口。

此类装置的翻盘一般都做成马鞍形,所以对底面不平整的软包装货物有良好的适应性。

⑷直落式分拣装置
直落式分拣装置通过牵引链驱动,所输送的货物放在一些底部有活门的托盘上。

当托盘到达预定位置后,由分拣系统发出信号,活门打开,货物落入指定的容器。

此类装置用于对
扁平状的货物进行分类。

⑸辊子浮出式分拣装置
辊子浮出式分拣装置可与辊子输送机、皮带输送机融为一体,放于输送系统的岔道口处。

没有分拣任务时可作为输送机。

⑹皮带浮出式分拣装置
皮带浮出式分拣装置原理与辊子浮出式分拣装置一样,不同之处在于主滚道中设置为一条宽度较窄的皮带机。

⑺滑块式分拣装置
滑块式分拣装置是一种特殊的板式输送机,其通过货物分流来实现货物分拣的目的。

这类装置振动小、不损伤货物,适宜各种形状、体积和质量在1-90kg的货物。

⑻摇臂式分拣装置
摇臂式分拣装置是对货物的流向进行控制实现分拣。

⑼推出式分拣装置
推出式分拣装置是附在输送机上的一类分拣装置,通过90度分流实现分拣。

其装置简单价格低廉,但要求货物包装结实,运行速率低。

4.自动分拣系统的一般设计方法
自动分拣系统一般都建在有自动立体仓库的配送中心,系统规模大,设备多且自动化程度高。

系统控制点多且相互互联,导致系统控制复杂,一次性投资大。

因此,无论设计、建造还是使用自动分拣系统都必须具备一定的技术经济条件。

设计自动分拣系统主要包括以下几步:
⑴系统总体规划及性能参数设计。

包括确定系统的组成结构、系统规模、各环节作业方式和设备布局,分析明确系统的分拣处理能力/分拣速度和分拣效率等性能参数。

⑵设计规划配合分拣作业的货物输送系统。

如输送方式和规模的选择确定,输送线路及合流、分流点的布局。

⑶控制系统设计
⑷系统设备装置的设计选型。

⑸系统评估分析和相关技术文件的编写。

5.自动分拣系统设计实例
图2 物流输送及分拣系统结构简图
图2为一个物流输送及分拣系统结构简图。

B 、C 之间有15°的坡度,其它部分为水平传输。

输送系统的货物总流量为120CPM ,Ⅲ、Ⅳ道的能力利用系数85%=ρ。

货道①的货物形状稳定,分拣速率要求较高;货道②为一些易碎货物;货道③的货物质量较轻;货道④的货物包装结实,运行速率要求不高。

⑴分拣设备选型
货道①的货物形状稳定,所以可选用摇臂式分拣装置,且此装置的摇臂上安装的齿形皮带可使分流速度加快,提高分拣效率。

货道②由于其货物为易碎品,所以最好选用浮出式装置对其进行分拣,比如辊子浮出式或皮带浮出式分拣装置。

货道③由于其货物质量小,所以可采用滑块式分拣装置,并且滑块可以朝两侧滑动,可以在输送机两侧设置分拣道口,从而节约场地。

货道④的货物包装结实,可采用成本较为低廉的推出式分拣装置,其装置简单实用,达到目的的同时还能节约成本。

⑵分流后各支路的极限绩效分析
若Ⅳ的极限绩效为z γ,则CPM 141z ≈=ργγ。

分流后各支路的极限绩效为CPM z 354≈=γγ
⑶系统的阻塞概率分析
货物到达的总流量120=λ;%7.8535
30n ===γλρn ,625.024112n 11n =+=+=V , 304120n ===n λ
λ,所以()()5.1411n 2≈-+-=n n n n n V n N ρρρρω,即设计排队能力15≥R 。

系统的阻塞概率()()%4.711=⋅+-⋅==
∑∞+=R
R N N R V V P B ρρρρ
图3 Flexsim分拣系统仿真图
参考文献
[1] 黄启明.自动分拣系统及其应用前景分析.价值工程,2010(32)
[2]董淑冷.PLC在自动分拣系统中的应用.机床与液压,2005(5)
[3]陈照强,马琳,张绪鹏,沈敏德,赵强.一类规则形状物品的自动分拣原理.山东轻工业学院学报,2010(4)
[4]卢少平,张贻弓,吴耀华,吴颖颖.自动分拣系统并行分区拣选优化策略.深圳大学学报,2010(1)。

相关文档
最新文档